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Infinite Latin Squares Containing Nested Sets
of Mutually Orthogonal Finite Latin Squares

By J. V. BRAWLEY (Clemson, SC) and
GARY L. MULLEN? (University Park, PA)

1. Introduction

There is a large literature on Latin squares and sets of mutually or-
thogonal Latin squares. Such squares are of importance in statistics where
they can be used to construct designs for the statistical analysis of exper-
iments. The treatise [4] by DENES and KEEDWELL provides an excellent
survey of Latin square theory and also discusses statistical as well as other
applications of such squares. In their work, DENES and KEEDWELL intro-
duce the concept of an infinite Latin square (also see [6],) they define what
it means for a pair of such squares to be mutually orthogonal, and they
define the notion of a complete set of mutually orthogonal infinite Latin
squares. They do not however give any examples of these objects.

The purpose of this note is to give examples of some sets of mutually
orthogonal Latin squares (abbreviated MOLS) of infinite order containing
nested sets of MOLS of finite order. In particular, by ordering the elements
of an infinite field which is obtained as the union of a tower of nested finite
fields, we construct for each prime p an infinite set of mutually orthogonal
infinite Latin squares with the property that for all n > 0 the first p? —1

squares contain in their top left corners a set of p?" — 1 MOLS of order

PP

A main feature of our construction is that it is explicit rather than
implicit; i.e., the element in any row and any column of any of the squares
can be calculated by a straightforward algorithm. This is accomplished by
using an iterated presentation of an infinite algebraic extension of GF(p)
due to BRAWLEY and SCHNIBBEN 2], which itself, is a generalization of an
infinite algebraic extension of GF(2) used by CONWAY [3] in his analysis

1This author would like to thank the National Security Agency for partial support
under grant agreement #MDA904-87-H-2023.



136 J. V. Brawley and Gary L. Mullen

of certain games. A further feature of our construction is that it extends

to the case of infinite Latin squares the usual construction of ¢ — 1 MOLS

of order ¢ first given by MOORE (7] and later by BOSE [1] for ¢ a prime
ower.

g While infinite Latin squares may have limited use statistically, our

construction nevertheless provides a unified treatment of both the finite

and infinite cases.

2. Orthogonal Latin Squares

A Latin square of order m is an m x m array consisting of the numbers
1,2,...,m with the property that each row and each column contains each
of the numbers exactly once. Two such squares of order m are said to be
orthogonal if, when superimposed, every ordered pair (2, ) with 1 <i7,j <
m occurs exactly once. A set {L;,Ls,...,Ls} of t > 2 Latin squares of
the same order is said to be mutually orthogonal if L; is orthogonal to L;
whenever i # j. It is well known (see [4, Thm. 5.1.5.]) that for any m > 2
not more than m — 1 MOLS of order m can exist. Such a set of MOLS is
called complete if t = m — 1.

For m = ¢, q a prime power, a complete set of MOLS of order g can
be constructed by using the finite field GF(q) of order ¢ (see [5, Thm.
7.27]). This consrtuction is essentially that of MOORE (7] and can be
described as follows: Let GF(q) = {ap =0, a; = 1,a3,...,a,-1} denote
the finite field of order ¢, and label the rows and columns of a ¢ x ¢ square
by the elements ag,a;,...,a,_; in this order. Then the ¢ — 1 polynomials
fo(z,y) = az + y with 0 # a € GF(q) yield a complete set of MOLS of
order ¢ where we place the element f,(z,y) in row z, column y, of the
a-th square (see MULLEN (8, Cor. 2]).

An infinite Latin square is a countably infinite array of rows and
columns with the property that each positive integer occurs exactly once
in each row and column. Following [4], we say that two infinite Latin
squares L, and L, are orthogonal if every pair of cells (say cells (z,7) and
(r,8)) in different rows and columns (¢ # r and j # s) are occupied by
the same symbol in at most one of L; and L. Further, a set {L; : i € I}
of infinite Latin squares is called a set of MOLS if L; is orthogonal to L;
whenever 7 # j, and the set is said to be complete if every pair of cells in
different rows and columns are occupied by the same symbol in exactly
one square of the set. (These definitions are of course generalizations of
the corresponding finite case definitions.) Note if the set {L; : i € I} is
a complete set of MOLS of infinite order, then I has cardinality equal to
the cardinality of the set of positive integers.

