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On a Special Superelliptic Equation

By B. BRINDZA"* (Debrecen)

The purpose of this remark is to show that for each given integer

n > 2, the equation
vy TR
nt 2

has at most finitely many solutions in integers z and y. Sierpinski had
conjectured to that effect for the case n = 3 — thus that there are only
finitely many numbers that are both triangular and tetrahedral. This was
verified by AVANESOV [1] who determined all the solutions; there are five:

(z,v) = (3,2), (5,5), (10,16), (22, 56), (36, 120).

More recently, Kiss (3] showed that, when n = p is prime, the given equa-
tion has just finitely many solutions. The critical auxiliary step in his
argument consists of showing that a certain polynomial has sufficiently
many simple zeros; it makes essential use of the primality of n. Our corre-
sponding argument (Lemma 3, below) is simpler and deals with all n.

In the sequel f, denotes the polynomial

falX) = X(X 1)+ (X = (n=1)) + gn.

We employ the notation C = C(a,b,...) to indicatg that the constant C
depends only on the stated parameters a,b,... .

We prove that
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Theorem. Suppose n > 2 and let a # 0 be an integer. Then all
solutions of the equation
fa(z) = ay*

in rational integers z,y and z with |y| > 1 and z > 1 satisfy max{|z|,
lyl, z} < C1, where C; = Cy(n,a) is an effectively computable constant.

Our original equation is readily reduced to a hyperelliptic equation.

We have
e 2 &
y'—y= 2(1‘:) so (2y—-1)°= S(R) +1

which is
¥ .
z(z—1)---(z—-(n-1)) +§n! = gn!(2y—1) ;

Thus we have, as claimed,

Corollary. Let n > 2 be an integer. Then all the positive integer

solutions of the equation
L W
n) \32

satisfy max{z,y} < C;, where C; = Cy(n) is an effectively computable
constant.

Preliminaries

We use the following preliminary results: Let f(X) be a non-constant
polynomial with rational coefficients and let b be a nonzero rational num-
ber. Denote by a;,...,a; the distinct zeros of f in C and let ry,..., 7
be their respective multiplicities. Given a positive integer m > 2, set

m ,
i = (T'n_;-j y = 1,...,’:.

Lemma 1. (Brindza [2]). Suppose that (q,...,qx) is not a permuta-
tion of either of the k-tuples (¢,1,...,1) or (2,2,1,...,1). Then all solu-
tions of the equation

f(z) = by™

in rational integers z and y satisfy max{z,y} < Cj, where C3 = C3(f,m,b)
is an effectively computable constant.

The actual result of [2] is more general. An elegant proof is given in
SHOREY and TIIDEMAN [5] at Theorem 8.3.
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Lemma 2. (Schinzel and Tijdeman [4]). If the polynomial f has at
least two distinct zeros, then all solutions of the equation

f(z) = by"

in rational integers z,y and z with |y| > 1 satisfy |z| < Cy, where Cy =
C4(f,b) is an effectively computable constant.

To apply these results we need some information on the zeros of the poly-
nomials f,. We prove more than is needed for the application.

Lemma 3. Ifn > 3 then all the zeros of the polynomial f, are simple.

Clearly fn(k) —n!/8 = 0 for the n integers k = 0,1,...,n — 1. Thus, its
derivative f! must have (at least, and of course no more than) n — 1 real
zeros, so all the zeros of that derivative are real and lie in the interval
(0,n — 1). Hence it suffices to show that, other than for a simple zero in
the interval (—1,0) when n is odd, f, has no real zero. But on the left
of the interval (—=1,n — 1) we easily see that |f,| > n! — n!/8, and on the
right we have |f,| > n!/8. For a in the interval (0,n — 1)

loa(a=1)---(a=(n=1))| < ,_max k{(n—k)/4,

=1,...,n-1

whence

fa(a) 2 n!/8—(n-1)!/4>0.

Proof of the Theorem

It 1s easy to confirm explicitly that the polynomial f; has no rational
zero, 1s therefore irreducible over Q, and thus has distinct zeros in C. Then
the Theorem is just a special case of Lemma 1.
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