Publ. Math. Debrecen 51 / 3-4 (1997), 265–271

A note on the denseness of complete invariant metrics

By CSABA VARGA (Cluj-Napoca) and MARIUS CRAINIC (Cluj-Napoca)

Abstract. Many authors have obtained interesting results concerning the existence and the denseness of complete metrics on metrisable topological spaces and on differentiable manifolds (see [3], [4], [5], [7]).

In this note we extend these results to the invariant case and simplify some proofs and we extend these results to Finsler spaces.

1. Introduction

Let M be a finite dimensional topological manifold and G a compact topological group which acts continuously on M. Then we know that Mis metrisable. Therefore we can consider the space of metrics on M that generate the topology τ_M of the space M, i.e. let

$$\mathcal{M} = \{ \delta : M \times M \to \mathbb{R} \mid \delta \text{ is a metric and } \tau_{\rho} = \tau_M \},\$$

where τ_{ρ} is the topology generated by the metric ρ on M. We say that $\delta \in \mathcal{M}$ is a *G*-invariant metric if $\delta(ax, ay) = \delta(x, y)$ for every $x, y \in M$ and $a \in G$.

We introduce the following notations:

$$\mathcal{M}^{G} = \{ \delta \in \mathcal{M} \mid \delta \text{ is a } G \text{-invariant metric} \}$$
$$\mathcal{M}_{0} = \{ \delta \in \mathcal{M} \mid \delta \text{ is a complete metric} \}$$
$$\mathcal{M}_{0}^{G} = \mathcal{M}^{G} \cap \mathcal{M}_{0}.$$

Mathematics Subject Classification: 54E50, 54C35, 54H11.

Key words and phrases: complete metrics, complete Riemannian metrics, complete Finslerian metrics, topological groups.

We say that the function $f: M \to \mathbb{R}$ is proper if for every compact $K \subset \mathbb{R}$ the subset $f^{-1}(K) \subset M$ is compact. For the existence of continuous and differentiable proper functions see [3] and [8]. We need the following simple result, which will be very useful in the sequel:

Lemma 1.1. If $\delta \in \mathcal{M}$ and there exists a continuous proper function $f: \mathcal{M} \to \mathbb{R}$ such that $\delta(x, y) \geq |f(x) - f(y)|$ for every $x, y \in \mathcal{M}$, then we have $\delta \in \mathcal{M}_0$.

PROOF. Let $(x_n)_{n\geq 1} \subset M$ be a δ -Cauchy sequence, then $(f(x_n))_{n\geq 1}$ is also a Cauchy sequence, hence bounded. In particular there exist $a, b \in \mathbb{R}$ such that $f(x_n) \in [a, b]$ for every $n \geq 1$. It follows that $(x_n)_{n\geq 1} \subset f^{-1}([a, b])$ but $f^{-1}([a, b])$ is a compact set because f is a proper function, hence $(x_n)_{n\geq 1}$ has a convergent subsequence.

Because M has a G-invariant exhaustion, we obtain as in the trivial case $G = \{e\}$ the following result:

Lemma 1.2. If M is a finite dimensional topological G-manifold, then there exists a continuous proper G-invariant function $p: M \to \mathbb{R}$.

More generally we have:

Lemma 1.3. Let K be a compact subset of M and $f_0 : M \to \mathbb{R}$ a continuous G-invariant function. Then there exists a continuous Ginvariant proper function $f : M \to \mathbb{R}$ such that $f|_K = f_0|_K$.

PROOF. We can suppose that K is G-invariant (or else, we can replace K by GK). We choose a compact G-invariant set L such that $K \subseteq \overset{\circ}{L}$ and then, for the G-invariant covering $\{\overset{\circ}{L}, M \setminus K\}$ of M, we find a G-invariant function $\varphi : M \to \mathbb{R}$ such that $\varphi \mid_{K} = 1$ and $\varphi \mid_{M \setminus L} = 0$. We define the function $f = \varphi f_0 + (1 - \varphi)p$ with p as in Lemma 1.2. Because L is a compact set, p is a proper function and $f \mid_{M \setminus L} = p \mid_{M \setminus L}$ we get that f is a proper function. Obviously $f \mid_{K} = f_0 \mid_{K}$ and this completes the proof.

