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Introduction

The aim of this paper is to generalize the results of [4], i.e. to ob-
tain some existence results for certain quasilinear system of differential
equations. The authors of paper [4] considered the following equation

— Z D;laij(z,u)Dju] + f(z,u,Du) =0
ij=1
in an unbounded domain of R™ with a Dirichlet boundary condition. Here,
the coefficients a;; and f satisfy the Carathéodory conditions and besides

that the nonlinearity f satisfies two types of assumptions (assumptions (i),
(ii) resp.) having quadratic growth in its third variable:

(1) f(z,n,&) = ao(z)n + g(z,n,§)

where

lg(z,m,€)| < e(z) + b(Inl) [k()I€] + 1€]7]
ap < ap(r) < Bo, ag>0,

and b : R* — R?t is an increasing function, ¢ € L?%*(Q2) N L*=(Q),
k€ LP(Q2) N L>=(N) for some 1 < p < +00; "

(i) |f(z,m, &)l < b(Inl) [h(z) + k1[€] + k2[€1°]  h € LT(Q) + L*(Q)

ki,k; € RY, and b is as in (i).
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It is to be mentioned that nonlinear equations in unbounded domains
with strongly nonlinear lower order terms have been considered e.g. in [8]
- [11] (see also the references there).

In [2] there has been considered a system of equations in a bounded
domain of R". In this work the nonlinear term may have also quadratic
growth with respect to the gradient. In the present paper, an analogous
system will be treated in an unbounded domain of R", and the conditions
on the equations are in some sense more special than in [2] and [4]. We
shall consider the following system of n equations:

= Z Djlaij(z,u)D;u”] + agu” + f*(z,u,Du) =0 in
i, y=1
(0.1) QCcR*,v=12,...,. M, u=0 on 09,

u=(ul,...,uM).

1. Assumptions

We define a vector valued Sobolev space H} (2, RM) by

1 M
H}(Q,RM):= H}(Q)z x ... x H} () with the norm

M

H
"u”H&(Q,R”) = {Z "ulf-llﬂg(n)} . where u = (‘ul1| i ’uM),

v=1

Hj(S2) denotes the usual Sobolev space which can be obtained as the
closure of C}(2) with respect to the norm

" 4
lullmy ) = {z I1Djull2q) + ||“||§,=(Q)} ;
j=1

similarly
1 M
L®(Q,RM):= L®°(Q) x ... x L®(Q) with the norm

M H
[ull 2o (@ r2) = {Z ||""I|L°°(n)} -

v=1
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Now we formulate assumptions on a;; and f. Let the coefficients
a;; : IxR" = R, (1 <14, j < n) be functions satisfying the Carathéodory
conditions, i.e. a;j(z,n) are measurable in z for all  belonging to R™
and continuous in 7, for a.e. fixed z in R". a§ : ! — R is a measurable
function. Next, we suppose that

Jda > 0, ag > 0and By > Osuch that for a.e. zin{2,

M - n
(Al) VZGR ) Vf—(fl,---;fn)en

E ai:‘(%ﬂ)fifj 2 al{'lzl aLag(z)<Po (v=1,...,M);

£,7=1

4s) la;j(z,n)| < B.

Furthermore, we consider the nonlinear function f* defined as follows:
f¥(z,u,Du) := f°(z,u, Du) + Q(z,u, Du)Du*, 1<v <M.

Function f% : Q x RM x RM" — R satisfies the Carathéodory conditions
and verifies majoration

(43) { forae. z€Q,VneRM, VE(=(,...,6M)) e RM,
; 1£% (2,7, E)| < e1(z) + b(|n|)k1(2)[€¥] -

The coefficient Q : 2 x RM x RM™ — R™ also satisfies the Carathéodory
conditions and verifies majorations

{fora.e. z€f, VneRM, VYZeRM",

{ 38 >0 such that for a.e. zin Q, Vnpe€ RM,

) 1Q(z,m E)| < Hinl)ea(@)L + [Elaeal:

01,02 > 0 and belong to the space L*(2) N L*°(Q). The function
k1 > 0 belongs to the space L?(§2) N L*°(§2) for some p > 2, b is a positive
monotone function from R* to R¥.

