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A Note on Topological Spaces

By MANSOOR AHMAD (Aminabad)

Introduction

The most interesting special class of topological spaces is certainly
that of Hausdorff spaces. As is known:
(1) A topological space is a Hausdorff space, if and only if each net in the
space converges to at most one point. [1, pp. 67].
(i1) The product space of Hausdorff spaces is a Hausdorff space. [1, pp.
92).
The object of this note is to generalize the two theorems (i) and (ii),
in the best possible way, so that the generalized statements hold for a wide
class of topological spaces, which includes Hausdorff spaces as the simplest

e.

1. Let X bet any topological space which satisfies the condition that,
given any two points a,b of X, it is possible to choose neighbourhoods
A and B of a and b respectively, so that A N B is minimal, in the sense
that, if U and V are any neighbourhoods of a and b respectively, then
ANBCUNYV. Let S denote the union of all the sets A N B, chosen in
this manner, for all pairs of points a and b of X.

The set S just defined can be called the neighbourhood kernel of X or,
in view of a further generalization, the 2-kernel of X. One easily sees that
S = 0, if and only if the space is Hausdorff.

A simple example of a topological space X which does not satisfy this
condition 1s as follows: Let X be any countable set; and let any subset
A # 0 of X be open, if and only if A is the complement of a finite number
of points of X. Let the null set be open. Although this topological space
does not satisfy the required condition, as a counterexample it has a serious
defect: every infinite net in X converges to every point of X, and every
finite net in X, converges to no point of X. Consequently, this topology
is of little interest, so far as the convergence of nets’is concerned.

On the other hand, interesting examples of topological spaces which
satisfy this condition, and which prove that there exists a wide class of
topological spaces of this type, are as follows:

(1) Let X be the union of a linear set H and of a set I of disjoint intervals
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which contain no point of H. Let us choose the open sets in X, so that the
union of any collection of intervals of I is open, that every subset of H is
open, and that the union of any collection of subsets of H and of intervals
of I is open. It is easy to verify that X is a non-Hausdorff topological
space and that the set S is the set of all the points which belong to the
disjoint intervals I. g
(ii) Let R denote the set of all real numbers and let the only open sets in
R be the following sets and the union of any collection of these sets: (a)
the null set, (b) the set of all irrational points of every interval in R, (c)
the sets I and I, (m =0,1,2,...), where I denotes the set of all rational
points of R, I, (m = 1,2,...) are subsets of I, such that I,4+, C I,,, for
allm (m = 1,2,...), I, converges to a subset Ry of R, as m tends to
infinity, and Iy is the set of all rational points of Ry, Iy being supposed
to contain more than one rational point. It is easily verified that R is a
non-Hausdorff topological space, and that S is the set I or I;, according
as f contains or does not contain at least two points which do not belong
to 1

Returning to the general case we have the following theorem:

Theorem 1. The set S is the smallest subset of X, which has the
property that every net in X, which is not eventually in S, converges to
at most one point.

PROOF. Suppose there is a net which converges to two points. Let
a and b denote these points. Then the net is eventually in A N B, and
so it is eventually in S. Therefore, it follows that every net which is not
eventually in S, converges to at most one point.

On the other hand, suppose that S’ is any proper subset of S. Let
c € § — S'. By the definition of S, ¢ belongs to, at least, one set A N B.
The net {S,,n € D, >}, S, = c for all n, converges to both a and
b, because by definition A N B is the smallest set such that A and B are
neighbourhoods of a and b respectively, and so, it follows that, if A’ and B’
are any other neighbourhoods of a and b respectively, then ANB C A'NB’,
i.e. ¢ € A'NB'. So, it follows that S’ does not have the property that
every net in X, which is not eventually in S', converges to at most one
point. This completes the proof of the theorem.

We call a topological space X with neighbourhood kernel S an §-
space.
Theorem 1 can also be stated in another form as follows:

A topological space X has neighbourhood kernel S, if and only if S
is the smallest subset of X which has the property that every net in X,
which is not eventually in S, converges to at most one point.

Theorem 2. The Cartesian product of an S)-space and of an S,-space
is an S) X S;-space.

PROOF. Let (zy,y1) and (z2,y2) be any two points of the cartesian
product of the two spaces. Let (U x V') and (R x S) be neighbourhoods
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of (z;,y:1) and (z2,y2) respectively,where U, R belong to the S,-space and
V, S belong to the S;-space. By [1, pp. 89], we have
(UxV)N(RxS)=(UNR)x(VNS).

