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Complexity investigations on decomposable form
equations

By ATTILA PETHO* (Debrecen)

Let Q and Z denote the field of rational numbers and the ring of in-
tegers, respectively. Let F(zy,...,zx) € Z[z,,...,zk| be a form of degree
n. F is called decomposable if it factorizes into linear factors over some
finite extension of Q.

Let F be a decomposable form and m € Z \ {0}. Decomposable form
equations of type

(1) F(z1yesZp) =m, iD Tiy..., 23 EZ

are of basic importance in the theory of diophantine equations, and have
many applications in algebraic number theory. For basic results we refter
to BOREVICH and SHAFAREVICH (1], ScuMIDT (7], (8], [9], GYORY (3], [4],
EVERTSE and GYORY [2] and the references therein.

A decomposable form F is called degenerate if there exists an integer
m such that (1) has infinitely many solutions. It is easy to see that all
binary forms are decomposable, and by a result of Siegel [12] it is decidable
without the factorization of F' whether it is degenerate. For the sake of
completeness, in Section 2 we also deal with binary forms.

In general we can decide, using the results of SCHMIDT [7] or EVERTSE
and GYORY [2], whether F' is degenerate, only if its factorization is known.
The main goal of this paper is to give in Section 4, an algorithm for the
factorization of F. In gectxon 5, we  prove that the running time of the
algorithm is bounded by O(k*n C log?(2kn|F|)loglog(2kn|F|)), where |F|
denotes the height of the polynomial F.

In comparison with general methods for the factorization of multivari-
ate polynomials, for example with the method of HULST and LENSTRA [5],
our algorithm seems to be more realistic for this special problem.

I am very grateful for the referee for several suggestions which make
the presentation more clear.

*Research supported by Hungarian National Foundation for Scientific Research Grant
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2. Binary forms

Theorem 1. Let F(z,y) = Foz"+Fiza" y+---+Fpz" € Z[z,y]. It is
decidable in at most O(n? log® F'loglog F') additions, subtractions, mul-

tiplications and divisions whether F' is degenerate, where F' = max{|Fy|,
TN

PROOF. By a theorem of Siegel [12, Zweiter Teil], F' is degenerate iff
there exist integers a, b, ¢, d such that either

(2) F(z,y) = a(bz + cy)"
or n is even and
(3) F(z,y) = a(bz? + czy + dy*)"/?,

with ¢? — 4bd > 0.

We shall analyse only the first alternative. We may assume that
(b,c) =1,hencea = (Fy,...,Fo),b=2 /(8 A)ande= 0 /(5L A,
So a, b and ¢ can be computed in at most O(nlog® F' log log F') operations
using fast multiplication techniques.

Equations (2) is true iff F(z,b) = ab"(z + ¢)". For the comparison
of these two polynomials one needs at most O(n?log® F' loglog F') opera-
tions. The analysis of (3) is similar and Theorem 1 is proved.

3. Auxiliary lemmas

In the sequel |F| will denote the height of the polynomial F €
Q[z1,...,zk], i.e. the maximum of the absolute values of the coefficients
of F. Further e, (t =1,...,k—1) will denote the k — 1-dimensional vector
with t—th coordinate 1 and all othér coordinates 0.

Lemma 1. Let F(z,,...,zx) be a decomposable form of degree n
such that F(1,0,...,0) = f, # 0. Take Ly = (4|F|)"(»~V+! and L, =
Ly(Ls + 1)'73, t = 3,...,k. Denote by a;; and B ; the roots of the
polynomials F(z,e,_,) and F(z,1,Ls,...,L0,...,0), respectively, for
fad ok gl Then
(4) |fn| |at,j‘_at,k'54|F|s 1Sj,h5n; 2<t<k,

(5) lat,j — ae,n| 24(4|F)~"""D

hold for all1 < j,h < n; 2 <t <k such that a;j # a,. Further,

(6) |fnl 1Bt,j = Benl < 4|F)(Ls +1)*2, 1<jh<n; 2<t<k,
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(7 |Be.; — Binl 2 4(4|F|)~ (=D
hold for all 1 £ j,h < n; 2 <t < k such that B, ; # Bi,x. Finally,
(8) |Bt-1,j — Bt—1,a| < Lilasu — ay,y

hold for all 1 < j,h,u,v < n with ayy # ay.

