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On the geometry of generalized metric spaces I.
Connections and identities
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Dedicated to the memory of Professor Arthur Moédr

§0. Introduction

The investigation of generalized metric space began at the same time
as that of Finsler spaces. While the latter had been studied in the famous
works of E. CARTAN, L. BERWALD and H. RUND, there were many persons
who were interested in the geometry of generalized metric spaces, such as
M.S. KNEBELMAN, A. MOOR and others. Recently, from the view point
of theoretical physics, R. MIRON’S school defined a generalized Lagrange
space (for instance, [1], 3], [8], [9]) which is considered a generalized met-
ric space without the homogeneity condition. In the present paper, the
mathematical discussions are based on the theories due to Prof. M. MAT-
SUMOTO (7] and the author [6].

Let M be an n-dimensional manifold of class C* with local coordi-
nates (z') and T(M) | # : T — M its tangent vector bundle with local co-
ordinates (z*,y*). Let us denote by M7y the manifold of non—vanishing tan-
gent vectors: Mt := T(M)— {0}. A Finsler space is a pair (M7, F(z,v)),
and a Lagrange space is a pair (T'(M), L(z,y)). A generalized metric space
is called a generalized Finsler space (Mr,gi;), or a generalized Lagrange
space (T(M), gij) depending on the fact, whether the tensor g;;j(z,y) is
positively homogeneous (p-homogeneous) of degree zero in y, or not. The
generalized metric space mentioned in the present paper is a generalized
Finsler space, and the tensor g;; is called the metric tensor.

Homogeneity condition follows from the well known

Lemma 0.1. (Zermelo). The arc length s of a curve z* = z'(t) in M

given by
t
s =] Veij(z, &)Eididt, @' :=dz'/dt,
to
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is invariant under any parameter change t = t(t), dt /dt > 0, if and only if
the metric tensor g;j(z,y) is p-homogeneous of degree zero.

The required conditions for the metric tensor g;;(z,y) are as follows:

(a) class C* in (z',y'), (b) positive definite, (c) positively homogeneous
of degree zero in y' and (d) g5 = E}gajF 2/2 is non-degenerate, where
d; := 8/8y’ and F? := g;;y'y’.

From the above conditions, we see that a pair (Mp, F(z,y)) is a
Finsler space and a function F(z,y) is a called a Finsler metric associ-
ated with the generalized metric g;;.

In the geometry of M7 a non-linear connection N} plays an important
role. We shall define N ; in the following way. Let us calculate below

2G' := g*ih(yjajéth — 0y F?)/2, 8;:=08/027, g"”‘g}',i = 6;

A non-linear connection N} is required to satisfy 2G' = Nj}y*, hence
we have

(01) Ni=Gi-P'y; Gi:=0&G', P'::=(y0N;-Nj)/2.

It is easily shown that the G} are transformed as non-linear connection
parameters and therefore P*y is an arbitrary tensor. It is p-homogeneous
of degree one. This requirement is based on the fact that in the theory of
(M7, gi;) a geodesic in M is expressed by éy*/ds = 0, y* := dz*/ds.

§1 is devoted to a short discussion of the geometry of the bundle M.
In §2 and §3 metrical connection CI'(V), h-metrical connection RI'(V)
and non—metrical connection BI'(G) are introduced, and many identities
of their torsion and curvature tensors are given. In §4 we shall consider
the special cases of generalized metric spaces and give some results.

In the usual manner, we raise or lower indices by means of g;;.

§1. Preliminaries on geometry of the bundle My

The content of this section refers to an idea of S. KOBAYASHI and
K. NoMizu [2]. To make clear the discussion, the content is arranged in

sections: A. ~ J., in which some proofs are omitted. Most of the equations
will be expressed without indices and written in the matrix product form.
The last of these sections refers to Lie derivation.

A. In a generalized metric space we define the non-linear connection

N by (0.1). The tangent space Ty(M7) at y = (z*,y') in M7 is decomposed
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into two distributions Hy(M7) and V,(M7) in the following way. If we
introduce two 1-forms 8, ¢ in T;(Mr) by

6:=dz, §:=dy+Ndz ; 6,69,
we can define

Hy(Mr):={X € T,(M7)|6'(X) =0}, (horizontal space);

Oy (Mr) = (X € T,(07) |8(X) =0}, (vertical space),

such that Ty(Mr) = Hy(Mr) ® Vy(Mr). The dual bases (d,d’) of (6,6')
are given by

d:=0r—- Ny, d:=0dy; d; dg,

so that the distributions Hy(Mr) and V,(Mr7) are spanned by (d;), and
(d(iy)y, respectively.

B. Because the linear spaces Hy, V,, and T,(M), p = n(y) € M are
linearly isomorphic to a single vector space V of dimension n, we can define
a horizontal (vertical) lift I(I") as follows:

(1.2) IN: Tpy(M) — Hy(Mr)|In - (9z)p = dy = (9z)y — N(Jy)y;
I Ty(M) = Vy(Mr) | I* - (92), = d, = (By), -

Let L(M) = (L,7, M,GL(n)) be the frame bundle of M, z,, = (z%,2}) €

L(M), such that n vectors z, := 2;(8/9z"), form the basis of T,(M) at p

in M. On the other hand, the frame bundle L(M7) = (L, 7, M7, GL(2n))

of My consists of a set of 2n basis vectors of Ty(Mr). Let us denote by

Py the image of the product lifts Iy := Iy x I* : L(M) — L(Mr). On
taking account of (1.2), we find for u = (B, B’') € Py

B=(B)=Iln-2n=(2ldi), B =(By)=1I"-2,=(zdy).

