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A note on the denseness of complete invariant metrics

By CSABA VARGA (Cluj-Napoca) and MARIUS CRAINIC (Cluj-Napoca)

Abstract. Many authors have obtained interesting results concerning the exis-
tence and the denseness of complete metrics on metrisable topological spaces and on
differentiable manifolds (see [3], [4], [5], [7]).

In this note we extend these results to the invariant case and simplify some proofs
and we extend these results to Finsler spaces.

1. Introduction

Let M be a finite dimensional topological manifold and G a compact
topological group which acts continuously on M . Then we know that M

is metrisable. Therefore we can consider the space of metrics on M that
generate the topology τM of the space M , i.e. let

M = {δ : M ×M → R | δ is a metric and τρ = τM},

where τρ is the topology generated by the metric ρ on M . We say that
δ ∈ M is a G-invariant metric if δ(ax, ay) = δ(x, y) for every x, y ∈ M

and a ∈ G.

We introduce the following notations:

MG = {δ ∈M | δ is a G-invariant metric}
M0 = {δ ∈M | δ is a complete metric}
MG

0 = MG ∩M0.
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We say that the function f : M → R is proper if for every compact K ⊂ R
the subset f−1(K) ⊂ M is compact. For the existence of continuous and
differentiable proper functions see [3] and [8]. We need the following simple
result, which will be very useful in the sequel:

Lemma 1.1. If δ ∈ M and there exists a continuous proper function

f : M → R such that δ(x, y) ≥ |f(x) − f(y)| for every x, y ∈ M , then we

have δ ∈M0.

Proof. Let (xn)n≥1 ⊂ M be a δ-Cauchy sequence, then (f(xn))n≥1

is also a Cauchy sequence, hence bounded. In particular there exist a, b ∈
R such that f(xn) ∈ [a, b] for every n ≥ 1. It follows that (xn)n≥1 ⊂
f−1([a, b]) but f−1([a, b]) is a compact set because f is a proper function,
hence (xn)n≥1 has a convergent subsequence.

Because M has a G-invariant exhaustion, we obtain as in the trivial
case G = {e} the following result:

Lemma 1.2. If M is a finite dimensional topological G-manifold, then

there exists a continuous proper G-invariant function p : M → R.

More generally we have:

Lemma 1.3. Let K be a compact subset of M and f0 : M → R
a continuous G-invariant function. Then there exists a continuous G-

invariant proper function f : M → R such that f |K= f0 |K .

Proof. We can suppose that K is G-invariant (or else, we can replace

K by GK). We choose a compact G-invariant set L such that K ⊆
◦
L and

then, for the G-invariant covering {
◦
L, M\K} of M , we find a G-invariant

function ϕ : M → R such that ϕ |K= 1 and ϕ |M\L= 0. We define the
function f = ϕf0 + (1 − ϕ)p with p as in Lemma 1.2. Because L is a
compact set, p is a proper function and f |M\L= p |M\L we get that f is
a proper function. Obviously f |K= f0 |K and this completes the proof.

Let now M be a C∞ finite dimensional, connected differentiable man-
ifold and G a compact Lie group which acts differentiably on M . We
denote by T (M) the tangent bundle of M . If M is a G-manifold and
ψ : G×M → M is the action of G on M , then the tangent bundle TM is
a G-bundle, with the action g ·X = dxψ(g, x) · (X), for every X ∈ Tx(M)
and x ∈ M .
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Definition 1.1. Let ‖ · ‖ : T (M) → [0,∞) be a continuous function.
We say that ‖ · ‖ is a Finsler norm on M if the following conditions are
satisfied:

(i) for each x ∈ M , the restriction of ‖ · ‖ to TxM denoted by ‖ · ‖x is
a continuous norm on TxM .

(ii) for each x0 ∈ M and k > 1 there is a trivializing neighbourhood
U of x0 such that:

1
k
‖ · ‖x ≤ ‖ · ‖x0 ≤ k‖ · ‖x for every x ∈ U.

We say that ‖ · ‖ is G-invariant if ‖aX‖ = ‖X‖ for every X ∈ TM and
a ∈ G. If ‖·‖ is a Finsler norm on M , then for each C1 path σ : [a, b] → M

let us define the length of σ by l(σ) =
∫ b

a
‖σ̇(t)‖dt. If x, y are two points

in M define the distance δ‖·‖(x, y) = inf{l(σ) | σ is a C1 path joining x
and y}. Then δ‖·‖ is a metric on M and τM = τδ‖·‖ (see [6]).

