Multiplicative functions satisfying a congruence property. III

By BUI MINH PHONG (Budapest)*

Let \mathcal{M} be the set of integer-valued multiplicative functions. For a fixed positive integer M let $K_M \subseteq \mathcal{M}$ denote the set of those functions f(n) for which

(1)
$$\Delta_M f(n+p) \equiv \Delta_M f(n) \pmod{p}$$

holds for every positive integer n and for every prime p, where

$$\Delta_M f(n) = f(n+M) - f(n).$$

From a result of [1] it follows that if $f \in K_1$, then f(n) is a power of n with non-negative integer exponent. The aim of this note is to extend this result for K_M . We shall prove the following.

Theorem. Let M be a positive integer and let $f \in K_M$. Then for every positive integer n either

$$f(n) = n^a$$
 or $f(n+M) = f(n)$,

where a is a positive integer.

We need two lemmas for the proof of our theorem.

Lemma 1. Let $f \in K_M$. Then for each prime p with $p^e || M$ $(e \ge 0)$ and $f(p^e) \ne 0$, we have

(2)
$$f(p^{e+k}) = \left(\frac{f(p^{e+1})}{f(p^e)}\right)^k f(p^e) \quad (k = 1, 2, ...).$$

^{*}Research partially supported by Hungarian National Foundation for Scientific Research grant No. 907.

PROOF. For a positive integer m let m^* denote the product of all distinct prime factors of m. First we note that by the definition of K_M it follows that if $f \in K_M$, then

(3)
$$\Delta_{tM} f(n+m) \equiv \Delta_{tM} f(n) \pmod{m^*}$$

for every positive integer n, m, t. Thus

$$f(n+hmM) - f(n) = \sum_{i=0}^{h-1} \{f(n+(i+1)mM) - f(n+imM)\} =$$

$$= \sum_{i=0}^{h-1} \Delta_{mM} f(n+imM) \equiv \sum_{i=0}^{h-1} \Delta_{mM} f(n) =$$

$$= h\Delta_{mM} f(n) \pmod{(mM)^*}$$

and so, replacing h by hm^* ,

(5)
$$f(n + hmm^*M) \equiv f(n) \pmod{m^*}$$

holds for every positive integer n, m and h.

We prove that for an integer $m \ge 2$ and for a positive integer n with (n, M) = 1

(6)
$$m^*|f(n) \text{ implies } (n, m^*) > 1.$$

Assume indirectly that for an integer $m \geq 2$ and for a positive integer n with (n, M) = 1

$$m^*|f(n)$$
 and $(n, m^*) = 1$.

Then by Dirichlet's theorem there exist positive integers x, y such that

(7)
$$(n,x) = 1 \text{ and } nx = 1 + mm^*My.$$

Applying (5), by using (7) we have

$$0 \equiv f(n)f(x) = f(nx) = f(1 + mm^*My) \equiv f(1) = 1 \pmod{m^*},$$

which is a contradiction, since $m \geq 2$. Thus (6) is proved.

Let p be a prime number with $p^e || M(e \ge 0)$ and $f(p^e) \ne 0$. We shall prove that for each positive integer k > 0

(8)
$$f(p^{e+k}) = \frac{f(p^{e+1})}{f(p^e)} f(p^{e+k-1}).$$

Let q(>p) be an abritrary prime. For each prime q there exist positive integers u=u(q), v=v(q) such that

(9)
$$(u, pM) = 1$$
 and $p^{e+k-1}u = p^e + q^2Mv$.

Since (u, qM) = 1, using (6) we have

(10)
$$f(u) \not\equiv 0 \pmod{q}.$$

Applying (5), by using (9) and (10) we get

$$f(p^{e+k}u)f(p^e) \equiv f(p^{e+1})f(p^e)$$

$$\equiv f(p^{e+1})f(p^{e+k-1}u) \pmod{q}$$

and so by the multiplicativity of f

$$f(p^{e+k}) \equiv \frac{f(p^{e+1})}{f(p^e)} f(p^{e+k-1}) \pmod{q},$$

which proves (8), since q(>p) is an abritrary prime, and from (8) the lemma follows.

Lemma 2. Let $f \in K_M$. Then there is a non-negative integer a such that

$$(11) f(nM) = n^a f(M)$$

for every positive integer n.

PROOF. First we prove that

(12)
$$f(nM + mM) \equiv f(nM) \pmod{m^*}$$

holds for every positive integer n, m.

