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On the geometry of generalized metric spaces II.
Spaces of isotropic curvature

By HIDEO IZUMI (Yokosuka) and MAMORU YOSHIDA (Fujisawa)

§0. Introduction

Let M be an n-dimensional differentiable manifold and T'(M) its tan-
gent bundle. We consider the bundle My which does not contain zero
vector of T(M), that is, My := T(M) — {0}. A generalized metric space
M, (or a generalized Finsler space) is a pair (M, ¢;j(z,y)), where ¢;;(z,y)
1s a symmetric tensor satisfying the following conditions:

(2) gij(z,y) is positively homogeneous of degree zero in y*, (b) g;;
1s positive definite, (¢) g*;; := %62F2/0yi0yj is non-degenerate, where
F? = giy'y’.

In the previous paper [1] we introduced three types of connections in
M, (see §1): CT(N) = (F;'s,C;*), RO(N) = (F;',0) and BI(G) =
(G;,0) and the curvature tensors are (Rx‘;k, Pn'jk, Sh'jx) for CT(N),
(Kp'jk, Fn'jk,0) for RT(N) and (Hy'jx,Gr’jk,0) for BT(G) respectively.

Let xpijx be one of the above seven curvature tensors of M,,. For the
plane 7(X,Y) spanned by two independent vectors X* and Y* in M, the
scalar

(0.1) e,y 7(X,Y)) = rrije XY XY */(gnjgix — gnrgij) X "Y' XIYF

is called the sectional curvature for 7(X,Y) with respect to xpijx. If the
sectional curvature « is independent of any X' and Y*, then the space
M, (n > 2) is called to be isotropic with respect to Kk, or of K-isotropic
curvature. We assume that the scalar x does not vanish.

The purpose of the present paper is to investigate the properties on
generalized metric spaces of R-, K- and H-isotropic curvature.

We shall show that a generalized metric space of K'-isotropic curvature
is a Riemannian space of constant curvature (§3) and a generalized metric
space of H-isotropic curvature is a Finsler space of constant curvature (§4).
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It seems that R-isotropic curvature on a generalized metric space has not
yet been sufficiently investigated.

The terminology and notations are the same as in the paper [1] unless
otherwise stated.

The authors wish to express their sincere gratltude to Professor T.
SAKAGUCH]I for his valuable advices.

§1. Preliminaries

In this section we shall quote some quantities and relations from the
paper [1] for later use.

Let M, be a generalized metric space with tensor g;;(z,y) mentioned
in §0. As usual we raise or lower indices by means of g;;.

Three types of connection forms defined on M, are given as follows:

i = Fjiude® + Cjixby*,  6y* = dy* + N*¥,dz™ for CT(N),
2

. = Fj'xdz* for RT(N) and w; = G,'xdz* for BI(G),

. 1. .
ik = Eg’h(djghk + dignj — dng;r), di := Ok — N", 0y, Oy := 0/0z*,

. 1 .
= 6/3yh, k= 59 h(ghk(j) + Ghj(k) — g,’k(h)), gik(h) := OnGjk,

G;'k = 0GY, G';:=0,G', G':= ignh(y,'ajath — OnF?),

g*lh * _61

and we have Ni; = F]-"kyj.
The covariant derivatives of a vector v*(z,y) are defined as follows:

(a) vl o=dpvt + F;*v?  for CT(N) and RT(N),
(1.1) (b)) o'y =" +Ch'xv" for CT(N),
(c) tri//k = dyvt + Gplro®, di =0k — thah for BT'(G).

Here the following relations are satisfied:

(a) Co'x = Cj'a =0, (b) Cjx:=C,;% = gijny's

(1.2)
(c) Cok =Cj0 =0, (d) gijxy = Cijx + Cjix,
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where the index 0 denotes transvection by y;
(1.3) vi//k = v'./;c + Dy'ro® - Phkvi(h)»
where Dy := Gp'y — Fi'x and PPy := G* — Nhp = Doty = Dty
(14)  (a) P°% =P’ =0, (b) Po'x =2P%, (c)P'o=P%=0,
where P;' := N*j(;y — Fj'x and
(1.5) (a) D;% = —(gix + Cix)P*j, (b) Cjrso = —2D;%.