Here we shall define the action ¢ € GL(n) to u € Py as follows:
ug = (Bg,B'g) = (B, B') (g g) , §:= (g :) € D(GL(n)),

where the double group D(GL(n)) [4] defined by D(GL(n)) := {(3 2) |

g € GL(n)} is a sub—group of GL(2n). By virtue of the non-linear con-
nection N, we can state that the frame bundle L(M7) is reduced to
its sub—frame bundle Bp = (Pn,7,Mr,D(GL(n)). The image bundle
Pny(M7) := (PN,7,M7,GL(n)) is essentially regarded as Bp(MTr).
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C. A vector field X, in T;(Mr) is uniquely expressed as

X = EE(I,y‘)d;‘ - E(')(Isy)d(l) 3

which implies that any vector X in the F(Mr)-module X' (Mry) is de-
composed into h- and v- parts: X = X* + X?. The same applies to
(r, s)-type tensor field K on M7, that is K has 2"** parts. For exam-
ple, a (1,2)-type tensor K has 8 parts; one of the 8 parts is denoted by
K}, = J'.(k)(:c,y)d.- ® 67 @ 6(¥) where the indices i,j and (k) indicate
the specified components of the horizontal or the vertical part of K. To
simplify the calculations, we shall introduce an alternative definition of
tensor fields on M, i.e. of a tensor function (or a tensor-valued p-form)
on Py in the following way. Let e,, €(4) be a natural basis of the product

spaces V:=V x V; V x {0}, {0} x V, and e the basis of V] = V®V‘

(b)

On the other hand, the basis of V] is composed of e?, e, e( y and c( a)

A tensor function K, is defined by an isomorphism
(1.3) L: I3 (M) = V),

or we can say that a tensor function K, = I,-K,, of (r, s)-type at y in My is
a V7 -valued function (each part of specified component) of u = (z*,y*, z})
in Py. E.g. for K, = (K}',),, we get

(1.3) K:u-K,eV'|K, =2 Kj(k)(x,y)zbz" o) =1, - K, .

D. Now let us consider the tangent space T,,(Py) at u in Py and
define the connection @y on Py (accordingly the connection wj on Mr).
This is carried out by the following decomposition of T,,(Py): Tu(Pn) =

Lu(Prn) ® Gu(Pn), where
Tu(Pn):={X € Tu(Pn)|&(X) = 0},
Gu(Pn) := {X € Tu(Pn)|6(X) = 0};

(@) @=zYdz+wz), @f:=zdz}+ w} zg :
(1.4) wh := Fj 0% + C;* 0% ;

() ©6=(6,0), 6:=:2"19, O :=z7'¢, '=(20).

Remark. Fundamentally we should consider the decomposition of
T (BD) instead of T,(Pn). In this case the connection @ must be replaced

by ( ) and the transition from T,(Py) to T,(Bp) is obvious.
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The V-valued 1-form © = 8%, + 8(*) e, and the Lie algebra-valued
(or V}-valued) 1-form & := &fL? are called a basic form and a funda-
mental form on T (Py) respectively. It is easily seen that the dual bases

of 6,8 and & are given as follows:

(a) H,:=zi(di — F;*L)), Va := zi(dg) — C;*:LY),

(1.5) , ; 5 :
(b) Lf, = 2,(0/0z); Lj = zi(@/@zf) = szﬂz: .

where L? is the basis of left invariant vectors on T(GL(n)) (Lie algebra of
GL(n);[2], p. 38) and the bases H, and V, span the linear space I',(Py) =
Ha(PN) H V,(PN).

E. If the tensor K, of the (r,s)-type module (T(Py))} is contained
in (I'y(Pn))5:, then the K, is called tensorial. Here we shall show a geo-

metrical example of a non-tensorial vector X, on T..(PN). When a vector
field X = ¢'(x)(8/0z") on a domain U of the underlying space M gener-
ates a curve x4 : t — z} = ¢'(t,z), we find dz}/dt = £*(x,). The curve z;
in M is extended to a curve u; = (z¢,¥ys, 2¢) in Py such that u; should be
the solution of

(1.8) =z} =¢'(t,2), i = Ei(z)y, (28)e = E5(ze)2d s € = 8jE*(ze)-
The curve u, induces a vector field X, (t = 0) along the curve:

(1.7)  Xu:=¢€(2)(8/02")u + £'j(x)y’ (3/3y")u + €',j(2)23(8/ 023 ),
which, using (1.2) and (1.5)(b), is rewritten as

(L7 Xo=Edi+ 60 + €L €0 =€ + NjE
Moreover, noting (1.5)(a), we obtain

(1L.7) Xu =206 Ho + 2060V, + €4 L,

where

6°(X.) = 206", 6()(X,) =200,
R X)) ==, 5=y +Fiut"+ C;int®,
in which, if the connection parameters satisfy Fjig = F}'; and Cj's =

Ci';, we ﬁnfl Ei=8+ Cj‘kf"/o (see CT'(N) in §2). Thus we find that

the vector X, is not tensorial.
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F. Covariant differentiation D of a tensor function on Py (accordingly
covariant differentiation § on M) is defined by D := h* - d in the usual
way. The projection h* means h* : Ty (Py) — (I'y(M7r))* such that

(1.8) (a) h*-6=86, h*.6'=6', (b R*-@=0..
Since the connection form w on My is tensorial, we see h* - w = w. We

shall show
Lemma 1.1. The following facts hold:

(19) Dz=-wz, Dz l'=z'; Dzi= —-w}zﬁ, Dz; “w; :

PROOF. From the definition (1.4)(a), we have z& = dz + wz, which
leads us to
h* - (20) = zh* - @ = 0= h* - (dz + wz) = Dz + wz
from (1.8)(b). Hence we obtain (1.9).