3. A Tower of Finite Fields.

For each prime p and integer n > 1 let GF(p") denote the finite field
of order p". Since p" divides p"t! for each n, it follows that GF(p*")is a
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subfield of GF(pP"H) and hence we have a tower of fields
(1) GF(p) C GF(p*) CGF(pP' ) SGF(p" ) C -+~ .

Let GF(p?” ) denote the union of the above fields so that GF(p?” ) is an
infinite field of characteristic p.

Finite fields are discussed in detail by LIDL and NIEDERREITER in [5],
while in [2], BRAWLEY and SCHNIBBEN discuss infinite algebraic extensions
of finite fields. For our purposes we shall only need the following where we
assume throughout that GF(q) has characteristic p.

Lemma 1. Let b € GF(q). Then the polynomial z? — x — b is irre-
ducible over GF\(q) if and only if it has no root in GF(q).

PROOF. See [5, Thm. 3.78].

Lemma 2. Let z? — z — b be irreducible over GF(q) and let a be a
root of z? — z — b in some extension field of GF(q). Then the polynomial
z? — z — baP~! is irreducible over GF(qP).

PRrROOF. This result may be found in [5, p.146] and a proof is given
in [2].

Following BRAWLEY and SCHNIBBEN [2], we inductively define the
polynomials P;(z), i > 1, by Py(z) = 2P —z—1and Piy(z) = 2P —z—7P""
where m; = a; a; ... a; and a; is a root of Pj(z) for j = 1,2,...,2. If
a € GF(p), then clearly Pj(a) = —1 # 0; hence by Lemma 1, P;(z)
is irreducible over GF(p). Moreover for : > 2 we may inductively apply

Lemma 2 to see that P;(z) is irreducible over G’F(p”‘). It follows that the

set

2) Bi={m*a*...ai*: 0<k <p-1,...,0<k;<p-1}

is basis for the finite field GF(p”‘) over GF(p); i.e., the elements of GF(ppi)

are the GF(p)-linear combinations of elements of B; where all computa-
tions are done in the obvious manner using the reduction equations

(3) of =a;+ (P e vt ) 1 =828,
From (1) and (2) we see that the union
(4) B=|J{Bi:i>1}

is a basis for GF(p?” ) over GF(p).
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We now want to specify an ordering of GF(p?~ ). By means of (2)
the members of B are naturally identified with the set of all sequences of
the form (ki, k2,ks,...) where 0 < k; < p — 1 and where all but a finite
number of the k;’s are 0. We define

(5) (k1,kayksy...) < (K}, Kb, kS, ... ) iff ki < k! and k; = k' for all j > i.

Then (5) is an ordering on the sequences of k’s which, in turn, induces
a natural ordering on the members of B. Let ~¢,71,72,... denote the
ordered basis of GF(p?” ) obtained in this way so that v = 1, 7 =
ay, 72 = a1?,...,9p-1 = 1?19, = ay, etc.. Note that the first p’

members of 79,71,72,... constitute the basis B;. Now each v € GF(p?")
is a unique finite linear combination of the ordered basis v¢, v1,72, ...} i.e.,

(6) Y=apYo+a1m +ay2+---+amYm,

where 0 < a; < p — 1 with a, # 0 for v # 0. With each v € GF(p*”) we
associate the positive integer 2(v) whose base p representation is z(y) =

ao + ayp+ azp? + -+ + amp™ and we order the elements of GF(p?” ) by
declaring

(7) v < ' if and only if z(7) < 2(7').

Note that with the ordering (7), the first p" elements of the ordered field

GF(pP”) constitute the finite field GF(p?').

As an illustration of this ordering, let p = 2 so that Py(z) = z? —
z — 1, Py(x) = 22 — ¢ — a; where Pi(a;) = 0, and in general P;(z) =
2! —z — aja...a;_, where a; is a root of Pj(z) for j > 1. Hence, the

first 16 elements of GF(22” ) are the members of GF(16) and are ordered
as follows

03 1! aq, 1 +a11 g, 1‘{"021 ay + az, 1+ﬂ’1 + ag, ajay,
(8) 1 +Q]Q2, q +€l‘lﬂ'2, ].+CI’] +ﬂla2, a2+0’102,

l4+ay +aya9, )y + a2 +aq10a0, 1 + a1 +a2 +ay1a.