The connection CT(N) is a metrical C(;nnection, that is, g;;/x = 0,
9ii/ 0 =0

It is known if C;; = 0 or Cj;x = 0, then the generalized metric space

reduces to a Finsler space or a Riemannian space respectively.
The so-called Ricci formulae for a vector v'(z, y) are given as follows:

ey (D V= Ry’ jio® — R jxv' oy = Kn'jeo™ = R* juo’ (),
(6) o'y — Ik = Ha'jeot = H v’ ny,

where —j|k means the interchange of indices j, k in the foregoing term and

subtraction, for instance AjmBi™ — jlk = AjmBi™« — Axm B:™;. Here
the curvature tensors Ry’ jx, K4’ i, Hp' ;i are defined as follows:

(a) Ri'jk = Ki'jk + Cp'mR™ jx,
(1.7) (b) I\’hljk = dthlj+FhmJ‘Fm’k—j|k,
(¢) Hp'jk :=diGh'j + Gp™;Gm'x — jlk,

and the torsion tensors R';; and H';i are defined by
(1.8) (a) Rijk:= kN — jlk, (b) H'jx := diG*j — jlk.
In this case, the following relations are valid:

(a) R'jr = Ro'jx = Ko'jx, H'jx = Ho'jx,
(0) Hr'jk = Kn'jk + En'jky Ex'jk :=Da'j + Da™ jDm' i~
— P™Gh'jm — jlk, Ghljx = 3Gr'j,
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(¢) H'je = R'ji + E'jx,
E'jx:=E'jk. = P'jjx + P™;Dn'v — jlk,
(d) H'y = Ry + E',
H'p:=H'ox, Rk == R'ok, E' 1= E'os,
(€) Eo®jx =0, E'y = —P'yjg — P'u P™y,
(f) H'juny = Hu'je, H'aiyy — H' jooy = 3H' ji.

(1.9)

From the Bianchi identities, we shall list the following;:

(@) Ry'jk + Rljlk = Ch'nR™ ji + Rljlk,  (b) Kn'jx + hljlk =0,

1.10 . .
(1.10) (c) Hp'jk + h|j|k = 0, and consequently (d) E4'jx + h|jlk =0,

where +h|j|k means the cyclic permutations of indices h, j, k in the fore-
going term and summation, for instance Apm B;™k + h|jlk = ApmB; ™k +
AjmBir™n + Akm Br™;.

Moreover we have the useful expressions
(1.11) Ryijk — Rjkni = Bhijk,
. . 1 m
(1.12)  Kpijx — Kjrni = E(Thijk = Ghitm)R™ jk + Gik(m) B ni),
1 m
(1.13)  Huige — Hjkni = 5(Thisk = griem)R™ k6 + k(m) B ni)+
+Erijk — Ejini,
where

2Bhijk = Thijk + (Chim — Cinm)R™ jk — (Cjkm — Cijm )R™ b4y
Thijk = ghjm)R™ ik + girm) B w5 — 7|k,

and they satisfy the following relations:

(1.14) 2Bhijk. + hl]lk‘ —_—(3Chim + Cihm)ijk—
— (Cjkm — Ckjm )R™ni + hljlk,
(1.15) Thijx + hlg|k :2gh,-(m)ijk+h|j|k'.

Lastly, we shall prove the following result:
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Lemma 1.1. If a tensor Ay;ji of degree 4 satisfies

(1.16) Apijk + Ajink + Apkji + Ajrni = 0,
(1.17) Arijk = —Anikjs

(1.18) Apijk — Ajkni = Unijk,
(1.19) Anijk + h|jlk = Vaijk,

where Uy;jx and Viiji are certain tensors, then Ay;jx is expressible as
(1.20) 6Anijk = Unijk + Ujink — Ukinj — Unik; + 2Vhije-

PRrROOF. Interchanging indices h and j in (1.18), we get
(1.18)y Ajink — Ankji = Ujink-

If we take the sum of the three equations (1.16), (1.18) and (1.18)’
and use (1.17), we obtain

(1.21) 2(Anijk — Ajikn) = Unijk + Ujink.

The cyclic change h — k — j — h of indices in (1.21) gives
(1.21) 2(Akinj — Anijk) = Ukins + Uik

Subtracting (1.21)’ from (1.21), we have
(1.22)  2(2Anisk — Ajikn — Aking) = Unijk + Ujink — Uking — Upirj-

Making use of (1.19) on the left hand side of (1.22), we can see (1.20).
Q.ED.