Remark. This Lemma tells us that for the covariant differentiation D
the matrices z; and 2] behave like a “moving frame” as in the theory of

E. CARTAN.

G. Lemma 1.2. The operations of the basis L% of the Lie algebra
gl(n) on the elements z and z~! of GL(n) are

Lb z:_-éb : Li-zi=6izf;

CB?

b c c,b G A SR J e
L 63 J’ Lk°2" ——Sizk.

(1.10)

Let L(a) be a Lie algebra—valued p-form on Mr given by L(a) :=

aj-(:c,y)Lf , where a is a (1,1)-type p-form (tensor or not). In connection
with Lemma 1.2, we shall introduce the following

Definition. The operation of the (1,1)-type pform a on Mr to a
tensor field K, (or tensor-valued g-form) is defined by

(1.11) L(a) - Ky = -1, - (a- K).
Really, using (1.10) for an example K} we find
L(a)-K, =al L™ -(z;-'I\';(k zbzk)eb(c) =

= — 2} (an K]l — o] Ky — aF K}(my)2) 2l =
=—I, - (a-K)y,

where we have put

(1.12) (e K)juy = amKjtey — a7 Kby — @R K ) -

Remark. The above definition implies that the relation L(a) - I, =
—1I, - a- holds for any tensor K.
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H. Here we shall be concerned with covariant differentiations of tensor
fields. Using Lemma 1.1 and (1.12), we have

Theorem 1.3. The relation DI,- = I, - § holds for any tensor K,
namely

DN, e Iy « 8Ky
(1.13) (a) 6K :=dK 4+ w: K for tensor fields on My,
(b) [6K]:=[dK] + [w- K] for tensor-valued g¢-forms on Mr.
PROOF. For an example K, = K} we find
DK, = D(z"K'(k)zbz")e (€) =
e Za(dh j(k) +w I\ (k) me:n(k) - (m))zbzk bc) -
= 2{dK};y + (- K)j, )}zbzkeb(c) =
= 2}(6K} 1))zl 22 el = I, - 6K,,
where we have put 61\)“) = dK}(k) + (w - K)}(”. The bracket [ ] means
[dK](X,Y):= X(K(Y))-Y(K(X)) - K([X,Y]) forl-form K,
WwK](X,Y) :=w(X)K(Y)-w(Y)K(X) for X,Y € T,(Mr).
On My the inner product of tx- by X = £'d; + E(")d(,‘) with the bases
vectors 6°, 8 gives 1y 0" = 6'(X) = €' and 1x -0 = 8()(X) = £). We
shall define Vx := ¢x - 6, so that
Vx Ky = 8K (X) = Kjoay m€™ + Ky jomy €™
where we have put
Kty jm =K1y (dm) = dm Ky + Fi'm K i)
= Flhm}'{;l(k) _— Fkth;(h))
Ky fm) =8K ) (dm)) = Om K s + Ci'm K iy
= Ci"mKiay = Ci" mK ;).
By virtue of (1.5) and Lemma 1.2, let us define the operations H,- and V-
to a tensor function as

Hd . I_\’u = DRu(Bd) = z'?'K;(k)/ngzkz?eb(c)

m 6(c)

(1.14) 3 i
Vd . Ku = DK-(B(d)) — g K (k)/(m)zbzc 24 €4

I. For torsion tensors ; = (227), Qo = (2") and curvature tensor
Q2 = (), we have
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Theorem 1.4. The following facts hold:
(@) Dé=IL-Q, ; O :=[64],
(115) (b)) DO =I,-Q ; Q:=[6¢],
(¢) Do=I,-Q ; Q:=[dw]+[w w].
PROOF. For (a) and (b), using (1.4)(b) and Theorem 1.3, we see that

D6=DI,-0=1I,-[6 0)=1I,-9,.
For (c), using (1.4)(a), we have dz = 2& — wz, and hence we find

h*-ddz=0=h*-([dz @]+ z[d @] = [d w]z + [w dz])
= [Dz,h* - &) + zD& — [d W]z + [w Dz]
=2zD& — ([d w]+ [w w]))z=0,

which gives Do =z"'Qz=1,-Q and Q = [d w] + [w w].
For the Bianchi and Ricci identities, we can easily show

Theorem 1.5. The following facts hold:
(a) DDo=1I,-[6 Q=0 : [6 Q=0 (Bianchi),
(b)  the relation DDI,-=1I,-Q- = —L(Q)- holds for any tensor K, ,
namely, we have DDK, = I, -[§ éK) =1, - (Q-K) : [6 6K] = Q- K
(Ricci).

