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On second order linear divisibility sequences
over algebraic number fields

By K. GYORY! (Debrecen) and A. PETHO!'? (Debrecen)
To the memory of B. Barna, K. Buzdsi, S. Buzdsi and M. Erdély:

1. Introduction

Let R be an integral domain which is finitely generated over Z. (Lin-
ear) divisibility sequences over R are recurrence sequences {uj }feo, Uh €
R, h =0,1,... (that is sequences in R satisfying linear homogeneous re-
currence relations with constant coefficients) with the property that when-
ever hlk, then us|ug in R. This notation was introduced by M. HALL [4]
who described all second order divisibility sequences over Z, as well as the
third order divisibility sequences over Z having irreducible characteristic
polynomials.

Let d > 1 be an integer. The recurrence sequence {u}32, is called d-
(linear) divisibility sequence if up|upqg in R for h =0,1,2,... . For R=17Z,
SOLOMON [6] characterized all 2-divisibility sequences. BEZIVIN, PETHO
and VAN DER POORTEN (1] proved for any R, that if {us}3%, is d-divisible
for an integer d > 1 then there is a recurrence sequence {ui;}32, of the

form
TR 0?"13:‘
s H(ai—ﬂi)

with some integer k > 0 over R such that ual|ip in R for h =0,1,2,... .
Thus they confirmed an old conjecture of WARD [7]. For further references
concerning divisibility sequences, we refer to [1].

Although the result of Bézivin et al. is very general, it is not straight-
forward to deduce from it a complet list of d-divisibility sequences over a
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given ring. The aim of this paper is to give a more explicit description of
second order d-divisibility recurrence sequences over the ring of integers
Z i of an algebraic number field K (cf. Theorem 1). In fact, we shall give
a criterion for second order non-degenerate recurrence sequences over Zg
to be d-divisible for some integer d > 1. Further, we show (cf. Corollary
2) that a second order non-degenerate recurrence sequence over Zy is a
divisibility sequence if and only if it is 2-divisible (Corollary 2). Finally,
using Theorem 1 we give explicitly all second order recurrence sequences
over Z (cf. Theorem 2) which are d-divisible for some d > 1.

2. Results
To state our results we need some notations. Let K be an algebraic

number field and denote by Zjy its ring of integers. Let the sequence
{un}$2, be defined by the initial terms ug,u; and by the recursion

(1) Un42 = Aupy) + Bu,, n20,

where ug,u;,A,B € Zg and u? + u? # 0, B # 0. Denote by a and J the
zeros of the polynomial 22 — Az — B. Then we have (see e.g. [5])

(2) U, =aa"-08" for n=0,1,2,...

or

(3) ty=(an+0)a® for n=01,2,...,

according as @ # f or a = f. Further, we have a = ELQ__:B_ﬁ and

win@),anda:wandb:uo in (3).
a— o

The sequence {uj }je, is called degenerate if a/f is a root of unity,
and non-degenerate otherwise.

b=

Theorem 1. Let {un}32, be a second order non-degenerate recur-
rence sequence over Zx with the parameters specified above. (A) If there
exists an integer d > 1 and an ng such that up,|unq in Zg for all n > ng,
then b%~! = a%!. (B) Conversely, if b%~! = a%~! for some integer d > 1,
then {uy} is d-divisible.

In other words, under the assumptions of Theorem 1 {u} is d-divisible
if and only if b4~ = @41,

If the assumptions in (A) of Theorem 1 hold for d = 2 then we get
that b = a. Further, in this case ug =0, b=a = au_l
divisible. Conversely, if ug = 0 then b = a. Thus we have the following

and hence {u} is
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Corollary 1. Let {u,}3%, be as in Theorem 1. (A) Assume that there
exists an ng such that u,|uz, in Zy for all n > ng. Then ug = 0 and

a"-—ﬁ“
a-f

(B) Conversely, if ug = 0 then {up} is divisible.
This implies the following

for n=0,1,2,...-

Corollary 2. Let {up}3>, be a second order non-degenerate recur-
rence sequence over Zx. {un} is a divisibility sequence if and only if it is

2-divisible.