We say that ‖·‖ is a complete Finsler norm if δ‖·‖ is a complete metric
on M .

We define:

F = {‖ · ‖
∣∣ ‖ · ‖ is a Finsler norm on M}

FG = {‖ · ‖ ∈ F
∣∣ ‖ · ‖ is G-invariant}

F0 = {‖ · ‖ ∈ F ∣∣ ‖ · ‖ is complete}
FG

0 = FG ∩ F0.

If g : TM ⊕TM → R is a Riemannian metric on M then we associate
to g the following Finsler norm on M : hg : TM → R defined by hg(X) =
(g(X, X))

1
2 .

We say that g is a complete Riemannian metric on M iff hg is a
complete Finsler norm. Also, we say that g is G-invariant if g(aX, aY ) =
g(X,Y ) for each (X,Y ) ∈ TM ⊕ TM and for each a ∈ G. We define R,
RG, R0 and RG

0 in a natural way.

2. The case of metrics

Let now M be a finite dimensional topological manifold and G a
topological compact group which acts continuously on M . We suppose that
M is endowed with the topology induced by the compact-open topology
of C(M × M,R). We are interested to the inclusion MG

0 ⊆ MG ⊆ M
from topological viewpoint.
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Theorem 2.1. The set MG
0 is nonempty. Moreover, for each δ ∈MG

and each compact set K ⊆ M × M , there exists δ̃ ∈ MG
0 such that

δ̃ |K= δ |K .

Proof. First, we prove the last statement. Let δ ∈ MG and K ⊂
M × M a compact set. We choose a compact set K1 ⊆ M such that
K ⊆ K1 × K1 and we apply the Lemma 1.3 for f0 = 0 and K1. Hence
we find a proper G-invariant function f : M → R with f |K1= 0 and we
define δ̃ : M × M → R by δ̃(x, y) = δ(x, y) + |f(x) − f(y)|. Obviously
δ̃ is a G-invariant metric on M , and using Lemma 1.1 we get that δ̃ is a
complete metric on M . We have the following implications:

1) xn
δ̃−→ x0 implies that xn

δ−→ x0 because δ̃ ≥ δ.

2) xn
δ−→ x0 implies that xn

τM−−→ x0 and f(xn) 7→ f(x0) (because f is

continuous and τM = τδ), hence xn
δ̃−→ x0. Then we have τδ̃ = τδ = τM ,

hence τδ̃ ∈MG
0 . Obviously δ̃ |K= δ. It remains to prove thatMG 6= ∅. We

know that M 6= ∅, hence we choose d ∈M and we define δ : M ×M → R
by δ(x, y) = sup

a∈G
d(ax, ay). Because G is a compact group we have

(1) δ(x, y) = max
a∈G

d(ax, ay).

Also we have δ(x, z)= sup
a∈G

d(ax, az) ≤ sup
a∈G

[d(ax, ay)+d(ay, az)] ≤ δ(x, y)+

δ(y, z) for each x, y, z ∈ M and hence δ is a G-invariant metric on M .
Because δ ≥ d it remains to prove that xn

d−→ x0 implies xn
δ−→ x0.

We suppose that this is not true. We find a sequence (xn)n≥1 in M ,
a point x0 ∈ M and a positive real number r > 0 such that:

(2) xn
d−→ x0 and δ(xn, x0) ≥ r for every n ≥ 1.

From (1) and from the fact that G is compact we infer that there exists a
sequence (an)n≥1 in G, convergent to a0 ∈ G and such that: δ(xn, x0) =
d(anxn, anx0) for every n ≥ 1. Now we have δ(xn, x0) ≤ d(anxn, a0x0) +
d(a0x0, anx0), and because an

G−→ a0, xn
τM−−→ x0, τM = τd and G acts

continuously on M we have δ(xn, x0) → 0, which contradicts (2). Now the
proof is complete.
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Theorem 2.2. MG
0 is dense in MG and MG is closed in M.

Proof. The first part is clear from Theorem 2.1. For the last part
let δ ∈M\MG be a metric and we prove that δ /∈MG. Because δ /∈MG

we find a ∈ G and x, y ∈ M such that δ(x, y) 6= δ(ax, ay). We choose
D1, D2 to be two disjoint neighbourhoods in R of δ(x, y) and δ(ax, ay).
Then we have U := M∩B({(x, y)}, D1)∩B({(ax, ay)}, D2) ∈ VM(δ) and
U ∩MG = ∅ (where B(K,D) = {f : M ×M → R | f is continuous and
f(K) ⊂ D}, for a compact subset K of M × M and an open subset D

of R), hence δ /∈MG.