Really, for an example It'}( x)» We have

J. Last we shall refer to Lie derivation with respect to the vector X
induced by a curve z,; in a domain of the underlying space M. The curve

zq is lifted to the curve u, in Py. Let us define on Py the Lie operation
as

(1.17) Lg:=1g-d+d-1x,

where ¢ means the inner product by X, in (1.7). Lx on My is defined
similarly. We have

Theorem 1.8. The following facts hold:
(a) the relation LgI,- = I, - Lx holds for any tensor K,, namely we
have

(1.18) LgK,=1I,-LxK, : LxK := VxK — ¢ - K for any 0-form K ,
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(b) for the connection & and w, we have

Lyo=I,-Lxw : Lxw:=6+:x-Q forl-form w.
Really, we have

(@) LxKjuy = Kjuyn€' + Kjwywbo — € K »
() Lxw}j=86€';+ux-95,
where £'; := 2i@p(X)22 = €/; + Cj*x€* jo, for CI'(N) in §2.
PROOF. Because ¢ - K, = 0 for any 0-form K, we obtain LK, =
tg -dK, = X - K,, where
(1.7)” X-:=£°Ho - +6OV, - +€';Ll =15 - D+ L(§)- = L, - (Vx - ),

and hence we obtain (1.18)(a), using (1.11) and (1.14). To prove (b), we
shall give the following

Lemma. The following relations hold:
(1) dz = 200 — wz, dz7!' = -0z ' 4 27w,
(2 xro=aX)=L-E=2""z,
(3) 6 = df + w€ — éw.
(4) [d@)=-[@ @]+ I, - 9.
PROOF of (4). Noting @ = 27 (dz + wz), we see

[d @] = [dz"Y(dz + wz)] + 27Y([d w]z — [w d2]) =
= [dz7120] + z7Y([d W)z — [w(z& —w2)]) =
=—z"dz @)+ z7'(Qz - [w 2d]) =
= -z (2@ —w2)@)+ I, - Q= z7 w 28] =
=—[@ &)+ I, -Q.
Using the above lemma, we find that
(a) tgdo =tz (I, V-[@ @) =1, 15 - Q-3 [@ &);
(b) d(eg @) =d(z7€z) =dz"" €z + 27 "déz + 271 €d>
=(—=0z7! 4+ z7 W)€z + 271(6¢ — wE + Ew)z+
+ 2'¢(2@ — wz)
=—0(lu- &)+ -6+ (Lu- @
=I, - 6§ + (X))o -0 X) =1, - 6 + 15 - [@ @).
Thus we obtain Lg@ = (tg -d+d-tg)0 = I, - (66 + 15 - Q).
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Remark. For the case of the connection CI'(N) (see in §2), we have

(1.19) Q= _%Rjiu[gkerl — Pyiu[6t60) - %Sji“[g(lc)g(l)]’
and then we obtain

(1.20) Lxw; = A;'x6* + B;* 16" |

where

(a) Ajik '= Ei_,'/k -+ Rjiklﬁl + Pjilclel/ﬂ )

(1.21) i i i 1.l
(8) Bj's:=E&"j)x) — Pi'uk + Si'ui o

§2. Metrical connection CI'(N) and h-metrical connection RI'(NV)

In this section all tensors are expressed with their components and
the two 1-forms 6 and 6 from §1 are replaced by dz' and 6y*. This
implies that d§' = ddz' = 0, that is the considered coordinate system (z*)
is holonomic (c.f. [6]) and 8 = §y* depends on the choice of our assump-
tions of connection (cf. (2.3)(b)). Most of the tensors are in accordance
with those in a Finsler space.

The metrical connection CT(N) = (Fj'x,Cj's): wj = Fipdz® +
Cj‘kéy" satisfies

(2.1) (a) Nj := Fj'y?, (b) Fj'x = Fi';, (¢)Cj's = G
SUCh that 69‘,’ — dgu - ghiw;‘ — g’l)w:l - y:’j/kd-rk + 9:;/(!:)59"' =0 :

(2.2) (@)  gij/x = digij — Fi"xgn; — F"kgni = 0;
(®)  gij/k) = 9ijk) — Ci"kq:.,' —Ci"kghi =0, gijx) := Okgij -
The property of homogeneity leads us to

Proposition 2.1. In a generalized metric space with connection
CI(N), we have
(23) (a) C';=Cj', =0, (b) &y' =dy' +wjy’ =dy' + N}dz’,
where the index o means contraction by y.

PROOF. Because the non-linear connection N(z,y) is p-homogeneous
of degree one, we see that N(z, A\y) = AN(z,y) for an arbitrary A > 0 and
then we get

(2.4) 6(Ay) = M8y) + (d\)y
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On the other hand, for an arbitrary vector v(z,y) which is p-homogeneous
of degree zero, we have év(z, A\y) = év(z,y), that is

6v'(z, Ay) = dv'(z, Ay) + w}(z, Ay)v? (2, Ay) = 6v'(z,y),

which yields that w(z,y) is p-homogeneous of degree zero, and then we
get

wi(z, Ay) = Fj'i(z, Ay)dz* + Cj'x(z, Ay)s(\y*) = wi(z,y).
The above equation and (2.4) imply
(a) Fi'k(z,Ay) = Fi'x(z,y), (b)) Cj's(z,Ay)A = Cj'i(z,y),
(¢) dXC}', = 0.
Thus we have C,*; = 0 for an arbitrary A, and then we obtain our assertion.

Proposition 2.2. In a generalized metric space with connection
CI'(N) we have

(2.5) v =0, yii=0, ¥y, = 6.