Remark 1. The quasilinear system (0.1) is of particular type. The
principal part has diagonal from and the term f” is a sum of two terms
as mentioned above, such that f“ grows quadratically in its third variable
(grad u).

Remark 2. We observe that the hypotheses of [4] are more general in
comparison to the hypotheses (A43),(A4) for a single gquation. At the same
time, the hypotheses considered for the system of equations in section 4 of
[2] are quite analogous except that the domain (2 in our case is unbounded
and so the constants can’t belong to any L?(2). Therefore, we made the
restriction that k; belongs to L?(2) N L*°(2).
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2. Existence theorem

Theorem 2.1. Under the assumptions (A;)—(A4) there exists a func-
tion u belonging to H}(Q,RM) N L*(Q,RM) such that

z (aij(z,u)D;u”, D;v") + (agu”,v”) = —(f",v") ie.

i,7=1

(2.1) z ]a,,(:: u)D;u’ D;v"dz + /aou"v"da: =
1]

SJ—

=—/f"(z,u,Du)v"d:c, e L

holds for all v = (v!,... ,vM) belonging to the space
H}(Q,RM) N L=(Q,RM),

-To prove the theorem we proceed as follows: let z¢ be a fixed point
of R*, B(zo,p) = {z € R" : |z — 29| < pu} a ball of radius g € N, and
consider the following problem in Q, = QN B(zq, ) :

[ u, € BY(Qu, RM)N L®(Q,,RY), u,=(ul,...,u)),
Z J @ij(z,u,)Djul Div*dz + f aguyv’dz+

(58)y N
+ [ f¥(z,u,, Du,)v*dz =0, ISVSM;
Q.

| Vv € H}(R,, RM) N L>(Q,,RM).
Since (2, is bounded, we can use the results of [2], which proves the exis-
tence of solutions u, of (2.2) such that

(2.3) lupllLe(@,) < llerllze(a,)/a0
holds. Further, we suppose that i, is the zero extension of u, outside (2,,.
Thus @, € H}(Q,RM) and
(2:4) laxllize@) < llerllze(a)/ao
Then for all v € H}(Q,RM) N L=(Q,RM) with compact support

supp v C R, if 4 > po and we have
Z /a,,(:r u,)D;u;D; v”d:l:+'/aou v'dr =
(28) N 2

—/f""(x,ﬁ,.,Dﬁ,,)v"dz —/Q(z,ﬁ,,,Da,,)Dﬁ;v"dx.
1
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We simplify the notations: let C; := b(vV M||01||L=(n)/@0). From (2.4) we
have "ﬁ“”Leo (Q,RM) <V "91 " Lm(n)/ao Moreover, define

s M
Up = liplpar = X (@%)?, then D;U, =2 2 ayDjay. Since
v=1
M
|Diy |3 aen = E |Da) | thus |Da)| < |Da,|. Let us consider the test

function v* := v}, := E,uiY, where E, = exp{tU,}, C; := sup E, and
t:= 2C]2_"92”Loo(ﬁ)/a The denvatwes of the function o}, are

D;v} = E,D;u}, + E tu},D;U, .

Now we are going to prove two Lemmas.

Lemma 2.1. The solutions 4, are bounded with respect to the norm

of H}(Q,RM) which will follow from the inequality

(26) lTulligqamm < const | lauliSamn + [(e1)%ds + [(e2)'dn
[y

where 6 is some number satisfying 0 < 8 < 1.