Let now M be a C^{∞} finite dimensional, connected differentiable manifold and G a compact Lie group which acts differentiably on M. We denote by T(M) the tangent bundle of M. If M is a G-manifold and $\psi: G \times M \to M$ is the action of G on M, then the tangent bundle TM is a G-bundle, with the action $g \cdot X = d_x \psi(g, x) \cdot (X)$, for every $X \in T_x(M)$ and $x \in M$.

Definition 1.1. Let $\|\cdot\|: T(M) \to [0,\infty)$ be a continuous function. We say that $\|\cdot\|$ is a Finsler norm on M if the following conditions are satisfied:

(i) for each $x \in M$, the restriction of $\|\cdot\|$ to $T_x M$ denoted by $\|\cdot\|_x$ is a continuous norm on $T_x M$.

(ii) for each $x_0 \in M$ and k > 1 there is a trivializing neighbourhood U of x_0 such that:

$$\frac{1}{k} \| \cdot \|_x \le \| \cdot \|_{x_0} \le k \| \cdot \|_x \quad \text{for every } x \in U.$$

We say that $\|\cdot\|$ is G-invariant if $\|aX\| = \|X\|$ for every $X \in TM$ and $a \in G$. If $\|\cdot\|$ is a Finsler norm on M, then for each C^1 path $\sigma: [a, b] \to M$ let us define the length of σ by $l(\sigma) = \int_a^b \|\dot{\sigma}(t)\| dt$. If x, y are two points in M define the distance $\delta_{\|\cdot\|}(x, y) = \inf\{l(\sigma) \mid \sigma \text{ is a } C^1 \text{ path joining } x$ and $y\}$. Then $\delta_{\|\cdot\|}$ is a metric on M and $\tau_M = \tau_{\delta_{\|\cdot\|}}$ (see [6]). We say that $\|\cdot\|$ is a complete Finsler norm if $\delta_{\|\cdot\|}$ is a complete metric

on M.

We define:

$$\mathcal{F} = \{ \| \cdot \| \mid \| \cdot \| \text{ is a Finsler norm on } M \}$$
$$\mathcal{F}^G = \{ \| \cdot \| \in \mathcal{F} \mid \| \cdot \| \text{ is } G \text{-invariant} \}$$
$$\mathcal{F}_0 = \{ \| \cdot \| \in \mathcal{F} \mid \| \cdot \| \text{ is complete} \}$$
$$\mathcal{F}_0^G = \mathcal{F}^G \cap \mathcal{F}_0.$$

If $g: TM \oplus TM \to \mathbb{R}$ is a Riemannian metric on M then we associate to g the following Finsler norm on M: $h_g: TM \to \mathbb{R}$ defined by $h_g(X) =$ $(q(X,X))^{\frac{1}{2}}.$

We say that g is a complete Riemannian metric on M iff h_q is a complete Finsler norm. Also, we say that q is G-invariant if q(aX, aY) =g(X,Y) for each $(X,Y) \in TM \oplus TM$ and for each $a \in G$. We define \mathcal{R} , \mathcal{R}^G , \mathcal{R}_0 and \mathcal{R}^G_0 in a natural way.

2. The case of metrics

Let now M be a finite dimensional topological manifold and G a topological compact group which acts continuously on M. We suppose that \mathcal{M} is endowed with the topology induced by the compact-open topology of $C(M \times M, \mathbb{R})$. We are interested to the inclusion $\mathcal{M}_0^G \subseteq \mathcal{M}^G \subseteq \mathcal{M}$ from topological viewpoint.

Theorem 2.1. The set \mathcal{M}_0^G is nonempty. Moreover, for each $\delta \in \mathcal{M}^G$ and each compact set $K \subseteq M \times M$, there exists $\tilde{\delta} \in \mathcal{M}_0^G$ such that $\tilde{\delta} \mid_K = \delta \mid_K$.