Proposition 2.3. In a generalized metric space with connection

CI'(N) we have
(2.6) gijyy'y’ =0.
PROOF. From (2.2)(b) and (2.3)(a), we find
giiyy'y’ = (Ci"gn; + Ci*egni)y'y’ = 0.
Remark. Condition (2.6) is called “Miron’s condition” in a generalized

Lagrange space (cf. [8](4.6)).
Using (2.2), we obtain

P
(a) Fj'y= §g="(d,,g,.,» +djgnk — dngjk),
(&) & oo &k
3 Ci'ax= 59" (9hi0) + hkG) = Gik(h)) -

On noting (2.6), easy calculations give us
5 1 1 ij i i
(a) wyi:= ak(EFz) = 59i0Y'Y’ +9iky’ = giry’,
(®) g3k = O(y;) = Ok(giny™) = gjk + Cj,
Cix := grjyy" = Cu;,

where the difference tensor C;x plays an important role in the sequel and
satisfies

(2.8)

1
(2.9) Cit=C;% = E(ghj(k) + ghk() — 9ikm)Y"

because of g, ;( ,e.)y" = 0.
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Theorem 2.4. If the tensor C;; vanishes, then the generalized metric

space is a Finsler space. If the tensor C;'i vanishes, then the generalized
metric space is a Riemannian space.

PROOF. The relation (2.8)(b) implies the first assertion, that is
95k = 9jk- The second assertion follows from (2.2)(b), that is

(2.10) gijk) = 9inCi*k + 9inCi*k = Cjix + Cijix .

Here we shall be concerned with torsion tensors of the connection
CI'(N). On considering (1.15)(a), (b) and (2.1)(b), (c), we obtain
Q' :=[6 dz'] = [} de?] = —Cj'i[dz’ &y*);

(2.11) ; , e
QD =[5 8y =iy =Qf  (see (1.16)).

From (1.19), we have
Q) .= —%Rik;[dr" d:::'] - Pik;[dxk 6y"] :

where R'ji := Ro'jk, P'ji := Po' ji (see (2.12)(a), (b)).
From the Ricci identities (1.16) for a vector v* we have
(@) ik —v'yks; = Ra'juo® — RYjev' )
(6) v 15 = v'jwysi = Pa'iuv® = Cituv'yn — PR iv’
(©) /Gy = v Gy = Shtirvt,
where we have put
(@) Ra'je:=Kpr'p+Ch'mR™jr, R™ji:=diN —jlk,
Ki'ji = diFy'j + Fy™ jF's — jlk;
(212) ()  Pa'je:=Fa'jk — Ch'iyj + Ch'mP™ ji,
o= O Y, ijg = 3*N; - Fi';;
(€)  Sa'je:=Cr'jix) + Ca™iCm's — jlk,
where j|k means the interchange of the indices j, k in the foregoing terms

and the index (k) means partial differentiation by y*. Using the Ricci
identities for a supporting element y and a metric tensor g, we have

Proposition 2.5. In a generalized metric space the following relations
(@) So'ix=0, Sa°ix =Chrjx)—9gmkCa™;—jlk=0,
(b) Rnijk = —Rinjk, Phijk = —Pinjk,  Shijk = —Sinjk -

Remark. The latter of (2.13)(a) shows that if the relation Chjx) =
Chi(j) holds, then the space is a Finsler space.
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Proposition 2.8. In a generalized metric space we have P',; = 2P';.

PROOF. We see from (0.1), (2.1)(a), (b) and from the last equation
of (2.12)(b) that

P'ok = y (N} — Fi'j) = &(Niy’) — Nj — Nj = 2(G} — Nj) = 2P'.

Proposition 2.7. In a generalized metric space the following relations

o (@) Rjpm0; Poixm0, (8} Piigimb, PiijomD
a ik = ik = Yjo = h'jo =
2.14 ; ] ] J ] Jo r J ’
418 (¢) P',=0, P =0.
Now we refer to an h-metrical connection RI(N) = (Fj's): w} :=

Fj*xdz*, which corresponds to the Rund connection RF(G) in a Finsler
space.

The Ricci Identities with respect to RI'(N') are written as
(@) 'k =0 ;= Kn' o™ = R* o'y
(6) v'/imy — vy = Fa'iev® — PR jxvn .

Using the Ricci identities for a supporting element y and a metric tensor
g, we have

(2.15)

Proposition 2.8. In a generalized metric space the following identities
hold:

(0) Ba=Kln Pu=F'uy=F'a,
(b) Khiijx + Kinjk = —gnitm)R™ j& »
Fhijk + Finjk = Gni(k)/j — Ihi(m) P jk »
(¢) Kin’jk = —(gam + Cam)R™ ji ,
Fi°jk = Chiyj — (9hm + Cam)P™ jik
(d) Chrsj = Ciksn = (9hm + Chm)P™ jx—
= (gim + Cjm)P™ hi
(e) gnik)/o = GimP™ar + GamP™ix + 2P™ xghi(m) »
(f) Cjikjo=2(gjm + Cjm)P"k =
= (gjm + Cjm)P™ & + (gim + Cim)P™; .

(2.16)

(f) of (2.16) implies

Proposition 2.9. In a generalized metric space the tensor Pi, van-
ishes if and only if the tensor Cjx/, vanishes.