PROOF. Using the test function defined above, and summing over v
the v-th equation (2.5), we obtain:

Z Z /a.,(:r u,)Dju, Div, +Z[auu vy dz =

v=1 1,3—10 v—ln
= —E/f”(a: iy, Dy )v,dr.
v=1 Q
Consequently

M n
Z Z /E a;j(z,u,)D;u,D;u,dr+
v=11j

(2.6%)
/E aij(z,u )DU D; b,,a3~+

t\.':lm-
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M

M
e /Epab'(z)(ﬁ:)wz = - Z: /E“va(x,ﬁp,Dﬁ,,)ﬁ;dz_
0

v=1 Q v=1
M

= Z/E,,Q(x,ﬁp,Dﬁ,,)Dﬁ:ﬁ:dx.

w=] 0
By (A;), the minoration of the left hand side (1.h.s) will be:

@ e / E,|Da,[*dz + o / E,|DU,[*dz + a / E,U,ds.
2 1] Q

On the right hand side (r.h.s.) of (2.6’), we majorise the terms f° and Q
by making use of assumptions (A3), (A4), Holder’s and Young’s inequali-
ties. We consider the second term:

M
-y / E,Q(z,u,,Du,)Dalu}, = -% / E,Q(z,a,,Da,)DU, <
i Q

5 A C i
By / E,02(2)|DU,ldz + = / Eyea()|Day| |DU|dz,
Q Q
or

M i
3 3 nl a
- Z/E“Q(;c,uu,Du”)Du:u:dx = ESUPE:: /(92)2dx+
Q

v=ln
1 (Cy)? 2 1 t
(2.7) +ﬁ( ;) / E,|DU,|*dz + Ellgzllim(m f E,|Di,|*dz+
11 Q
1 (Cy)? e
+ Gl / E,|DU,['dz; &= a/(2lleallie ).
0

The second and fourth terms on the right of (2.7’) can be absorbed by the
second term of (2.7) and the third term will be absorbed by the first term
of (2.7), since E, > 0. Let us consider the first term on the right of (2.6’):

by (As)

M
- ijo”(x,ﬁp,Dﬁp)E“ﬁ:dx < M/E,,gl(x)|ﬁ,,|d;r+
(2.8) o Q
+C'1MfE,,k1(z')|Dﬁ,‘||ﬁp|dz.

0
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By Young’s inequality one has

M./-E,.gl z)|a,ldz < —/E @, dz+

1
+ %;S“PE;;'/MQ(&)ZJI = ﬁ02/M2(91)2d3+
Q Q

‘;—" E,U,dz.

Q

+

Here the second term can be absorbed by the last term of (2.7).
Next, the following term on the right of (2.8) is estimated:

M / E,k1(2)| Dl ldz < CyM(sup E,) / b iDa e <
(]
< 1M, [ D, ds,

where 1/p+1/¢=1/2, p>2and2< qg< 400, 8:=2/q, 0 <8 < 1.
By Holder’s inequality we have

] k| Dty | [ [t [~z = ] Dtk [, [ 0z <

i
{ f IDunlz} { f |y l"'lﬁnl”lﬁnlz(’"”dz} <
1]

3. ‘.‘

s{ / wa,lz} { /] lw} { 7§ mt‘v} T A

= "D“n”mm RMn) * “kl "L’(Q)"uﬂ"m(ﬂ RM)® "uﬁll Lm(g RM) )

and so by Young’s inequality

(4%
oM / Euk:|Dity | [iuldz < S11B,Dity 320, maemy +
(28)

1 _ _ 12(1—-8)
+ ;Csz sup Ey||k1l|Zs )l 8ul75 0 may |84l Lo g meme) -
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The first term on the right of (2.8”) will be absorbed by the first term of
(2.7). Therefore, from (2.7) and the estimations of the terms on the r.h.s.
of (2.6’) we obtain

Ilﬁﬂlﬁfg(ﬂ,nﬂ) <Cs ||ﬁp||i%(n,nﬂ) 3 2 /(91 )’dz + /(Qz)zdl'] ;
Q Q

where C3 > 0 is a constant. Since 0 < 26 < 2, one may choose a constant
Cy depending only upon |[g1]|z2(n), lle2llz2(a), Ik1llzr), llerllz=(a) and
||92"L°°(ﬂ) and M, a, &, ag such that

(2.9) "ﬁu”?if;(n,aﬂ) <Cs VpeN.

which completes the proof of Lemma 2.1.