The degree of K(a) over Q is at most 2k, where k denotes the degree of
K over Q. Hence, in Theorem 1, there exist only finitely many possibilities
for a/b (if b # 0) and b/a (if a # 0) which are easily: computable if K is
given. We shall carry out this explicitly only for K =Q. Using Theorem
1, we shall list in Theorem 2 below all second order (degenerate and non-

degenerate) recurrence sequences over Z which are d-divisible for some
g

Theorem 2. Let {un}32, be a second order recurrence sequence over
Z with the parameters ug,u;,A,B € Z, u? + u? # 0, B # 0 specified
above, and let d > 1 be an integer. The sequence {uy} is d-divisible if and

only if there exist e, f € Z such that at least one of the following cases
holds:

(1) wuo =0, d arbitrary;
(11) A =0, d odd;
(1ii) =0, u;|ugBY?, d even;

(iv) unA = 2uy, A2 + 4B =0, d arbitrary;
(v) upd =2u;,d odd;
(vi) A=2, B=-2e,¢e#0,d=1 (mod 4);
(vii) A =2 B=-2¢e#0,u,|B*u,, for all integers r,t,ry with
1<r<3,dr=4t+1rp,t20,0<rg<3andd# 1 (mod 4);
(viii) A=2e,B=—(e24+f2),f#0,e# xf, uy = up(ex f) and
d=1 (mod 4);
(ix) A=—f,B=—f2,f760,d‘=-l(mod3);
(x) A=-—f,B=—f2% f#0,u,|f*"u,, for all integersr,t,ro with
1Ep<2 dr_3t+ro,t>0 0<ro<2andd#1 (mod 3);
() A=2e—f,B=—(—ef+f2), e £0, f£0,e# £f, ug #0,
uy/up € {e — f,e}, d =1 (mod 3);
(xil) A=3f, B=-3f% f#0,d=1 (mod 6);
(xiii) A=3f, B=-3f% f#0,u,|B*u,, for all integers r,t,rg
with
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1<r<5,dr=6t+ry,t20,0<ro<5andd# 1 (mod 6);
(xiv) A=2e—f,B=—(e*—ef+ f%),e# xf, 2f, up #0,
uy/ug € {e+ f,e—2f} andd =1 (mod 6).

It follows from Theorem 2 (see also its proof) that in cases (ii) - (iv),
(vi), (vii), (ix), (x), (xii) and (xiii), the sequence {u;} is degenerate. In
case (i), it is easy to give an example both for the degenerate and for the
non-degenerate case. In the other cases {u,} is non-degenerate. More
precisely, it is easy to deduce from Theorems 1, 2 and Corollary 2 that
there exist only the following five types of second order non-degenerate
d-divisibility sequences {uy} over Z;

{un} is 2-divisible; then it is divisible (case (i));

{un} is 2-non-divisible but 3-divisible; then it is (2k + 1)-divisible for
every k €N (case (v));

{un} is 2-non-divisible but 4-divisible; then it is (3k + 1)-divisible for
every k €N (case (xi));

{un} is 3-non-divisible but 5 divisible; then it is (4k + 1)-divisible for
every k €N (case (viii));

{un} is 3 and 4 -non-divisible but 7 -divisible; then it is (6k + 1)-
divisible for every k €N (case (xiv)).

3. Proofs

PROOF of Theorem 1. First we prove assertion (A). Let {up} be a
second order non-degenerate recurrence sequence over Zg, satisfying the
assumptions made in (A) of Theorem 1. Using the notations of Section 2
we have a # 3, hence u, satisfies (2).

An easy computation shows that

a(d—l)n oy ﬁ(d-l)n

an_ﬂn

ad® — ﬂd

(4) (aa"=bp") T =E = aa® 459" +(a=b)(ap)"

for all integers n,d > 1. Put L = K(a), and denote by Z; the ring of
integers of L. It is clear that

al™ — Bjn -
————— € Zk for every integer j > 1.
a™ — ﬁﬂ

Hence, if u,|ug, then, by (4),

a(d—l)n an ﬂ(d—l)n
aﬂ = ﬂﬂ

(a—b)(af)" € Zk
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and
(5) un | (a = b)(aB)*(a¥~V" — gl4-1m) in Z;.