By virtue of Christoffel’s process and (2.1)(b) the latter of (2.16)(b)
gives
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Proposition 2.10. In a generalized metric space the following identity

holds:

2Fhijk =gnik)/j + 9ijk)/h — 9ink) /i — Ghi(m)P ™ jk

(2.17) s / :
= Gij(m)P" ak + Iintm) P ik -

Next we shall introduce the Bianchi identities of the space. Com-
paring coefficients of [dz7 dz* dz'], [dz? dz* 6y'], [dz? éy* 6y'] and
[6y? 6y* &y'], the Ricci identities for dz' : [6 § dz'] = [} dz’] give for
CI(N)

Proposition 2.11. In a generalized metric space the following identi-
ties hold: ‘ : .
(@) Rj'm—Cj'mR™u+ jlk|ll =0,

(gjm + Cjm)R™ i + j|k[l =0,
() Pi'u+Ci'yk—Ci'mP™u—jlk=0,
o= Py~ 0+ X0 P
(¢) Si‘m=Cj'syy— Ci™sCm'1 — k|l
Cikyy + (gkm + Cem)C;™1 — k|l = 0,
where j|k|l means the cycle change of indices j, k,l in the foregoing terms.
The Ricci identities for éy* : [6 § éy'] = [6 Q] = [Q; 8y’] give

(2.18)

Proposition 2.12. In a generalized metric space the following identi-

ties hold:
(@) R'jeji— PiimR™ji + jlk|l =0,
(2.19) (6) Rl:-""/('] = R‘fi* = P.iﬂ/k + P™jiP'im — R jmCi™1 — j|k,
() Plipyy—Pilje— P'oiCi™c — k|l =0,
(d) Si'm+ilkll=0.
The Bianchi identities: [§ Q}] = 0 for the CT(N) give

Proposition 2.13. In a generalized metric space the following identi-

ties hold:
(@) Rw'jksi+ Ph'imR™jx + jlk|l =0,
(5)  Rw'jiyy + Sh'mR™jk = Pa'jijk — Pl jm P™ ui—
(2.20) — Ri'jmCx™ — jlk,
(¢) =Sa* ki = Patjkgay + PalmiCi™ 1+ Shiim P™ jx — k|l
(d)  Sw'jeyay +ilkll=0.
We can easily see that contracting (2.20) by y*, we have (2.19).

For the case of an h-metrical connection RI'(IV), the identities in the
preceding Propositions reduce to a more simple form.
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Proposition 2.14. In a generalized metric space the following identi-
ties hold:

(a) Kji'u+jlkll=0,
(0)  Kin'jipi+ Fa'imR™ji + jlk|l =0,
(c) Ki'iky = Fa'jiye + FalemP™ 1 — jlk,
(d)  Rijxay = Ki'ji + (Pijix + P™jPkm — jlk).
The above identities contain several more detailed equations, such as
contraction of indices or indicatrized decomposition [5].

(2.21)

§3. Non—metrical connection BI'(G)

In this section we refer to the non-metrical connection BI'(G) =

(Gj‘k): w} = G'j_‘kdz", G'j‘k = qu) which corresponds to the Berwald

connection BF(G) in a Finsler space. ‘
Covariant derivative of a vector v' by z* will be denoted by
U}/k o— kai + Gjikvja ‘;k = ak -— Gta}. = dk - P"kc'};. )
which is rewritten as
(31) v"”k = vi;k+D,-ikv-" ——Phkvi(h), D,‘ik = Gjik—f‘-}ik.
Hence we get
(3.1) gijin = —9inD;"x — ginDi"k — P xgijn) -

Proposition 3.1. The difference tensor D;'y in (3.1) satisfies the fol-
lowing relations:

(@) Dj's = P'jk+ P,
(3.2) (3) D;°k = —(9jm + Cjm)P™,
(¢) D,'x = P}.

PROOF. (a) We see from the definitions (2.12)(b) and (3.1) that
Dj'x = Dy'; = Ou(Ni+P*;)—Fi'; = Ni—Fi'j+ P'jy = P'jx+ P .
(b) We see from (a) and (2.8) that '

D;°kx = P’k + ymP™ iy = (Ym P™ j)k) = Ymy P™j =
= —(gmk + Cmk)P™j = —(gmj + Cmj) P™k .

(c) is evident.
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Using (3.1)’, we get

Proposition 3.2. The difference tensor D;'y satisfies the following
relation:

) —2Djik =g'™ (gmj//k + Imk/fi — 9ikfim + Phjgmk(h)+
+ P"egmjw) = P* mgjkch) ) -

The Ricci identities for BI'(G) gives us

(3 4) (CI) vi””ﬂ' == U'f/k//j = Hhijkvh o thkvi(h),
(®) ' iy — V' ks = Ga'irv®,

where we have put

(@) Hi'jx = diGh'j + Ga™ ;G ' — jlk,

3.5 . 4 - '
(3:5) (b) H'jk:=diGj—jlk, (c) Gn'jk :=GCn'jx)-

Direct calculations lead to the following
Proposition 3.3. In a generalized metric space we have

(a) yi/_/k =0, Yilk = 0_, | | |

(3) H'jeny = Ha'jx, Hwiy —jlk=3H'j, H'y :=H'5 .
PROOF. The second equation of (a) follows from (3.1)’ and (3.2)(c).