From the estimate (2.9) it follows that we can extract a subsequence
(still denoted by #,) such that

i, »u in H}(Q,RM) weakly.

By Rellich’s theorem, for every w compact in 2, @, tends to u strongly

in L?(w) and then by the use of the diagonal process, we can extract a
subsequence (still denoted by #,) such that @, — u a.e. in {2 and thus by

(2.4) u € L=(Q, RM).

Lemma 2.2. For any w compactly included in §) we have:

z¥:=4¥ —u” - 0 stronglyin H'(w).

v v
u M

PROOF. It is obvious that z} € Hy(2) N L*°(R). By using notations
|2 |? 2= 30(22)?, | Dzy|fan =Y |D2LR, 2, :=) (2))*, we have
v v v

DJ'ZM = E QZKDJ'.Z’: .
v=1

We choose 3 g =
t= 2C]2||92”i°°(n)/a2, E, =exp{tZ,}.

Consider the test function v* = v} := E,,zzﬂz, where § € D(§2),0<6 <1,
# =1 on w. Thus the equation (2.5) can be translated to z; in its principal
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part; multiplying (2.5) by v, and summing over v, we obtain

n
E Z: /a.-j(a:,ﬁ,‘)D,-z:Dw"dz +Z/ag(z)z:v”dz =
i

v I:,j=1 0

" _E/fov(z'ﬁwpﬁn)vvdx—
"

(2.10) -3 / Q(z,u,, D, ) Dujv”dz+
i

- Z E /(Di[aej(raﬁu)pj“"]'””)_

v i,j=ln

—/ag(.r)u"v"dx,

Q

for all fixed v¥ € H}(2) N L*=(R).

The derivative of the test function:
(2.11) D;v; = Diz;E‘,‘Gz + 2(D.-9)9Epz: + fD,»ZpE'pzzﬂz .

The equation (2.10) can be written in the following form:

Z E /Eﬂaij(zaﬁp)Dj3:D§Z:92d3+

v i,j=l 0

i, =1

e X > b4
+ § z: jE,.a;j(z,ﬁ,.)DgZ“DjZ,,szx+
Q
(2.12) + Z/E,.a{,’(z)(z:)zﬂzdx -
s
e / E,Q(z, 1y, D) Dz’ 2" % dz—
gk

- Z/EpQ(I,ﬁ”, Dﬁp)Duvz:Gde_.
s

13
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—-Z/E”ag(x)u”z;’ﬂzdx—
i

-3 / E,f%(z,u,, Du,)zL6*dz—
r'ea

n
_Z Z /EFal'f(xsﬁp)DjupDizzazdI—

v ij=1g

—fz E /E',‘a.-,-(a:,ﬁ,,)Dju"D;Z“z:szx—

v i,J=l 0

95N / Epaij(z, 1) Dju*(Di8)6z"dz

v i,j=1ﬂ
- Z /E‘,‘ag,—(:r,ﬁ,,)Djz,‘(D.‘G)Gdz.
i,j=1 0
The Lh.s. of (2.12) is greater than or equal to (by coerciveness)
(2.13) a'/E_'“|Dz”|292d:r +a%/E’F|DZ“[292dx+an./EFZ“92dx.
Q Q

