On an arithmetical property of $\sqrt{2}$

By I. JOÓ and M. JOÓ (Budapest)

Deditaced to Professor Paul Erdős for his 75th birthday

In [2] it is proved that for every $q \in (1,2)$ excepted a set of first category there exists an expansion $1 = \sum_{i=1}^{n} q^{-n_i}$ of 1 such that

 $\limsup_{i\to\infty}(n_{i+1}-n_i)=\infty$. Let $\{y\}$ denote the fractional part of the real number y. We shall prove the following

Theorem.

(i) For almost every $x \in \mathbf{R}$,

(ii) For every $x \in \mathbf{R}$ excepted a set of first category we have

(1)
$$\inf_{n} \left(\left\{ 2^{n} x \right\} + \left\{ 2^{n} (1-x) / \sqrt{2} \right\} \right) = 0.$$

Remarks.

1. (1) means that in the dyadic expansions of x and of $\frac{1-x}{\sqrt{2}}$ there are "arbitrarily long gaps at the same places" i.e. if

(2)
$$x = \sum_{k=0}^{N} \bar{a}_k 2^k + \sum_{k=1}^{\infty} a_k / 2^k, \quad \frac{1-x}{\sqrt{2}} = \sum_{k=0}^{M} \bar{b}_k 2^k + \sum_{k=1}^{M} b_k / 2^k,$$

 $a_n, \bar{a}_n, b_n, \bar{b}_n \in \{0,1\}$ then for every $m \in \mathbb{N}$ there is an n_0 such that

$$a_{n_0+1} = \cdots = a_{n_0+m} = 0 = b_{n_0+1} = \cdots = b_{n_0+m}$$
.

2. Taking an $x \in (0,1)$ such that (1) holds we obtain from (2) that

$$1 = \sum 1/\left(\sqrt{2}\right)^{n_i}$$

with $\limsup_{i\to\infty}(n_{i+1}-n_i)=\infty$.

PROOF. Let

$$A_\varepsilon := \left\{ x \in \mathbf{R} \ : \ \inf_n \left(\left\{ 2^n x \right\} + \left\{ 2^n (1-x)/\sqrt{2} \right. \right\} \right) < \varepsilon \right\}, \quad \varepsilon > 0 \, .$$

We prove that A_{ε} contains some dense open set and $mes(\mathbf{R} \setminus A_{\varepsilon}) = 0$ for any fixed $\varepsilon > 0$. Denote by Z the set of integers. It is well known (see [1], p. 58) that the mod 1 distribution of the set $\{r/\sqrt{2} : r \in Z\}$ is uniform in the following sense: for every $0 < \varepsilon < 1$ there exists a natural number $X(\varepsilon)$ such that any subsegment of [0,1] of legth at least $\varepsilon/4$ contains mod 1 a number $r/\sqrt{2}$ of any sequence $t/\sqrt{2}, \ldots, (t+s)/\sqrt{2}$ if $s > X(\varepsilon)$; $t \in Z$. Consider some $r \in Z$ satisfying

$$|||r/\sqrt{2} - \varepsilon/4||| < \varepsilon/8,$$

where ||y||| denotes the distance of the real number y from the nearest integer. Let n be a natural number, then we claim that $I := \left[1 - \frac{1}{2^n}, 1 - \frac{1}{2^n} + (\varepsilon\sqrt{2}/8 \cdot 2^n)\right] \subset A_{\varepsilon}$. Indeed, if $y \in I$ then $\{2^n y\} \leq \varepsilon\sqrt{2}/8 < \varepsilon/4$ and because of $\frac{r}{\sqrt{2}} - \frac{\varepsilon}{8} \leq 2^n(1-y)/\sqrt{2} \leq r/\sqrt{2}$ we get $\{2^n(1-y)/\sqrt{2}\} < \frac{3\varepsilon}{8}$. We see that for any natural n, any segment of legth $\geq \frac{X(\varepsilon)+3}{2^n}$ contains a subsegment of legth $\varepsilon\sqrt{2}/8 \cdot 2^n$ belonging to A_{ε} . Indeed, we call $r \in Z$ good if (3) holds. We know that the distance between two consecutive good numbers is not greater than $X(\varepsilon) + 2$, hence the distance of the corresponding left endpoints of the intervals I is $\geq \frac{X(\varepsilon)+2}{2^n}$, and so any segment of legth $\frac{X(\varepsilon)+2}{2^n} + \varepsilon \frac{\sqrt{2}}{8} \frac{1}{2^n} < \frac{X(\varepsilon)+3}{2^n}$ contains indeed a segment of legth $\varepsilon \frac{\sqrt{2}}{8} \frac{1}{2^n}$ from A_{ε} . Hence A_{ε} contains a dense open set i.e. the complement of $\bigcap_{\varepsilon>0} A_{\varepsilon}$ is of first category, further the complement of $\bigcap_{\varepsilon>0} A_{\varepsilon}$ has measure zero. The theorem is proved. \square

The method of the proof works also for $\sqrt[n]{2}$ (n > 2).

Problem. What can we say about $\sqrt{3}$?

References

 J. W. S. CASSELS, An introduction to diophantine approximation, Cambridge University Press, (1957). [2] I. Joó, On Riesz bases, Annales Univ. Sci., Budapest, Sectio Math. 31 (1988), 141-153.

I. JOÓ EÖTVÖS LORÁND UNIVERSITY CHAIR FOR ANALYSIS MÚZEUM KRT. 6-8. 1088 BUDAPEST HUNGARY

M. JOÓ 309 PAYNE ST AUBURN, AL 36630 U.S.A.

(Received April 25, 1989)