By (3) and (4), applying (3) with m = mM, n = M, t = n - 1, we can derive

(13)
$$f(nM + hmM) - f(nM) \equiv h\Delta_{mM}f(nM) \equiv h\Delta_{mM}f(M) \pmod{m^*}$$

for every positive integer n, m, h. Let m = p be a prime for which $p^e || M(e \ge o)$ and $M = p^e M'$. By using (13) we get

$$f(pM + p^2M) - f(pM) = f(p^{e+1}) \{ f(M' + pM') - f(M') \} \equiv 0 \pmod{p}.$$

If

$$f(M' + pM') - f(M') \equiv 0 \pmod{p}$$
 or $f(p^e) \equiv 0 \pmod{p}$,

then by (13)

$$f(nM + hpM) - f(nM) \equiv h\Delta_{pM}f(M)$$

= $hf(p^e) \{ f(M' + pM') - f(M') \} \equiv 0 \pmod{p},$

from which (12) follows. If

$$f(p^{e+1}) \equiv 0 \pmod{p}$$
 and $f(p^e) \not\equiv 0 \pmod{p}$,

then by using Lemma 1, we have

$$f(p^{e+k}) \equiv 0 \pmod{p}$$

for k = 1, 2, ..., and so (13) implies that

$$f(M+pM)-f(M) \equiv f(pM+pM)-f(pM) \equiv 0 \pmod{p}.$$

This with (13) implies that

$$f(nM + hpM) - f(nM) \equiv 0 \pmod{p},$$

for any n > 0, from which (12) also follows. Thus (12) is proved.

Let q be a fixed prime, for which (q, M) = 1. Then, using (6) (see the proof of Lemma 1),

$$(14) f(q) = \pm q^a,$$

where a = a(q) is a non-negative integer. Let n be a positive integer. Applying (12) and using Lemma 1 we have

$$f(nq^{2s}M) \equiv f(M) \pmod{(nq^{2s} - 1)^*}$$

and so

(15)
$$f(q^{2s})f(nM) \equiv f(M) \pmod{(nq^{2s}-1)^*}.$$

By (14) and (15) it follows that

$$f(nM) = n^a f(M),$$

because $f(q^k) = f(q)^k$ (k = 1, 2, ...) by Lemma 1, and

$$(nq^{2s}-1)^* \to \infty$$
 as $s \to \infty$.

Thus Lemma 2 is proved.

PROOF. of the theorem. First we assume that $f(M) \neq 0$. Then, by Lemma 2, we have

(16)
$$f(n) = n^a$$
 if $(n, M) = 1$.

Let n be an arbitrary positive integer. Then there exist infinitely many positive integers m, for which

(17)
$$(n+m, M) = 1 \text{ and } m^* \to \infty.$$

Since $f \in K_M$, for each integer m satisfying (17), by using (3) and (16), we have

$$f(n+tM) - f(n) \equiv f(n+m+tM) - f(n+m) =$$

$$= (n+m+tM)^a - (n+m)^a \equiv$$

$$\equiv (n+tM)^a - n^a \pmod{m^*}$$

and so

(18)
$$f(n+tM) - f(n) = (n+tM)^a - n^a.$$

Applying (18) in the case $t = n^2$, using (16) we get

$$f(n) \left\{ (1 + nM)^a - 1 \right\} = n^a \left\{ (1 + nM)^a - 1 \right\}.$$

If a > 0, then

$$(19) f(n) = n^a$$

for every positive integer n. If a = 0, then by (18) it follows that

$$(20) f(n+M) = f(n)$$

for every positive integer n.

Now assume that f(M) = 0. In this case, using Lemma 2,

$$(21) f(nM) = na f(M) = 0$$

for every positive integer n. Since $f \in K_M$, by using (21) and (3) we have

$$f(n+M) - f(n) \equiv f(ntM+M) - f(ntM) = 0 \pmod{(Mt-1)^*},$$
 which implies (20), because

$$(Mt-1)^* \to \infty$$
 as $t \to \infty$.

This completes the proof of our theorem.

References

[1] B. M. Phong, Multiplicative functions satisfying a congruence property II, Ann. Univ. Sci. Budapest, Sec. Math. 33 (1990).

BUI MINH PHONG EÖTVÖS LORÁND UNIVERSITY COMPUTER CENTER BOGDÁNFY U. 10/B 1117 BUDAPEST, HUNGARY

(Received December 9, 1988)