Let us choose U,V, R, S such that each of U N R and V' N .S is minimal.
Consequently, UN R and VN S belong to 51, and S; respectively. We have
thus proved that (U x V)N (R x S) is minimal and that this is a subset of
S1 x S2. Consequently, the union of all these sets, corresponding to all the
pairs of points of the cartesian product of the two spaces, is a subset of
S1 X Sy, gut by the definition of S; and S;, S; X Sz is minimal, because if
not, then S; and S; will not be minimal, and so, it follows that this union

is the set S; X S2. Thus the theorem follows.
2. Let X be any topological space, and let a;,asz,...,a, be any

p points of X. Let us choose neighbourhoods A;, Az,...,4,, in X, of

P

ay,az,... ,a, respectively, such that (| A, is minimal, in the sense that,
n=1

if B],BQ, » By are any neighbourhoods of a,,a,,... ,a, respectively,

then ﬂ AL C ﬂ B,. Let S, denote the union of all the sets n An,

n=l n=1
chosen in this ma.nner , for all the sets of p points a;,az,... ,a, of X. We

have the following

Theorem 3. The set S, is the smallest subset of X ,which has the
property that every net in X, which is not eventually in S,, converges to
at most (p — 1) points.

The proof follows the same lines as that of Theorem 1.

The set S, just defined is said to be the p-kernel of X, and it follows
that the set S, is the p-kernel of any topological space X, if and only if
every net in X, which is not eventually in S,, converges to at most (p—1)
points.

Let us suppose that there is a net which converges to p points. Let
a,ay,... ,ap denote these points. Then the net is eventually in A; N 42N

..N Ap, and so it is eventually in S,.
On the other hand, let us suppose that S} is any proper subset of
Sp. Let ¢ € S, — §,. By the definition of S, c belongs to, at least,
one set Ay N A2 N...N A,. The net {S,,n € D, >}, Sp = ¢ for all n,
converges to all the points a;,a,,... ,a,, because, by definition, 4; N AN
..N A, is the minimal set such that A;, A,...,A, are neighbourhoods
of ay,az,... ,a, respectively, and so, it follows that if A}, A},..., Al are
any other neighbourhoods of a,;,a;,... ,a, respectively, then

AiNA;N...NA, CAINA;N...N 4],
ie. c€ A]NA;N...NA,.

*See Referee’s Remark at the end of the paper
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So, it follows that S;, does not have the property that every net in X,
which is not eventually in S}, converges to at most (p — 1) points.

In the particular case when S, is the null set, we call X a Hausdorff
space of order (p — 1), and we say that every p points of X are separated.
In this case, Theorem 3 be stated as follows:

Any topological space X is a Hausdorff space of order (p — 1), if and
only if every net in X, converges to at most (p — 1) points.

Theorem 4. The Cartesian product of an Sp-space and of an S,-space
is an S, x S,-space.

PROOF. Let (z,,¥2), (z2,¥2),--- ,(Zp,yp) be any p points of the Car-
tesian product of the two spaces.
Let (Uy x Vi), (U3 x V3),...,(Up, x V;) be neighbourhoods of (z;,y1),
(z2,92),... ,(xp,yp) respectively, where Uy,Us,... ,U, belong to the S,-
space and V},V3,...,V, to the S -space.

By induction, it follows easily that the result of [1, pp. 89] which has
been used in the proof of Theorem 2, can be put in the following general

form:
ﬂ(U xV)_(ﬂU)x(ﬂV)

n=1

Let us choose U,, V,,(n = 1,2,... ,p) such that each of ﬂ U, and n Va

n=1
is the minimal subset. The rest of the proof follows the same lines as that
of Theorem 2.

Remarks. In section 1, if the minimal set A N B does not exist, it
follows that there exist two infinite sequences (A,) and (B,) of neigh-
bourhoods of a and b respectively, such that A,4+1 N B,4+1 C A, N B,, for

all n (n = 1,2,...). In this case, we take the minimal set to be n Og;
=1

instead of A N B, where 0, = A, N B,. With this change, it 1s easily
verified that the proofs of Theorems 1.8 3 are valid, and so these theorems
are true in a more general form.

In section 2, we can choose a;,as,... , to be a countable set of points
of the topological space X, instead of a set of p points; and thus Theorem
3 can be extended to a countable set, instead of a set of (p — 1) points.

Remark (of the referee S. GACSALYI). The existence of § = S, im-
plies the existence of S, for any natural number p > 2. Let us consider
the case p=3:

If a;,a;,a3 are any three pairwise different points, then let A,, As;
B,, B3; C3,C3 be those sets for which the intersections A; N A,; By N Bs;
C,; N C3 are the contributions to S of the pairs of points a;, az; a;,a3 and
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as, a3 respectively. Let now be U, V, W be any three neighbourhoods of
ay,a; and aj respectively. Put

D= (AlﬂAg)ﬂ(BlﬂBs)ﬂ(Cznc::,) — (A] nBl)n(Az ﬂCz)n(B:;nCs).
Clearly, the inclusions
Ai1NA,CUNV, BiNB;CUNW, C;NnC3CVNW

together imply that UNVNW = (UNV)NUNW)N(VNW) 2 (A1NA2)N
(B] N B3) n (Cg n C;;) =g
Since the points a,,a;,a3 are arbitrary, S; exists, the set D being the
conribution to it of the triple a;, a3, aj.

In the general case we can reason along similar lines, the set D being
now the intersection of (}) sets, each of them the contribution to S; of a
pair of points chosen from among a,,az, ... ,a,.
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