Further, we note that a — b = ug, whence a — b € Zg.

For a non-zero ideal A of Z, let P(A) denote the maximum of the
rational primes lying below the prime ideal divisors of .A. Further, we put
P(0) = P(1) = 1. By a result of MAHLER [3], P(u,) is not bounded as
n — oo. Hence there exists a number n; such that P(u,) > max{P(a — b),
P(ap)} for infinitely many n > n;. Let n > max{ng,n;} with this prop-
erty, and let p,, be a prime ideal divisor of u,, with P(p,) = P(u,). Then
it follows from (5) that

(6) pn a8 _ gld=In 35 7,
Put
Ai = (a=B)1(b 1l — gi-18U4=D") fori=1,...,d.
Then A; € Z|, for each i. Further, b(a — 8) € Z. It is easy to see that
(1)  (a—=p)"18¢=)ngi=2(ga™ — bB™) — b(a — B)Ai—1 = —a™A;
for each integer ¢ with 2 <1 < d. We prove now that
(8) paldi in Zg

for each integer 1 with 1 < i < d. By (6), (8) is true for i = 1. Assume
that it is true for 1 — 1 > 0. Then by the definition of p,, and by the
induction hypothesis, p, divides the element on the left-hand side of (7).
Since p, { a™ in Z [, it must divide A; in Z, on the right-hand side of (7),
and (8) is proved.

Setting 1 = d in (8) we get

o l(a=B)* 10" -a*') in Zi.

But P(p,) can be arbitrarily large, hence b4~! = a?~! which proves the
assertion in (A).

Conversely, suppose now that b4~! = a?~! for some integer d > 1.
Then b = (4—1a with some (d — 1)-th root of unity (4—; from L. Then, by
(2), we have

an=0(@%" — 41 ") = a((a)4 — (Ca=1B")4) = nvn for all n20,
(9) where
g o { (@)1 +(a™)42((4-18")+...+(C4-18™)4"! for n21,
g 1 forn=0.
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In (9), v, is an algebraic integer. On the other hand, if u, # 0 then,
by (9), v, belongs to K, hence v, € Zg. Thus {u} is d-divisible which
proves the assertion of (B).

PROOF of Theorem 2. Let now {us}5>, be a second order recurrence
sequence over Z with initial terms ug,u; € Z, u2 + u? # 0, which satisfies
(1) with some A, B € Z, B # 0, and suppose that it is d-divisible for some
integer d > 1. Define a, 3, a,b as in Section 2.

Assume first that {u,} is degenerate. Then a = (f, where ( is a root
of unity belonging to K =Q(«a). The degree of K over Q is at most two,
hence ¢ € £ = {£1, %1, +p, £p?} where p = %E (see e.g. [2]). We
shall distinguish several cases.

Case 1. If a = (3, then a € Z and u, may be written in the form
(3). Further, A2 +4B =0 and a = A/2. If a = 0 then ugA = 2u; which
corresponds to case (iv). This sequence is indeed d-divisible for every d >
1. If 5 = 0 then uo = 0 which corresponds to case (i). Then the sequence
is d-divisible. Finally, suppose that a and b are different from zero. Then
a(and + b) and a(an + b) are rational integers and u, |ugn implies that
a(an+b) |a(and +b). From this it follows that a(an + b) | ab(d — 1) which
is impossible if n is large enough.

Case 2. Let now @« = —f3. Then A = 0 and B = 2. We have
Upp = ugPB?" and ugpyy = u;f*" forn =0,1,... . If disodd then dn =n
(mod 2), hence, indeed, u,|ug4, and (ii) follows. While if d is even and n is
odd then u; A™~! |upB%™ must hold. Then {u} is indeed d-divisible and
{un} is described in case (iii).