§2. A generalized metric space of R-isotropic curvature

First we consider a generalised metric space of R-isotropic curvature.
In this case, from the relation corresponding to (0.1) we have

(2.1) [Rhije — R(z,y)(gnigir — gnrgij I XY XIYF = 0.
When we put

Thigk = Rrijk — R(z,y)(gn;9ix — gnkgij),
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provided equation (2.1) holds for any X* and Y*, then the following equa-
tion must hold:

(2.2) Thijk + Tjikk + Thiji + Tjkni = 0.

On the other hand, the tensor r4;jx obeys the following relations using
the properties of Rp;j:

(2.3) Thijk = —Thikjs
(2.4) Thijk — Tjkhi = Rhijk — Rjknhi = Bhijk,
(2.5) Thijk + R|jlk = Raijk + h|jlk = Crim R™ jx + R|j|k.

Consequently, r4;x satisfies the conditions for A;j% in Lemma 1.1,
where Upijk = Bhijk and Vhije = ChimR™ jk + h|jlk. Therefore rp;ji has
the form

6rhijk = Bhijk + Bjink — Brinj — Bhrikj + 2(CrimR™ jk + hlj|k)

= 3Bhijk — (Bhijk — 2Chim R™ ji + R|j|k).

Making use of the definition of By, and (1.14) in the above equation,
we obtain

67hijk =[(Citm + 2Ckim)R™hj + (Chjm + 2Cjnm)R™ ix — j|k]+

2.6
(26) + 2(Chim — Citm)R™ jk = (Cjkm — Crjm)R™ pi.

Consequently, we have the following

Theorem 2.1. A generalized metric space of R-isotropic curvature is
characterized by (2.6).

Making use of (2.6), we shall prove the following two propositions.

Proposition 2.2. In a generalized metric space of R-isotropic curva-
ture, if the relation

(2.7) Rk = R(yshi — yeh}) (ki = 6, — y'ys/F?)
is satisfied, then the following equation holds:
(2.8) Ryijk = R(gnjgik — ghrgij)-

PROOF. If we substitute (2.7) into (2.6), then direct calculations show
Thijk = 0. Hence (2.8) is obtained. Q.E.D.
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Proposition 2.3. In a generalized metric space of R-isotropic curva-
ture, if the symmetric tensor C;j is proportional to h;j, namely

(2.9) Cij = Ahi; (A # -1),
then the following equation holds:
(2.10) R'jx = R(y;8; — yx8}).

PROOF. Transvecting (1.7) (a) by y; and using (1.2) (b), we get
Kp®;x = —(ghm + Chm)R™ jk, transvection of which by y* gives

(2.11) Khj = (ghm + Chm)R™ j,

where Ky := K3%;o. Similarly, if we transvect (1.10) (b) by y;y*, then we
obtain

(2.12) Knj = K.

On the other hand, transvecting (2.6) by y* and using (1.2) (a), (b),
we get

670ij8 =(Cikm + 2Ckim )R j — (Cijm + 2C;im ) R™ 1~
(2.13) — (Cjkm — Crjm)R™ i = 2(Cim R™ ji+
+CjmR™ ki + CimR™;j).
Further transvection of (2.13) by y’ yields, with-(1.2) (¢) in mind,
(2.14) 2(Rit — F?Rhit) = Cl'Rpni — C™ Roni,

where R;;x := Ryiok.
Moreover, if we use the hypothesis (2.9), then from (2.11) we have

(2.15) th = I\’h]‘/(l + /\).

Consequently, substituting (2.15) and (2.9) into (2.14) and noting
(2.12), we get

(2.16) Ryj = F?Rhy,;.
Using (2.16), we can easily see that
(2.17) (Cikm +2Ckim)R™ j—(Cijm+2C5im)R™ k- —(Cjkm —Crjm)R™; = 0,

because of Cijx = Ciji.
On the other hand, we see

Khojk = —(ghm + Com)R™ jk = —(1 + A)Ronjk,
which yields
(218) Cimijk+i|j|k: _/\Kiojk/(1+/\)+i|j|k:0-
Therefore, if we apply (2.17) and (2.18) to the right hand side of

(2.13), then we can conclude ro;;x = 0, namely Ro,jx = R(y;9ik — Yx9ij)
which is equivalent to (2.10). Q.E.D.
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Propositions 2.2 and 2.3 yield the following

Theorem 2.4. If C;; = Ah;j (A # —1), the generalized metric space
of R-isotropic curvature 1s characterized by

Ri'jk = R(gn;6; — gnib}).