PROOF. First, we prove the last statement. Let $\delta \in \mathcal{M}^G$ and $K \subset M \times M$ a compact set. We choose a compact set $K_1 \subseteq M$ such that $K \subseteq K_1 \times K_1$ and we apply the Lemma 1.3 for $f_0 = 0$ and K_1 . Hence we find a proper *G*-invariant function $f: M \to \mathbb{R}$ with $f|_{K_1} = 0$ and we define $\tilde{\delta}: M \times M \to \mathbb{R}$ by $\tilde{\delta}(x, y) = \delta(x, y) + |f(x) - f(y)|$. Obviously $\tilde{\delta}$ is a *G*-invariant metric on *M*, and using Lemma 1.1 we get that $\tilde{\delta}$ is a complete metric on *M*. We have the following implications:

1)
$$x_n \xrightarrow{\tilde{\delta}} x_0$$
 implies that $x_n \xrightarrow{\delta} x_0$ because $\tilde{\delta} \ge \delta$.

2) $x_n \xrightarrow{\delta} x_0$ implies that $x_n \xrightarrow{\tau_M} x_0$ and $f(x_n) \mapsto f(x_0)$ (because f is continuous and $\tau_M = \tau_\delta$), hence $x_n \xrightarrow{\tilde{\delta}} x_0$. Then we have $\tau_{\tilde{\delta}} = \tau_\delta = \tau_M$, hence $\tau_{\tilde{\delta}} \in \mathcal{M}_0^G$. Obviously $\tilde{\delta} \mid_K = \delta$. It remains to prove that $\mathcal{M}^G \neq \emptyset$. We know that $\mathcal{M} \neq \emptyset$, hence we choose $d \in \mathcal{M}$ and we define $\delta : \mathcal{M} \times \mathcal{M} \to \mathbb{R}$ by $\delta(x, y) = \sup_{a \in G} d(ax, ay)$. Because G is a compact group we have

(1)
$$\delta(x,y) = \max_{a \in G} d(ax,ay).$$

Also we have $\delta(x, z) = \sup_{a \in G} d(ax, az) \leq \sup_{a \in G} [d(ax, ay) + d(ay, az)] \leq \delta(x, y) + \delta(y, z)$ for each $x, y, z \in M$ and hence δ is a *G*-invariant metric on *M*. Because $\delta \geq d$ it remains to prove that $x_n \xrightarrow{d} x_0$ implies $x_n \xrightarrow{\delta} x_0$.

We suppose that this is not true. We find a sequence $(x_n)_{n\geq 1}$ in M, a point $x_0 \in M$ and a positive real number r > 0 such that:

(2)
$$x_n \xrightarrow{d} x_0 \text{ and } \delta(x_n, x_0) \ge r \text{ for every } n \ge 1.$$

From (1) and from the fact that G is compact we infer that there exists a sequence $(a_n)_{n\geq 1}$ in G, convergent to $a_0 \in G$ and such that: $\delta(x_n, x_0) = d(a_n x_n, a_n x_0)$ for every $n \geq 1$. Now we have $\delta(x_n, x_0) \leq d(a_n x_n, a_0 x_0) + d(a_0 x_0, a_n x_0)$, and because $a_n \xrightarrow{G} a_0, x_n \xrightarrow{\tau_M} x_0, \tau_M = \tau_d$ and G acts continuously on M we have $\delta(x_n, x_0) \to 0$, which contradicts (2). Now the proof is complete.

Theorem 2.2. \mathcal{M}_0^G is dense in \mathcal{M}^G and \mathcal{M}^G is closed in \mathcal{M} .