On the r.h.s. of (2.12) first we consider the term
-y [ E.Q(z,u,, Di,)Dz}256%dz =
e

v % ] E,Q(z,u,,Du,)DZ,6*dz <
0

(2.12") P
57‘ f E,0:(2)|DZ,|0*dz+
0

C = 3
o f E,0:(2)\DZ,||Dii,|6*dz.
0

(where 2, := Y (23)%, D;2, = Y 2z4D;zl, |Dzuldnn = X |Dz})?
v v v
|Dzy| < |Dz,| and |Duj| < |Di,l).
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The term %l‘{E,,gg(xNDZ,,w?dx — 0, since 6 is bounded in L*°(Q)

and |DZ,| — 0 weakly in L?(Q), as z5 € L=(Q), |Dz4| < |Dz,| and
Dz, — 0 weakly in L?(2), g2 € L*(2) N L*(R) and E, is bounded in
L*°(§2). Also, the next term on the right of (2.12’) can be estimated in the
following manner:

&% F Tt
?‘ / E,0:(z)|DZ,||Di,|6*dz <
1]
< % / E,00(2)|DZ,| | Dul6?dz+
Q

5 f :
G / E,0x(2)|Dz,||DZ,|6%dz .
Q

Here, the first term will tend to zero since |Du] is a fixed L%-function and
|DZ,| — 0 weakly in L*(2), and for the second term by the use of Young’s
inequality we obtain

C = - > Fe
3 [ Bees@)iDal1DZ,06%0z < 5 [ Bu(eaIDa o+
0 Q

.y

+2a'

2
Q) ] E.|DZ,[6%dz .
1]

The first of the above two terms can be written as follows:

ot B a” =
?/Eu(ez)ngzuFBzdx - —2-||92||i°°(n) N EyDz,6||72 0 mrny
Q

O o .
where a* := m. This term can be subtracted from the first term

of (2.13) and the second one will be absorbed by the second term of (2.13).

In a similar manner it can be shown that all the terms on the right
hand side of (2.12) will tend to zero. Consequently, the left hand side of
(2.12) will also tend to zero. Next step is to prove the passage to the limit.

PROOF of Theorem 2.1. The limit of (2.5) as u4 — oo is to be taken
for every v” belonging to Hj(§2) N L*°(f2) and having compact support.
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We have
| (2, Gu, DT, )0*] < [01(2) + Cilka(2)] [ D] 0¥] <
< ai(z)|v”] + Calka [ | Day| |v*].
Then the r.h.s. of (2.14) converges strongly in L*(2). Since
f""(a:,ﬁ,,,Dt‘i,,)v" — f%(z,u,Du)v” ae. in €,
f%(z,d,, Di,)v* — f°(z,u, Du,)v” in the L'-norm
by Vitali’s theorem. Similarly, it can be shown that
(2.15) (Q(z,u,,Dua,)Day,)v” — (Q(z,u, Du)Du”)v” in the L' — norm.

Further, for the terms a;;, ay passage to the limit can be easily obtained
for any v¥ which has compact support and we obtain that equality (2.1)
holds for each v € H} (2, RM) N L*°(22, RM) having compact support.

Finally, we show that (2.1) is valid for each v € H}(Q2,RM)n
NL®(Q,RM). For v¥ € H}(Q) N L*®(Q) there is a sequence of functions
®y € D(Q2) such that

(2.14)

leplize(a) < 2[|v*[lL=(a),
% converges strongly to v” in Hj(Q2). We have

/ 1F%(2,u, Du)(¢l, — v*)|dz < / ale’ - v"ldz+
0

Q
(2.16)

+ Cilk1 | Loo(e) f |Du”| |y — v¥|dz,

Q

[ 10, D) D — v*)ie] <
(2.17) "

<C; /92|DU”| Inp: - v"|da: + Cy / ID“"Fl‘P,’I ~ v*|dz,

2 Q

and so by the Cauchy-Schwarz inequality and the Lebesgue Convergence
Theorem in (2.16), (2.17) it is possible to have limit for g — oo. Since
(2.1) holds for v* := ¢¥ thus passing to the limit shows that the cuqality

(2.1) holds for each v* € H(Q) N L>(R).
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