§3. A generalized metric space of K-isotropic curvature

Secondly, we consider a generalized metric space of K-isotropic cur-
vature. In this case, if we put

krijk := Knijx — K(gn;jgik — 9rk9ij),
then we must have
(3.1) khijk + kjink + knkji + kjrni = 0.
It is easily shown that the tensor kp;;x satisfies the following relations:
(3-2) krijk = —knikj,
(3.3) krijk — kjkni = Kpijk — Kjkni
1
= §(Thijk — Ghi(m)R™ jk + Gjk(m)R™ hi),
(3.4) knijk + hljlk = Kpiji + R|j|k = 0.

Consequently, kp,;x satisfies the conditions for Ap;j; in Lemma 1.1,
where Upijk = 3(Thijk — Ghi(m)R™ jk + 9jk(m)R™ ni) and Viiji = 0. There-
fore kpijr has the form

1 . m m
6knijk =§(Thijk + Tjink — Thinj — Thikj — Ghi(m)BR™ jk — Gji(m)R" niet

+ gkitm)R™ b5 + Ghitm) R ki + Gjk(m)R™ bi + ghk(m)R™ ji—

= Ghj(m)R™ ki — Grj(m)R™ hi)-

Making use of the definition of Tj,jx and (1.15) in the above equation,
we obtain

(3.5) 6knijk = (29nj(m)R™ ik + Gik(m)R™ hj — 71k) — 20hi(m)R™ ji-

From this equation, we shall derive the following interesting result.
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Theorem 3.1. A generalized metric space of non vanishing K-isotro-
pic curvature is a Riemannian space of constant curvature.

PROOF. Interchanging indices h and j in (3.3), we get

1 m m
(3.3) kjink — knkji = E(Tjihk — 5itm) B hke + ghk(m) R™ 5i)-

Summing the three equations (3.1), (3.3) and (3.3)’, we have

(3.6) 2(knijk + Kjink) :%(Thijk + Tjink — Ghi(m)R™ jk + 9jk(m) R™ pi—
= 95im)R™ hk + gri(m)R™ ji)-
If we consider +h|j|k in (3.6) and use (3.4) and (1.15), we obtain
(3.7) gri(m)R™ ki + hljlk = 0.
Transvecting (3.7) by y* and making use of (1.2) (b), we have
(3.8) CimR™ki + gjk(m)R™i + CkmR™ ;i = 0.
Further transvection of (3.8) by y* yields, with (1.2) (c) in mind,
(3.9) CimR™; = 0.
Transvecting (3.5) by y*y’ and using (3.9), we obtain
(3.10) koiok = 0,
which gives, by the definition of ky; k>
(3.11) Rix = F*Khj.
Substituting (3.11) into (3.9), we have
(3.12) F!KCjx =0.

Since we assume K # 0, we must have Cj; = 0. From this result,
(3.8) and (3.11), we obtain g;x;y = 0. This means that the space in con-
sideration 1s a Riemannian space. Q.E.D.

The above proof also yields the following

Corollary 3.2. A Finsler space of K-isotropic curvature is a Rieman-
nian space of constant curvature.
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§4. A generalized metric space of H-isotropic curvature

Thirdly, we consider a generalized metric space of H-isotropic curva-
ture. In this case, if we put

hnije := Huije — H(gnjgix — gnkgij),
then we must have
(4.1) hhrijk + Rjink + hakji + hjkni = 0.

On the other hand, the tensor hy;;; obeys the following relations:

(4.2) Rhijk = —hnikj,
(4.3) Rhijk — hjkni = Hpije — Hjkni
1 m m
= §(Thijk — Ghiem)R™ ik + Gjk(m)R™ ki) + Enijk — Ejkni,
(4.4) hhijk + h|jlk = Hpije + h|jlk = 0.

