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A note on the denseness of complete invariant metrics

By CSABA VARGA (Cluj-Napoca) and MARIUS CRAINIC (Cluj-Napoca)

Abstract. Many authors have obtained interesting results concerning the exis-
tence and the denseness of complete metrics on metrisable topological spaces and on
differentiable manifolds (see [3], [4], [5], [7]).

In this note we extend these results to the invariant case and simplify some proofs
and we extend these results to Finsler spaces.

1. Introduction

Let M be a finite dimensional topological manifold and G a compact
topological group which acts continuously on M. Then we know that M
is metrisable. Therefore we can consider the space of metrics on M that
generate the topology 1), of the space M, i.e. let

M={6:MxM —R|¢is ametric and 7, = Tar },

where 7, is the topology generated by the metric p on M. We say that
d € M is a G-invariant metric if é(az,ay) = d(x,y) for every z,y € M
and a € G.

We introduce the following notations:

ME = {6 € M| is a G-invariant metric}
Mo ={d € M |§ is a complete metric}
MG = M0 M.
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We say that the function f : M — R is proper if for every compact K C R
the subset f~1(K) C M is compact. For the existence of continuous and
differentiable proper functions see [3] and [8]. We need the following simple
result, which will be very useful in the sequel:

Lemma 1.1. If § € M and there exists a continuous proper function
f:+ M — R such that 6(x,y) > |f(z) — f(y)| for every x,y € M, then we
have § € M.

PRrROOF. Let (2,)n>1 C M be a §-Cauchy sequence, then (f(z,))n>1
is also a Cauchy sequence, hence bounded. In particular there exist a,b €
R such that f(z,) € [a,b] for every n > 1. It follows that (x,)n,>1 C
f~t(la,b]) but f~1([a,b]) is a compact set because f is a proper function,
hence (z,,)n>1 has a convergent subsequence.

Because M has a G-invariant exhaustion, we obtain as in the trivial
case G = {e} the following result:

Lemma 1.2. If M is a finite dimensional topological G-manifold, then
there exists a continuous proper G-invariant function p : M — R.

More generally we have:

Lemma 1.3. Let K be a compact subset of M and fy : M — R
a continuous G-invariant function. Then there exists a continuous G-
invariant proper function f : M — R such that f |xk= fo |k-

PROOF. We can suppose that K is G-invariant (or else, we can replace
o
K by GK). We choose a compact G-invariant set L such that K C L and

then, for the G-invariant covering {2, M\K?} of M, we find a G-invariant
function ¢ : M — R such that ¢ |x= 1 and ¢ |[pp = 0. We define the
function f = ¢fy + (1 — ¢)p with p as in Lemma 1.2. Because L is a
compact set, p is a proper function and f |y r= p s\ We get that f is
a proper function. Obviously f |xk= fo |k and this completes the proof.

Let now M be a C*° finite dimensional, connected differentiable man-
ifold and G a compact Lie group which acts differentiably on M. We
denote by T'(M) the tangent bundle of M. If M is a G-manifold and
1 : G x M — M is the action of G on M, then the tangent bundle T M is
a G-bundle, with the action g - X = d,¥(g,z) - (X), for every X € T,,(M)
and x € M.
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Definition 1.1. Let || - || : T(M) — [0,00) be a continuous function.
We say that || - || is a Finsler norm on M if the following conditions are
satisfied:

(i) for each x € M, the restriction of || - || to T,,M denoted by || - || is
a continuous norm on 1T, M.

(ii) for each g € M and k > 1 there is a trivializing neighbourhood
U of xg such that:

1
wlllle < -llay <Kl -lo for every 2 € U.

We say that || - || is G-invariant if ||aX|| = ||X]|| for every X € T'M and
a € G. If ||-|| is a Finsler norm on M then for each C*! path o : [a,b] — M
let us define the length of o by I(o f o (t)||dt. If z, y are two points

in M define the distance J).(x, y) = 1nf{l( )| ois a C path joining x
and y}. Then d) is a metric on M and 7as = 75, (see [6]).

We say that ||-|| is a complete Finsler norm if 9. is a complete metric
on M.
We define:
F o={-| } | - || is a Finsler norm on M}
S={|-leF ‘ || - || is G-invariant}
Fo =A{ll-|leF ‘ || - || is complete}
F§ =F¢nFo.

Ifg: TM®&TM — R is a Riemannian metric on M then we associate
to g the following Finsler norm on M: h, : TM — R defined by hy(X) =
(9(X,X))%.

We say that g is a complete Riemannian metric on M iff b, is a
complete Finsler norm. Also, we say that g is G-invariant if g(aX,aY) =
9(X,Y) for each (X,Y) € TM & TM and for each a € G. We define R,
RE, Ro and RS in a natural way.

2. The case of metrics

Let now M be a finite dimensional topological manifold and G a
topological compact group which acts continuously on M. We suppose that
M is endowed with the topology induced by the compact-open topology
of C(M x M,R). We are interested to the inclusion M§ C M% C M
from topological viewpoint.
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Theorem 2.1. The set M is nonempty. Moreover, for each § € M
and each compact set K C M x M, there exists § € MUG such that
d|k=9|k.

PRrROOF. First, we prove the last statement. Let § € MY and K C
M x M a compact set. We choose a compact set K1 € M such that
K C K; x Ky and we apply the Lemma 1.3 for fo = 0 and K;. Hence
we find a proper G-invariant function f : M — R with f |x,= 0 and we
define & : M x M — R by d(z,y) = 6(z,y) + |f(z) — f(y)|. Obviously
§ is a G-invariant metric on M, and using Lemma 1.1 we get that s a
complete metric on M. We have the following implications:

1) 4, xo implies that x,, LN To because 5> 6.