PROOF. Let 2 <t < k be fixed, and F(z,e,_;) = fn, 2™ + - + fo,z.
Then f, = fn and |F(z,e,_,)| < |F| because F(1,0,...,0) = f, and f,;
is the coefficient of the term z{zy~* in F(z,,...,zx). By Hilfssatz 1 of
SCHNEIDER [10], we have |fnaq ;| < 2|F|, hence (4) is true.

Let A = {ay,;1,...,ay,j, } be the set of all distinct roots of F(z,e,_,),
and denote by N the splitting field of F(z,e,_,). Then we have A” = A
for all elements o of the Galois group of the field extension N/Q. Further,

Je
faay,j, 1 < j < n are algebraic integers, hence [](z — fpay,:) € Z[z], and
i=1
so its discriminant  [[  fa(ay,i —ay,j) is a non-zero integer. Combining
1<) <
this with (4) we get (5) at once.
Since F'is a decomposable form,

B p) = I H(:rl + az ;T2 + - + Qg jTk),
i=1

which means that a3 j+ Lsaj j+---+ Liay j, j = 1,...,n are all the roots
of F(z,1,L,,...,L0,...,0). Therefore
(9) Bij=azj+ Liazj+ -+ Layj, j=1,...,n
holds after possible changes of the subscripts. (9) implies

| fnl1Be,; — Ben| < 4|F|(1+ L3 + -+« + Ly).
It is easy to derive

1+Ls+-+Li=(Ls+1)2, t=2,...,k

from the definition of the L's, which proves (6).

By (5), inequality (7) is true for ¢ = 2. Assume that it is true for a ¢
with 2 S t S k. We have ﬂg.;.]J = ﬂg_j s e Lt+lat+l,j by (9) Let J and h be
chosen so that B4 ; # Bi41,n- If ay41,; = @418, then we have (7) by the
induction hypothesis. In the opposite case we get

|5t+1,;‘ = ﬁt-i-l,hl _>_Lt+1|0t+1,j — Oft+1,h| - !ﬁt,j = ﬂt,bl =
12|F|(Ls + 1)!72 > 4(4|F))~"(»-D)
by (5) and (6).
Finally (6) and (5) imply

[Be-1,j — Be-1,n] < 4|F|(Ls + 1) 7% < Liayg,y — a0l -
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Lemma 2. Let F(z,,...,2k), a,j and f,; be the same as in Lemma 1.
Let @y j,B:; € Q(i) be the approximations to ay; and By ; respectively,
such that

2 ; "
(10) |a!.f L &i,jl - (2kn|F|)_k(n+l) , t= 23 ¢o ak; i 1,... 3 Tty

(11) |Be,; — B, < (4|F|)—n” t=2....k j=1,...,n,
Then
(12) |Bt—l,j o~ Bg‘u — L,&“U| < 3(4|F|)—n(n—1)

holds iff ﬂ‘,‘ - 5(-1,,' + Lgag‘u.
PROOF. Let 1 < u,j,v <n be such that ﬂg,- - ﬂg_]’u + Lgat’“ %
Bt-1,j + Lia,». Then one can prove
(13) Be-1,i = Bew + Leas,o| > 4(4|F|)"""V
with the same argument as (7). Using (10), (11) and (13) we get

1Be-1,5 — Bty + Le@e,w| > |Be-1,5 — Bt + Leae,o| — |Be,u — Br,ul—
wz-l,j - Et——l,jl s L‘|a,,v - &t,vl > 3(4|Fl)—n(n-1) ;
On the other hand, if 84 = Bi-1,j + Ly, then

|Be-1,5 — Bt,u + Le@u,o| < |Beju — Beyul + |Be=1, — Be=1,j|+
Lglag'v - (-!t'vl < (4|F|)_"(n_l) 3

Lemma 2 is proved.

4. The algorithm

Let F(zy,...,2k) € Z[z1,...,zi]. If F # 0, then there exist integers
Ty, ..., Tj such that if G(yy,...,yx) = F(y1,Toy1 +y2,- .., Tky1 +yx) then
G(y1,---,¥k) € Z[y,...,yx] and G(1,0,...,0) # O (see Borevich and
Shafarevich [1, Ch.II.1.]). Hence we may assume without loss of generality
that F(1,0,...,0) = fn # 0. We shall describe now an algorithm which
establishes n linear forms such that
(14) F(z1,...,zk) = fa H(Il + a2,z + -+ + Qg jTk),

i=1

if such a factorization exists.

