Publ. Math. Debrecen
39 /1-2 (1991), 155-157

On a method of Galambos and Katai concerning
the frequency of deficient numbers

By J. SANDOR (Forteni)

Abstract. A number n is called deficient if o(n) < 2n, where o(n) denotes the
sum of divisors of n. In this note it is proved that, for n > ng, there is a deficient
number between n and n + (logn)®.

With the method of GALAMBOS [1] and KATAI [3], I establish the
announced result. It should be noted that the more general result of
GALAMBOS and KATAI [2] cannot be applied to deficient numbers since
o(n) is multiplicative while their result is applicable to certain additive
functions only.

Theorem. For all sufficiently large natural number n, there is a defi-
cient number between n and n + (log n)z.

PROOF. Notice that

d|n

Hence, it suffices to prove that

(2) S= ) Z.:l‘z < 2k

n+1<m<n+k d|m
with k = (logn)?®. As in Galambos (2], we split

(3) S=5+5



156 J. Sandor

where

L0 e

n+1<m<n+k d|m, d<f(n)

5= ¥ X

n+1<m<n+k d|m, d>f(n)
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where we choose f(n) later. Now,

1 1/(k
1<d< f(n) n+1<m<n+k 1<d<f(n)

d|m

IA

+oo
1 1
<k§¥ + ) 5 <18k+log(f(n)+1).

1<d< f(n)

On the other hand,

1 1
f(n)<d<n+k n+l$1iu5n+k f(n)<d<n+k n+l£rln5n+k
d|m d|lm

Let

an(d) = Z 1

n+1<m<n+k

d|m

Since d > f(n), an(d) = 1 or 0 whenever f(n) is of larger order than

k = (logn)?. Furthermore, a fixed m can contribute 1 to a,(d) at most as
many times as many divisors m has, so,

f(m)Sx < 3 d(m)

n+l<m<n+k

where d(m) is the number of the divisors of m. It is known that (see [4])

S d(m) =NlogN +CN+0 (N'?),
m<N
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and thus,

F(n)Sz <(n + k) log(n + k) + C(n + k) + 0 ((n + £)/*) = nlogn—
—Cn+0 (n1/3) = nlog (1 ) g) + klog(n + k) + Ck+
+0((n+0)*) = o(n')

(recall that k = (logn)? ). Now, if we choose f(n) = \/n , we get
(4) $£-8 (n-’fﬁ)

and our estimate on S; becomes

(5) S, < 1.8k + %logn < 1.9k

since k = (logn)?. The estimates (4) and (5), via (3), imply (2), which
completes the proof.
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