Proposition 3.4. The following three conditions are equivalent:

(3.6)

(@) Hy'jx =0, (b)H'jt =0, (c)H':=0.

Using the Ricci identities for y and a metric g, we have
Proposition 3.5. In a generalized metric space we have
(a) Ho'j=H'jk, Hijk=~(ghm + Chm)H™ sk,
(®) Go'jk =Gn'jo=0, Gs°jk = gnjim + Chjsp,
(¢) Hnijk + Hinjk = —gniyige + 9niypgfi — Iniem)H™ jk
(d)  Ghrijk + Ginjk = —gniffik) + Gniky/j -
Direct calculations lead to

(3.7)
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Proposition 3.8. In a generalized metric space we obtain
Hi'je = Kn'jk + Bn'ies |
Ep'jx := Da'jn + Da™ D' — P™1Gr'jm — jlk,
and a tensor Ey' ;) (called a stretch tensor) satisfies
(@) E'ju:=ESji=H';—R'j=Pjn+P™;Du's - jlk,
(5) Ex°jx = —(ghm + Chm)E™ ji,
B =0, B'o=—(Pyp+tP'uP™),
(¢)  E'jkwy = En'jk — (P'jnsk + P™ jnPlim — k).
For the Bianchi identities of the BI'(G) we have

Proposition 3.7. In a generalized metric space the following identities
hold:

(3.8)

(3.9)

(a) Hj'u+jlkll=0, Ej'u+jlkll=0,
(b) Hjy+ilkll=H'jxp+ H™jxDm't — P™Hp' ji+
+ k|l =0,
(3.10)  (¢) Ha'jry = Gu'jyp — ilk,
(d) Hhijk/ﬂ +Gr'imH™ i + jlk|l =0,
Hi'jkpi+ Hi™ jk D't — D™ Hp' ji — P™ 1 Hy' ji(m)+
+Ghi;mHmjk +]|k|l =0.
~ Now we shall use the angular metric tensor defined by hi; := gi; —1;1;,
I' :== y'/F. The tensor hj := 8} — I'l; helps us to the notion of projection
on the indicatrix defined by g;;j(z,X)X'X’? = 1 in a generalized metric
space. We can prove the following

Proposition 3.8. In a generalized metric space we have
(a) Fligy = hik+ Cik, FUxy = hi,
(b) Fh;(k) = —hi.lj - Ii(hjk + Cjk) Y
Fhijiey = Fgijay — li(hje + Cix) = Li(hik + Cir)
(¢)  hijjk =0, Fhijix)y=—lihjx — lihix.
Last we shall show
Proposition 3.9. In a generalized metric space we have
(@)  2(Rnijk—Rjkni) = Thijk + (Chim —Cinm)R™ jk—
= (Cjktm =Chjm)R™ ni
(3.12) (0) 2(Knijk — Kjkni) = Thijk — ghi(m)B™ jk + jkm)B™ ni
(¢) 2(Hnijk — Hjkni) = Thijk — gniem)R™ jk + gjk(m)R™ ni+
+ 2(Epijx — Ejkni) »

(3.11)
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where we have put
(3.13) Thijk = gnj(m)B™ ik + gik(m)yR™ nj — jlk.

PROOF. Let us recall the following identities:

(a) Rhnijk = Knijk + ChimR™ jk (2.12)(a),
(3.14) (b) Khijk + Kinjk + gniem)R™ jk =0 (2.16)(d),

(¢) Khnijk — Kinjk = 2Rnijk — (Chim — Cinm)R™ j,

(d) Khpijk + h|jlk=0 (2.21)(a).

On making use of +i|j|k of (3.14)(b) and using (3.14)(d) we get

(3.15) Khpijk+Knjri+Knkij+nicm)R™ jx+gnj(m)R™ kit gnk(m)R™ij = 0.
On making use of —h|: of (3.15) and using (3.14)(c) we get

2Rpijk — (Chim — Cinm)R™ jk + Knjri + Kakij + Kijak + Kikjn — Thije =0,
which can be rewritten as

2Rhijx =Kanjix + Knkji + Kijen + Kikaj+

3.16
(3.16) + (Chim — Cinm)R™ jk + Thij -

Interchangement of the pair of indices (h,7) and (7, k) in (3.16) gives us

2Rjkni =Kjnki + Kjink + Kinij + Krija+

3.16)’
( ) + (Cjkm = Crjm)R™ ni + Tjkni -

Using (3.14)(b) and (3.13), we obtain

2(Rhijk — Rjkni) = — (9ajim)BR™ ik + gne(m)R™ ji + 9ij(m)R™ kn+
+ gik(m)R™ 1) + (Chim — Cinm)R™ jx—
= (Cjikm = Cijm)R™ pi + Taijr — Tjrai
=Thijk + (Chim — Cinm)R™ jt — (Cjkm — Crjm)R™ i .

(b) and (c) of (3.12) easily follow from (3.12)(a), (3.14)(a) and (3.8).
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§4. Special cases of generalized metric space and theorems

In this section we shall consider the cases in which a generalized metric
space satisfies some conditions. To clear the discussion, the material is
arranged under titles: A. ~ C.

A. Let us consider the case when the arbitrary tensor P*; vanishes.
This means that the generalized metric space has a unique connection
CI(G) = (F}'k,C}') called a native metrical connection. The following
Proposition is evident.