PROOF. The first part is clear from Theorem 2.1. For the last part let $\delta \in \mathcal{M} \setminus \mathcal{M}^G$ be a metric and we prove that $\delta \notin \overline{\mathcal{M}^G}$. Because $\delta \notin \mathcal{M}^G$ we find $a \in G$ and $x, y \in M$ such that $\delta(x, y) \neq \delta(ax, ay)$. We choose D_1, D_2 to be two disjoint neighbourhoods in \mathbb{R} of $\delta(x, y)$ and $\delta(ax, ay)$. Then we have $U := \mathcal{M} \cap B(\{(x, y)\}, D_1) \cap B(\{(ax, ay)\}, D_2) \in \mathcal{V}_{\mathcal{M}}(\delta)$ and $U \cap \mathcal{M}^G = \emptyset$ (where $B(K, D) = \{f : M \times M \to \mathbb{R} \mid f \text{ is continuous and}$ $f(K) \subset D\}$, for a compact subset K of $M \times M$ and an open subset D of \mathbb{R}), hence $\delta \notin \overline{\mathcal{M}^G}$.

3. The case of Finsler norms

We suppose that M is a finite dimensional C^{∞} differentiable manifold and G a Lie compact group which acts differentiably on M. We suppose that \mathcal{F} is endowed with the topology induced by the compact-open topology of $\mathcal{C}(TM, \mathbb{R})$. We are interested in the inclusion $\mathcal{F}_0^G \subseteq \mathcal{F}^G \subseteq \mathcal{F}$ from a topological viewpoint.

Theorem 3.1. The set \mathcal{F}_0^G is nonempty. Moreover, for each $h \in \mathcal{F}^G$ and compact $K \subseteq M$, there exists $\tilde{h} \in \mathcal{M}_0^G$ such that $\tilde{h}_x = h_x$ for every $x \in K$.

PROOF. First, we prove the last statement. Let $h \in \mathcal{F}^G$ and $K \subseteq M$ a compact set. We choose an open set U with compact closure such that $K \subseteq U$ and we apply Lemma 1.3 for $f_0 = 0$ and \overline{U} .

Hence we find a proper G-invariant function $f: M \to \mathbb{R}$ with $f \mid_{\overline{U}} = 0$. Obviously, we can suppose that $f \in C^{\infty}$ (see the proof of Lemma 1.3). We define the function $\tilde{h}: TM \to \mathbb{R}$ by $\tilde{h} = h + |df|$ which is a G-invariant Finsler norm on M.

For the completeness of \tilde{h} we observe that if $\sigma : [a, b] \to M$ is a C^1 path joining x and y then we have

$$\int_{a}^{b} \tilde{h}(\dot{\sigma}(t))dt \ge \int_{a}^{b} |df(\dot{\sigma}(t))|dt \ge \left|\int_{a}^{b} (f \circ \sigma)'(t)dt\right| = |f(x) - f(y)|$$

and we can apply Lemma 1.1. For the first statement of the theorem it is sufficient to prove that $\mathcal{F}^G \neq \emptyset$. But we know that there exists $h \in \mathcal{F}$ see [6]. We define $\tilde{h}: TM \to \mathbb{R}$ by $\tilde{h}(X) = \sup_{a \in G} h(aX) = \max_{a \in G} h(aX)$ (or $\tilde{i}(X) = \int_{X} h(aX) dx = h(aX) = \int_{X} h(aX) dx$

 $\tilde{h}(X) = \int_G |aX| da$, where da is a Haar measure on G). Obviously, $\tilde{h} \in \mathcal{F}^G$.

Theorem 3.2. \mathcal{F}_0^G is dense in \mathcal{F}^G and \mathcal{F}^G is closed in \mathcal{F} .

The proof is similar to Theorem 2.2.

4. The case of Riemannian metrics

We suppose that M is a finite dimensional differentiable manifold of class C^{∞} and G is a compact Lie group which acts differentiably on M. We suppose that \mathcal{R} is endowed with the topology induced by the compactopen topology of $C(TM \oplus TM, \mathbb{R})$. We are concerned with the inclusion $\mathcal{R}_0^G \subseteq \mathcal{R}^G \subseteq \mathcal{R}$ from a topological viewpoint.