Case 8. Let a = +i1. Then a+ f = B(1 +1) = A implies that
o= -‘-;i—(l Fi). Since f is an algebraic integer, we have A = 2¢ and
B = —afi = —2¢%. Let n be an arbitrary non-negative integer, and put
n = 4v + r with non-negative integers v,r such that 0 < r < 4. Then, by

(2),
up = aa” —bf" = f"(a(£i)" - b) =

10
(10) = e"(1 F1)"(a(xi)" — b) = (—1)"B*’u,.
If d =1 (mod 4) then dn = n = r (mod 4) and, by (10), u,|ugn, i.e. {ui}
is indeed d-divisible, and this is case (vi). If d # 1 (mod 4) then we put
dr = 4t + ro with non-negative integers t,rg such that 0 < ro < 4. Then
dn = 4vd + 4t + ro. By (10), in this case {us} is d-divisible if and only if

- f >
R M o g

But for fixed r,rg and ¢, (11) holds for all v > 0 if and only if it holds
for v = 0. Finally, (11) trivially holds for r = 0, hence we get case (vii).
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Case 4. Next let /B = p’ where j =1 or 2. Then « and f belong to
the ring of integers of the Eulerian number field Q(p). In this field, {1, p} is
an integral basis, hence we can write a = e+(—1)’ fp and 8 = e+(-1)’ fp?
with some e, f € Z. Then, by a = Bp’, we get A= —f, B = —f*% and
B=pf,7 =12 Putn=3v+r with integers v,r such that v > 0,
0 <r < 3. Then, by (2) and (p’)® = 1, we have

Un = B(ap™ — b) = f3 - fT pI"(ap" — b) = £,

From now on we can proceed in a similar way as in the cases corresponding
to a/f = %1, and we get (ix) and (x) in the theorem.

Case 5. Let now a/f = —p’ where j = 1 or 2. Then we get in
the same way as in the preceding case that A = 3f, B = —3f% and
B = /=3 f(—p)’ with some rational integer f # 0. Let n = 6v + r with
rational integers v,r such that v > 0,0 < r < 6. Then (—p’)® =1 and (2)
imply again that

un = B"(a(—p")" — b) = (V=3f)*"u, = B*u,.

Now we can proceed as in the case above a/f = +i, and we get cases (xii),
(xiii) in our theorem.

In the sequel we suppose that {us}32, is non-degenerate. Since {us}
is a second order recurrence sequence, we have ab # 0. By Theorem 1,
{un} is d-divisible if and only if b = (a with some (d — 1)-th root of unity
(. Then ¢ €Q(a), hence ¢ € £. Further, b = (a is equivalent to

(12) (uy — upf)( = uy — ypa.

It suffices to determine all second order non-degenerate recurrence
sequences {u} in Z having the property (12). We shall distinguish again
several cases.

Case 6. Let first ( = 1. Then (12) implies ug = 0 and {ua} is
d-divisible for every d > 1. This corresponds to (i) in the theorem.

Case 7. ( = —1. This appears only if d is odd. Then we get from
(12) that

2u; = yo(a+ B) = ugA

because a and f are the zeros of 22 — Az — B. This is the case (v) in the
theorem.
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Case 8. ( = %i. This is possible only if d = 1 (mod 4).
Then K =Q(a) =Q(?) is the Gaussian number field. Hence a = e+if

and § = e — if with suitable ¢, f €Z\{0} for which e # +f.
For ( =i and ( = —1, (12) 1mphes u; = ug(e — f) and u; = ug(e + f),
respectwely Furthermore, we have in both cases A = 2¢ and B =

—(e? + f?) which corresponds to case (viii) of the theorem.

Case 9. { = p’ where j =1 or 2. Then d=1 (mod 3) and K =
Q(a) = Q (p) is the Eulerian number field. Thus @ = e+ fp and f =
e + fp? with suitable integers e, f € Z\{0} for which e # £ f, 2f. Hence
A=2e— fand B= —(e? —ef + f?). Using again (12), we get

_[ule-p) i¢=p
| uoe it =g,

which corresponds to (xi) in the theorem.

Case 10. ( = —p’ where j = 1 or 2. Then d = 1 (mod 6) and
K =Q(a) =Q(p). Taking again a = e + fp and B = e + fp? with some
e, f € Z\{0}, we get for e, f the restrictions e # £f, 2f. A and B have
the same form as in case 9. Finally, using (12) we get

_ Jule+f) if¢=—p
ug(e —2f) if ( =—p?,

which corresponds to case (xiv) in the theorem. This completes the proof
of Theorem 2.
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