Proposition 4.1. In a generalized metric space with connection

CI'(G) we have
(6) Dj*y= Py,
(0) Cijjo=0,
(¢) Rk =H',
(4.1) (d) Pi'ok = P'ak = Ch'rfor
(e)  En'jk = P'hjjk+ P™n;iP'mi — jlk,
Ef,-k = Ea";‘g =0, Eh‘j? = P'hj{o,
(f) Rk = H'jewy) = Kn'jk + En'jk .
Remark. (d) of (4.1) does not appear in a Finsler space.
Proposition 2.9, (3.2)(¢) and (2.18)(b) show the following

Theorem 4.2. In a generalized metric space the connection CI'(N)
reduces to CI'(G), if one of the following conditions holds:

(a) Cij/ozos (b) Djikzoa (C) Phiokzo-

B. Definition. If the connection parameters Fj'k(z,y) are indepen-
dent of y', that is F;'x; = 0, then the space is called a g-Berwald space
(an affinely connected space).

Proposition 4.3. In a g-Berwald space the curvature tensor Gj'jk
vanishes.
~ PROOF. We have P'yy = F,'yy = 0, 2P'; = P'; = 0, hence
Gj'k - .Fj’k = D_,"k = P'J'k + Ptj(k) = 0 holds, and then we find Gh'jk =
Fhi_,'k — 1 8

Remark. Conditions G,c."_,-k =0 and Pijk = 0 yield F;,i_,-k = ().



132 Hideo Izumi

Lemma 4.4. In a generalized metric space the conditions g;;x);1 = 0
and C_,-ik,; = 0 are equivalent.

PROOF. From the definition (2.7)(b) of C;'x, we see that g,(x);1 = 0
yields Cjik/] = 0. On the other hand, (2.10) shows that Cj;x/; = 0 yields
gij(ky 1 = 0.

Theorem 4.5. A g-Berwald space is characterized by C;' n=0.

PROOF. In a g-Berwald space F,*; = 0, and then Py = F,';; = 0.
In this case (2.17) reduces to

gnik) /i + Gii(ky/h = Ginky/i = 0.
Making use of +i|j in the above equation, we have 2g;;(x)/n = 0, which
means Cjix/p = 0. Conversely, if Cjix;i = 0 and thus gaik)/; = 0, then
(2.17) reduces to
(4.2) 2Fhijk = —gniem)P™ jk — Gij(m)P" hk + Ghj(m)P" ik -

On transvecting (2.16)(e) by y*, and using (2.16)(f) and (2.14)(c), we find
that

0 = grik)/o¥" = (GimP™nk + ghm P™ik + 2P™ kGni(m))y" =
= C:‘k/o = 2(gim + Cim)P™

which implies P™; = 0. Hence wes see D;*yx = P*;x = P'y; from (3.2)(a)
and (3.1). (2.16)(e) gives us Pjsi + Ppix = 0. Christoffel process of the last
eqqation and P;jx = Pjxj give us 2P,%x = 0. Thus from (4.2) we obtain
Fh‘jk — 3 i 8

C. Definition. If the tensor P*;; vanishes, then the generalized metric
space is called a g-Landsberg space.

Theorem 4.6. A g-Landsberg space is characterized by D' = 0.

PROOF. Because of D;'y = P'jx + P';) and P',x = 2P, the as-
sertion is evident.

T. SAKAGUCHI recently obtained the following

Theorem 4.7. In a generalized metric space the following identity

holds:
(4.3) 2P;1j1 =(Prji + Pijr) iy + Pijkyay+
+ (Pimit + Pimik)C;™ i + PimiC;™1 — 2|k,
which yields that the condition P'jx = 0 is equivalent to the condition
Pr'ie = 0.
PROOF. By means of the Christoffel process with respect to the in-
dices ¢, k, | of Pj;ji in (2.19)(c), we have (4.3).
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Theorem 4.8. A g-Landsberg space is characterized by C;' /o =0.

PROOF. In a g-Landsberg space we obtain Cjikjo = 0 from (4.1)(d)
and Theorem 4.7. Conversely, by means of Lemma 4.4, the condition
Cj'k/o =0 yields 9ij(k)Jo = 0. Hence g;j(k)/oy' = Cjk/o =0 implies P'k =
0 from (2.16)(f). Thus the relation (2.16)(e) reduces to Py + Pprix = 0.
The last equation implies P* ;i = 0.

Theorem 4.9. In a generalized metric space the following facts hold:
(a) the condition P'j; = 0 implies the condition g;j/;x = 0 (BI(G) is

h-metrical). ‘ _

(b) the conditions g;jx = 0 and Py =0 yield P* ;i = 0.

PROOF. The proof of (a) is evident from (3.1)’. For (b), the conditions
gij;k = 0 and P'y = 0 yield Djix+ D;jx = 0 from (3.1)". The last equation
implies D;'x = 0.

Remark. It is well known that in a Finsler space the following four
conditions are equivalent: (a) Pp'jx =0, (b) P'jx =0, (c¢) Cj'xo =0
and (d) g;jyx = 0.

Proposition 4.10. In a g-Landsberg space we have

(a) Fji‘k = Gjik‘ = Nii(j)f P =0, Cijjo=0,

(b) Fu'jk = Gh'jk = Ca*rsjs | Cij/k = Cixyj

(¢)  Ew'jx=0, Hn'jk=Ki'jx,

(d) Hi'jxyt+Gr'imH™ji + jlk|l = 0.

(4.3)
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