Theorem 4.1. The set \mathcal{R}_0^G is nonempty. Moreover, for each $g \in \mathcal{R}^G$ and compact $K \subseteq M$, there exists $\tilde{h} \in \mathcal{R}_0^G$ such that $\tilde{g}_x = g_x$ for every $x \in K$.

PROOF. We follow the line of [3] First, we prove the last statement. Let $g \in \mathcal{R}^G$ and $K \subseteq M$ a compact set. We choose an open set $U \subseteq M$ with compact closure such that $K \subseteq U$ and we apply Lemma 1.3 for $f_0 = 0$ and \overline{U} . Hence we get a proper, *G*-invariant, C^{∞} -function $f: M \to \mathbb{R}$ such that $f \mid_{\overline{U}} = 0$. We define $\tilde{g}: TM \oplus TM \to \mathbb{R}$ by $\tilde{g} = g + (df) \otimes (df)$ and we see that \tilde{g} is a *G*-invariant Riemannian metric on *M*. For the completeness of \tilde{g} we observe that if $\sigma: [a, b] \to M$ is a C^1 path joining *x* and *y* then we have the inequalities

$$\int_{a}^{b} [\tilde{g}(\dot{\sigma}(t), \dot{\sigma}(t))]^{\frac{1}{2}} dt \ge \int_{a}^{b} |df(\dot{\sigma}(t))| \ge \left| \int_{a}^{b} (f \circ \sigma)'(t) dt \right| = |f(x) - f(y)|$$

and we can apply Lemma 1.1. For the first statement of the theorem it is sufficient to prove then, that $\mathcal{R}^G \neq \emptyset$. We choose a Haar measure da on G and an element $g \in \mathcal{R}$ (we know that $\mathcal{R} \neq \emptyset$) and we define $\tilde{g}: TM \oplus TM \to \mathbb{R}$ by $\tilde{g}(X,Y) = \int_G g(aX,aY)da$. We have $\tilde{g} \in \mathcal{R}^G$ and this completes the proof.

Theorem 4.2. \mathcal{R}_0^G is dense in \mathcal{R}^G and \mathcal{R}^G is closed in \mathcal{R} .

The proof is similar to that of Theorem 2.2. If G is the trivial group then we get the results of J.A. MORROW and H.D. FEGAN, R.S. MILLMAN see [4] respectively [2]. A note on the denseness of complete invariant metrics

References

- G. E. BREDON, Introduction to compact transformation groups, Academic Press, New York and London, 1972.
- [2] H. D. FEGAN and R. S. MILLMAN, Quadrants of Riemannian metrics, Michigan Math. J. 25 no. 1 (1978), 3–7.
- [3] W. B. GORDON, An analytical criterion for the completness of Riemannian manifolds, Proc. A.M.S. 37 (1973), 221–225.
- [4] J. A. MORROW, The denseness of complete Riemannian metrics, J. Diff. Geometry 4 (1970), 225–226.
- [5] K. NOMIZU and H. OSEKI, The existence of complete Riemannian metrics, Proc. A.M.S. 12 (1961), 889–891.
- [6] R. S. PALAIS, Lusternik-Schnirelmann theory on Banach manifolds, Topology 5 (1966), 115–132.
- [7] CS. VARGA and G. FARKAS, On completeness of metric spaces, Studia Univ. Babeş-Bolyai, Mathematica, XXXVII 4 (1992), 95–101.
- [8] Cs. VARGA, Extensions of functions to proper functions, Seminar on Geometry 2 (1991), 93–96, (preprint).

CSABA VARGA BABEŞ-BOLYAI UNIVERSITY FACULTY OF MATHEMATICS STR. KOGALNICEANU 1 3400 CLUJ-NAPOCA ROMANIA

MARIUS CRAINIC BABEŞ-BOLYAI UNIVERSITY FACULTY OF MATHEMATICS STR. KOGALNICEANU 1 3400 CLUJ-NAPOCA ROMANIA

(Received September 23, 1996; revised April 14, 1997)