3. The case of Finsler norms

We suppose that M is a finite dimensional C∞ differentiable manifold
and G a Lie compact group which acts differentiably on M . We suppose
that F is endowed with the topology induced by the compact-open topol-
ogy of C(TM,R). We are interested in the inclusion FG

0 ⊆ FG ⊆ F from
a topological viewpoint.

Theorem 3.1. The set FG
0 is nonempty. Moreover, for each h ∈ FG

and compact K ⊆ M , there exists h̃ ∈ MG
0 such that h̃x = hx for every

x ∈ K.

Proof. First, we prove the last statement. Let h ∈ FG and K ⊆ M
a compact set. We choose an open set U with compact closure such that
K ⊆ U and we apply Lemma 1.3 for f0 = 0 and U .

Hence we find a proper G-invariant function f : M → R with f |U =0.
Obviously, we can suppose that f ∈ C∞ (see the proof of Lemma 1.3). We
define the function h̃ : TM → R by h̃ = h + |df | which is a G-invariant
Finsler norm on M .

For the completeness of h̃ we observe that if σ : [a, b] → M is a C1

path joining x and y then we have

∫ b

a

h̃(σ̇(t))dt ≥
∫ b

a

|df(σ̇(t))|dt ≥
∣∣∣∣∣
∫ b

a

(f ◦ σ)′(t)dt

∣∣∣∣∣ = |f(x)− f(y)|

and we can apply Lemma 1.1. For the first statement of the theorem it
is sufficient to prove that FG 6= ∅. But we know that there exists h ∈ F
see [6]. We define h̃ : TM → R by h̃(X) = sup

a∈G
h(aX) = max

a∈G
h(aX) (or

h̃(X) =
∫

G
|aX|da, where da is a Haar measure on G). Obviously, h̃ ∈ FG.



270 Csaba Varga and Marius Crainic

Theorem 3.2. FG
0 is dense in FG and FG is closed in F .

The proof is similar to Theorem 2.2.

4. The case of Riemannian metrics

We suppose that M is a finite dimensional differentiable manifold of
class C∞ and G is a compact Lie group which acts differentiably on M .
We suppose that R is endowed with the topology induced by the compact-
open topology of C(TM ⊕ TM,R). We are concerned with the inclusion
RG

0 ⊆ RG ⊆ R from a topological viewpoint.

Theorem 4.1. The set RG
0 is nonempty. Moreover, for each g ∈ RG

and compact K ⊆ M , there exists h̃ ∈ RG
0 such that g̃x = gx for every

x ∈ K.

Proof. We follow the line of [3] First, we prove the last statement.
Let g ∈ RG and K ⊆ M a compact set. We choose an open set U ⊆ M

with compact closure such that K ⊆ U and we apply Lemma 1.3 for f0 = 0
and U . Hence we get a proper, G-invariant, C∞-function f : M → R such
that f |U= 0. We define g̃ : TM ⊕TM → R by g̃ = g +(df)⊗ (df) and we
see that g̃ is a G-invariant Riemannian metric on M . For the completeness
of g̃ we observe that if σ : [a, b] → M is a C1 path joining x and y then we
have the inequalities

∫ b

a

[g̃(σ̇(t), σ̇(t))]
1
2 dt ≥

∫ b

a

|df(σ̇(t))| ≥
∣∣∣
∫ b

a

(f ◦ σ)′(t)dt
∣∣∣ = |f(x)− f(y)|

and we can apply Lemma 1.1. For the first statement of the theorem
it is sufficient to prove then, that RG 6= ∅. We choose a Haar measure
da on G and an element g ∈ R (we know that R 6= ∅) and we define
g̃ : TM ⊕ TM → R by g̃(X, Y ) =

∫
G

g(aX, aY )da. We have g̃ ∈ RG and
this completes the proof.

Theorem 4.2. RG
0 is dense in RG and RG is closed in R.

The proof is similar to that of Theorem 2.2. If G is the trivial group
then we get the results of J.A. Morrow and H.D. Fegan, R.S. Millman

see [4] respectively [2].
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