2) z, 25 20 implies that z,, —% 29 and f(x,) — f(z0) (because f is
continuous and 7y, = 75), hence x, LR xg. Then we have 75 = 75 = 7y,
hence 75 € M. Obviously 0 |= 6. It remains to prove that M # (). We
know that M # (), hence we choose d € M and we define § : M x M — R

by 6(z,y) = sup d(ax,ay). Because G is a compact group we have
aeG

(1) dz,y) = I;leaécd(ax,ay).

Also we have 6(x, z)=sup d(az, az) < supld(azx,ay)+d(ay,az)] < §(z,y)+
acG acG
d(y,z) for each z,y,z € M and hence § is a G-invariant metric on M.

Because § > d it remains to prove that xz, 4, o implies x,, 2, To.
We suppose that this is not true. We find a sequence (z,),>1 in M,
a point xg € M and a positive real number r > 0 such that:

(2) 2n % 20 and 0(xp,xo) > r for every n > 1.

From (1) and from the fact that G is compact we infer that there exists a
sequence (ap)n,>1 in G, convergent to ap € G and such that: d(z,,x0) =
d(anTn,anxo) for every n > 1. Now we have §(x,,z¢) < d(an®n,apxo) +
d(apxo,anxp), and because a, S, ao, Tn —5% xo, ™0 = 74 and G acts
continuously on M we have §(z,,,z9) — 0, which contradicts (2). Now the
proof is complete.
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Theorem 2.2. M§ is dense in MY and M is closed in M.

PROOF. The first part is clear from Theorem 2.1. For the last part
let 6 € M\ME be a metric and we prove that § ¢ MS. Because § ¢ MY
we find @ € G and z,y € M such that d(x,y) # d(ax,ay). We choose
D1, D5 to be two disjoint neighbourhoods in R of §(z,y) and d6(az, ay).
Then we have U := MNB({(z,y)}, D1)NB({(ax,ay)}, D2) € Vx(0) and
UNME =0 (where B(K,D) = {f: M x M — R | f is continuous and
f(K) C D}, for a compact subset K of M x M and an open subset D
of R), hence § ¢ MG,

3. The case of Finsler norms

We suppose that M is a finite dimensional C'*° differentiable manifold
and G a Lie compact group which acts differentiably on M. We suppose
that F is endowed with the topology induced by the compact-open topol-
ogy of C(TM,R). We are interested in the inclusion F§ C F¢ C F from
a topological viewpoint.

Theorem 3.1. The set F§' is nonempty. Moreover, for each h € F G
and compact K C M, there exists h € M§ such that h, = h, for every
r e K.

PrOOF. First, we prove the last statement. Let h € F¢ and K C M
a compact set. We choose an open set U with compact closure such that
K C U and we apply Lemma 1.3 for fo = 0 and U.

Hence we find a proper G-invariant function f : M — R with f |7 =0.
Obviously, we can suppose that f € C (see the proof of Lemma 1.3). We
define the function i : TM — R by h = h + |df| which is a G-invariant
Finsler norm on M.

For the completeness of i we observe that if ¢ : [a,b] — M is a C!

path joining x and y then we have
b
Rz

/ dt>/ |df (6(t))|dt >

and we can apply Lemma 1.1. For the first statement of the theorem it

is sufficient to prove that F G +£ (). But we know that there exists h € F

see [6]. We define h : TM — R by h(X) = sup h(aX) = maéh(aX) (or
a€G ac

= [f(z) = f(y)l

h(X) = Jo laX|da, where da is a Haar measure on G). Obviously, he FC.
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Theorem 3.2. F§ is dense in F¢ and F€ is closed in F.

The proof is similar to Theorem 2.2.

4. The case of Riemannian metrics

We suppose that M is a finite dimensional differentiable manifold of
class C*° and G is a compact Lie group which acts differentiably on M.
We suppose that R is endowed with the topology induced by the compact-
open topology of C(T'M @& TM,R). We are concerned with the inclusion
Rg CRE CR from a topological viewpoint.

Theorem 4.1. The set R§ is nonempty. Moreover, for each g € RY
and compact K C M, there exists h € RS such that g, = g, for every
z e K.

Proor. We follow the line of [3] First, we prove the last statement.
Let g € R® and K C M a compact set. We choose an open set U C M
with compact closure such that K C U and we apply Lemma 1.3 for fo = 0
and U. Hence we get a proper, G-invariant, C*°-function f : M — R such
that f |7=0. We define g : TM @ TM — R by g = g+ (df) ® (df ) and we
see that g is a G-invariant Riemannian metric on M. For the completeness
of § we observe that if o : [a,b] — M is a C! path joining = and y then we
have the inequalities

/ gt o)) bde = [ o) = / (foo) (B)dt] = |/(z) - F@w)

and we can apply Lemma 1.1. For the first statement of the theorem
it is sufficient to prove then, that RY # (). We choose a Haar measure
da on G and an element g € R (we know that R # () and we define
g:TM®TM — R by §(X,Y) = [,9(aX,aY)da. We have § € R and
this completes the proof.

Theorem 4.2. R§ is dense in R and RY is closed in R.

The proof is similar to that of Theorem 2.2. If G is the trivial group
then we get the results of J.A. MORROW and H.D. FEGAN, R.S. MILLMAN
see [4] respectively [2].
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