Note that the first 2 elements give GF(2), and the first 4 elements give
GF(2?%).

Remark. The field GF(227) as described above is essentially the field
On, used by Conway [3, p.50] in his analysis of certain games; indeed,

by settin%l a; = 2 in each linear combination of basis elements and
viewing the result as an integer, we obtain Conway’s identification of the

2i—1
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elements of GF(227 ) with the nonnegative integers. Note in this identifi-
cation the ordered list (8) becomes the ordered list of integers from 0 to
15. Incidentally, WEIDEMANN [9] gives a different iterated presentation
of GF(227) which apparently does not have a natural generalization to
GF(p””). These iterated presentations, as well as others, are described in
detail in the forthcoming monograph [2].

4. Construction of Orthogonal Latin Squares

Consider now an infinite square whose rows and columns are indexed,
startin& from the top left corner, by the elements of the ordered field

GF(p?" ) where p s a fixed prime. If f(z,y) is a polynomial over GF(p*" ),
form an infinite square by placing the element f(z,y) at the intersection
of row z and column y.

Theorem 3. The collection of polynomials f.(z,y) = az + y with
a € GF(p*”), a # 0, represents a complete set of MOLS of infinite order.

PROOF. We first show that for a fixed a # 0, the polynomial f.(z,y)
represents a Latin square of infinite order. Since the mappings on GF(p?” )
defined by w — w and w — aw are bijections of GF(p?" ), we see that
each element of GF(p?” ) occurs exactly once in each row and column.
Hence the square represented by fo(z,y) is indeed a Latin square.

As there are clearly an infinite number of squares, it only remains
to show that the collection {fa(z,y) : 0 # a € GF(p*” )} represents a
complete set of MOLS of infinite order. To this end, let (z1,y;) and (z2,y2)
be a pair of cells in different rows and columns so that z; # z3 and y; # y2.
Further let a = (y2 —y1)/(21 — x2) so that az; + y; = azs + y,. It follows
that the cells (z;, ;) and (z2, y2) are occupied by a common element in the
square represented by the polynomial f,(z,y) = az + y. To show that no
other square has a common element in cells (z;,y;) and (z2,y2), suppose
in addition to a;z; +y; = a;z2+y, we also have a,z;,+y; = azzs+ 1y, for
some 0 # a;, as € GF(p?" ). Then a;(z; — z2) = as(z; — z2) and since
Ty # T2, we have a; = ay. Hence the collection of squares represented
by the polynomials {f,(z,y): 0 # a € GF(p?" )} give a complete set of
MOLS of infinite order. O

As a result of the ordering given above we may state

Corollary 4. For each n > 0 the top left p?" x p?" subsquare of the
first pP — 1 squares represented by the polynomials given in Theorem 3
represent a complete set of MOLS of order p? .

Corollary 5. The polynomials given in Theorem 3 represent a com-
plete set of MOLS of infinite order containing nested complete sets of

MOLS of order p*" forn =0,1,2,... .
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One may view the construction given in Theorem 3 as a limiting case
of the construction given in Corollary 2 of MULLEN [8]. The point here is
that we have given an explicit construction in the sense that the element
in any row and column of any of the squares may be directly calculated.

As an illustration consider the case p = 2. Let (8o, f1, 52, ..) denote

the ordered listing of the elements of the field GF(22”) are previously
specified so that the first 16 elements of GF(22” ) are given by (8). Then
our construction yields the MOLS (8,8; + B;) for h = 1,2,... where
1=0,1,... and y =0,1.... For example, the element in position (s, f31)
of the square indexed by f; is

f84(Be,B3) =PsPs + B3 = az(ay + az) + (1 + 1) = ayay + al 4+ 14+ ag
=ajaz + (a2 +aqaz) +1+a; =1+ a; +az = 7.

From these infinite squares we may construct the following nested complete

sets of MOLS of finite order:

3 MOLS of order 4

15 . 16

255 . 256
65,535 . 65,536

etc..

Acknowledgement. The authors would like to thank RON BAKER for
pointing out that E. H. MOORE, and not R. C. BOSE, was the first to
construct a complete set of MOLS in the prime power case.
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