If F satisfies (14) then ay; (t=2,...,k; i = 1,...,n) are the roots of
F(z,e,_,). Unfortunately, establishing the a's we do not know yet which

are the corresponding coefficients of the linear factors. We find them by
using the roots of auxiliary polynomials.
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Input. A homogenous form F(z,,...,z}) € Z[z,,...,z;] of degree n
with F(1,0,...,0) = f, # 0, and Lj,...,L; defined in Lemma 1.

Output. The factorization (14) of F.

Step 1. (Initialization) ¢ « 3(4|F|)~™"~1 ¢ « 2. Compute ap-
proximations &; ; € Q(i) to the roots of F(z,¢,) satisfying (10). Take
P2, «— @z, j =1,...,n; goto Step 3.

Step 2. Compute approximations aq j,f:; € Q(i) j,h =1,...,n to
the roots of F(z,e,,) and F(z,1,Ls,...,L,,0,...,0) satisfying (10) and
(11) respectively.

for s «— 1 to n do begin

for j « s to n do begin
for h « s to n do begin
If [Bt—1,s — Bt,j + Li@y,n| < € then goto (i)
end {h loop terminates}
If j = n then goto Step 4
end {j loop terminates}
Exchange 3, ; with 3, , and &, with a,, (i)
end {s loop terminates}

Step 3. If t = k then output: the factorization of F'; stop
else t «— t + 1; goto Step 2

Step 4. Output: F is not decomposable; stop.

Theorem 2. Let F(z;,...,zx) be a decomposable form of degree n

with F(1,0,...,0) # 0. Then the above algorithm gives the factorization
of F.

PROOF. First let F' be a decomposable form. We show that the in-
dices can be chosen so that

(15) 5:,: =a2,+ L3C'3,a E et o Ltat,a

holds for s = 1,...,n. This is true for ¢ = 2. Asssume that it holds for
t. Let 1 < s < n and assume that (15) with ¢ 4+ 1 instead of ¢ is proved
already for all u < s, i.e

Bt+1,u = a2, + Laazu + -+ Legr1at41,u = Ptu + Leg10t41,u -

If F is decomposable, then there exist j,h > s such that

(16) Bt,s + Lis10e41,8 = Brs1,;
holds. By Lemma 2 this is true iff
(17) 1Bt,s + Lig1@e41,0 — Brsr,j| < €.

Therefore, if (17) fails in Step 2 for all 3, » > s then F' is not decomposable.
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If we have found j,h > s with (17), then (16) holds by Lemma 2.
There exist 1 S j], jz S n with ﬁt+l,j = ﬁt,j; + LH‘I“H‘I.J': because F is
decomposable. Using (16) we get

Bt,s — Brjy = Liv1(@e41,5, — @e41,n) .

By Lemma 1 this is possible only if a¢41,j, = ai41,0 and so Bij, = Bus-
Hence exchanging f;41,; and B;41 , as well as a4 4 and a4 , we get (15)
for s and finally for ¢ + 1, too. Hence we proved that if F' is decomposable

then the Algorithm gives its factorization, otherwise it decides that F is
not decomposable.

Remark. It is clear from the proof of Theorem 2 that instead of the
L's we can take any other integers for which (8) holds.

5. Complexity analysis

Theorem 3. Let F(zy,...,zr) € Q[z1,...,7s] be a homogenous form
of degree n with F(1,0,...,0) # 0. Then the Algorithm stops in at most

O(k*n® log® (2ku[F|)1uglog(2Ln|F|)) additions, subtractions, multiplica-
tions and divisions on rational numbers.

PROOF. To compute approximations to the roots of the polynomials
F(z,e,_,) satisfying (10) for fixed 2 < t < k one needs at most O(kn® log?
(2kn|F}|)loglog(2kn|F|)) arithmetical operations using the algorithm of
Schénhage [11]. Hence we get all the &, ; t =2,...,k; j=1,...,nin at
most O(k%n3 log?(2kn|F|) loglog(2kn|F|)) operations.

A simple calculation gives the upper bound (4|F ])'“3 for the height of
the polynomial F(z,1, Ls,...,L,0,...,0), t =3,...,k. Using the above
mentioned algorithm of Schonhage approxlmatlons to the roots of these
polynomials satisfying (11) can be computed in at most O(tn® log?(4|F|)
log log(4|F'|)) operations.

For a fixed 3 <t < k to find the corresponding subscripts j, h,s with

(17) one needs at most O(n?) operations. Combining these estimates we
get the statement of Theorem 3.
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