Steinhaus Theorem in Summability for P-adic Fields

By V. K. SRINIVASAN (El Paso)

Dedicated to the memory of Professor C. T. Rajagopal

Abstract. A classical theorem of STEINHAUS [11] in summability theory asserts that if C is the complex field and $A = (a_{nk})$ is a regular infinite matrix with coefficients in C, then A cannot sum all sequences of 0's and 1's. The purpose of this note is to give a short proof of the above theorem for p-adic fields Q_p and for local fields.

Introduction

After MONNA [3] gave a complete characterization of regular infinite matrices with coefficients in a complete non-archimedean field K, the investigations in summability theory started developing over complete non-archimedean fields. The works cited in [3], [4], [5], [6], [7], [8], [9], [10] represent the so called non-archimedean summability theory. In his thesis [4] NATARAJAN gave a detailed investigation of Steinhaus' Theorem from different points of view. The purpose of this paper is to give a short and direct proof of the above theorem for p-adic fields Q_p and extend the result to cover local fields.

Throughout let K denote a complete non-archimedean valued field. Let $A = (a_{nk})$ n = 1, 2, ...; k = 1, 2, ... be an infinite matrix with coefficients in K. Given a sequence $x = \{x_n\}$ in K, the sequence $y = \{y_n\}$ is defined by the procedure

$$y_n = \sum_{k=1}^{\infty} a_{nk} x_k$$

The matrix A is said to be regular if whenever $x = \{x_n\}$ converges to some L in K, the transformed sequence $y = \{y_n\}$ also converges to the very same L. In [3] the following conditions are given as necessary and sufficient for A to be regular

- 1) $\sup_{n,k} |a_{nk}| < \infty$.
- 2) $\lim(a_{nk}) = 0$ as $n \to \infty$ for all $k = 1, 2 \dots$
- 3) Lt $(\sum_{k=1}^{\infty} a_{nk}) = 1$ as $n \to \infty$.

The following **Theorem of Osgood** is needed in the sequel. A proof of the above theorem is discussed in STROMBERG [12] in page 120.

Let X be an arbitrary topological space and Y an arbitrary metric space with metric ϱ . Suppose $\{F_n\}$ is a sequence of continuous functions from X to Y, converging to the limit function $F: X \to Y$ pointwise. Then there exists a set $E \subseteq X$ of first category such that F is continuous at each $p \in X - E$. In particular if X is a complete metric space then F is continuous at every point of a dense subset of X.

In the sequel Q_p will denote the p-adic field and Δ denote the collection of all sequences of 0's and 1's from Q_p . For $x = \{x_n\}$ and $y = \{y_n\}$ in Δ we define a metric by setting

(2)
$$d(x,y) = \sup_{n} |p^{n}(x_{n} - y_{n})|$$

Then (Δ, d) is a metric space and is complete. (Completion of Δ is really essential for the investigation later on as Δ is not empty). We also note that for $x, y \in \Delta$

$$d(x,y) \le \sum_{n=1}^{\infty} |p^n(x_n - y_n)|.$$

Theorem 1. A regular infinite matrix method $A = (a_{nk})$ over Q_p cannot sum all sequences of 0's and 1's in Q_p .

PROOF. As A is regular, for each n the functional

$$(3) F_n(x) = \sum_{k=1}^{\infty} a_{nk} x_k$$

is well defined for all $x = \{x_n\} \in \Delta$ and further it is a continuous function with values in Q_p , in view of the fact

$$|F_n(x) - F_n(y)| \le \sum_{k=i+1}^{\infty} |a_{nk}| < \varepsilon$$

if $d(x,y) < |p^i|$ for sufficiently large i. Suppose A sums all sequences in \triangle then

(5)
$$F(x) = \lim F_n(x) \text{ as } n \to \infty$$

is defined for all $x \in \Delta$. We further note that any open ball around any point of Δ contains two points z and w where z is eventually all 1's and w is eventually all 0's. The regularity of A implies that

(6)
$$|F(z) - F(w)| = 1$$

Hence the above argument shows that F is discontinuous at each point of Δ . However by Theorem of Osgood, F must be continuous at least at one point of Δ . The above contradiction shows the validity of the claim made in the Theorem.

Remark 1. In the above Theorem 1, the only thing that was used relating to the p-adic field was p^n . It is a p-adic null sequence. By a local field we will mean a totally disconnected, non-trivial complete locally compact field K. Replacing $\{p^n\}$ by any other suitable null sequence the same result is seen to be valid for any local field, as well as for any arbitrary non-archimedean complete, non-trivial valued field K.

References

- [1] J. DUGUNDJI, Topology, Allyn and Bacon, 1970.
- [2] K. MAHLER, p-adic numbers and their functions, Cambridge tracts in Mathematics 76, Cambridge University Press (1980).
- [3] A. MONNA, Sur le théorème de Banach Steinhaus, Indegationes Mathematicae 25 (1963), 121-131.
- [4] P. N. NATARAJAN, Sequence spaces and matrix transformations over valued fields, Ph. d. Thesis, *University of Madras*, 1980.
- [5] P. N. NATARAJAN, The Steinhaus Theorem for Toeplitz'matrices in non-archimedean fields, Comment. Math. Prace Mat. 20 (1978), 417-422.
- [6] P. N. NATARAJAN, Multiplication of series with terms in a non-archimedean field, Simon Stevin 52 (1978), 157-160.
- [7] P. N. NATARAJAN and M. S. RANGACHARI, Matrix transformations between sequence spaces over non-archimedean fields, Rev. Roum. Math. Pures et Appl. 24 (1979), 615-618.
- [8] M. S. RANGACHARI and V. K. SRINIVASAN, Matrix transformations in non-archimedean fields, Indegationes Mathematicae (1964), 422-429.
- [9] D. SOMASUNDARAM, Some properties of T-matrices over non-archimedean fields, Publ. Mat. Debrecen 21 (1974), 171-177.
- [10] V. K. SRINIVASAN, On certain summation processes in the p-adic field, Indegationes Mathematicae 27 (1965), 319-325.
- [11] H. STEINHAUS, Some remarks on the generalization of limit, Prace Mat. Fiz. 22 (1911), 121-134.
- [12] K. R. STROMBERG, Introduction to Classical Real Analysis, Wadsworth Inc. 1981.

V. K. SRINIVASAN DEPARTMENT OF MATHEMATICS UNIVERSITY OF TEXAS AT EL PASO, EL PASO TEXAS 79968, U.S.A.

(Received Oktober 6, 1988)