Consequently, hp;;x satisfies the conditions for Ap;jx in Lemma 1.1, where
Uniji = 3(Thijk — ghiem)R™jk + gjkem)R™hi) + Enijk — Ejkni,
Vhijk = 0. Therefore hp;jx has the form

1 m

6hhijk :‘2‘(Thijk + Tjink — Thing — Thikj — Gricm)B™ jk — Gjim) R pi+

+ Gkitm)yR™ hj + Ghiem)BR™ kj + 9ik(m) R hi + ghi(m)R™ ji—

— gnj(m)R™ ki — 9kj(m)R™ i) + Enijk — Ejkni + Ejink — Enkji—

— Einj + Enjri — Epikj + Eijni-
Making use of the definition of Th;;&, (1.15) and (1.10) (d), we obtain

g IR bl
(4.5) 6hnijk =(29nj(m)B™ ik + Gik(m)R™ hj — 71k) — 2gni(m)R™ jk+
+ 3Enijk — Ejkni + Exjni — Enkji + Enjri.

Now we put E;; := Egjo, Ehj := Ehojo, and we first show two lemmas
in a generalized metric space.

Lemma 4.1. In a generalized metric space, we have
(4.6) Ehj = _jh-

PROOF. Transvecting (1.10) (d) by y'y* and using (1.9) (e), we have
(4.6). Q.E.D.



On the geometry of generalized metric spaces II. 195

Lemma 4.2. In a generalized metric space, we have
(4.7) Ehj =Ehj+C),iEij.
PROOF. Using (1.5), i.e.
(4.8) Chjjo = —2Dnoj = 2(gi; + Cij) P’y
and (1.9) (e), we get
Enj = Dhojjo — P'aDioj = —(gij + Cij)P'hjo — CijjoP'n — Dig; P'h
= —(gi; + Ci;)P'hjo + Dimoj P h = —(gi; + Ci;)(P'hjo + P'a P™3)
= (gij + C,‘j)Eih = E;p + C,']'Eih = Ej; + Ch,'Eij.
Q.ED.

Next, we consider a generalized metric space of H-isotropic curvature.

Lemma 4.3. In a generalized metric space of H-isotropic curvature,
we have

(4.9) Ej,' = Ej,' + C]‘mRm,'.

PROOF. Interchanging indices h and j in (4.3), we get
1
(4.3)" hjink —hniji = 5(Tjihk —G5i(m)yR" hk+ghim) RB™ ji)+ Ejink — Enkji-
Adding (4.1), (4.3) and (4.3)’, we obtain

1
2(hhijk — hjikn) 2-2-(Thijk + Tjink = Ghi(m)R™ jx+

(4.10) + Gik(m) R hi — G5iem) R bk + grrm)R™ ji)+
+ Enijk — Ejkni + Ejink — Eniji-
Considering +k|j|k in (4.10) and noticing (4.4) and (1.10) (d), we have
(4.11) guk(m)B™i; + (Ejkni + Engji) + hljlk = 0.
Transvecting (4.11) by y*, we have
(4.12) CemB™i; + CimR™ ik — gjk(m)R™i + Ejroi + Ejori + Erojit

' + Ekjoi + Eojki + Eokji = 0.

Moreover, transvecting (4.12) by y* and using (1.9) (e), we have (4.9).
. Q.E.D.
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Lemma 4.4. In a generalized metric space of H-isotropic curvature,
we have

(4.13) Hy = F2Hh}.
PROOF. Transvecting (4.5) by y*y?, we see that
6hoiok = 6(Hix — F*Hh;g) = 2CxmR™; — 3CimR™k + 3Eit — 2E4; — Exi-

Lemmas 4.1 and 4.3 tell us that the right hand side of the above equation
vanishes and then (4.13) holds. Q.E.D.

Lemma 4.5. A generalized metric space of H-isotropic curvature is a
Finsler space.

PROOF. From Lemmas 4.2 and 4.3, we see
CniE'j = —ChiR;.
Hence, using (1.9) (d) and Lemma 4.4, we get
0= Chi(R'; + E';) = ChiH'; = F*HChilk, = F*HCy;,
from which we have Cj; = 0. Therefore the space in consideration reduces
to a Finsler space. Q.E.D.

Lemma 4.6. In a generalized metric space of H-isotropic curvature,
we have

(@) Ev'jk = Pa'jx + Pu™jPn's — jlk, (b) E'jr =0, E'x =0,
(c) Ex'jo = P'jjo,  En'ox = —Pr'ijo-

PROOF. From Lemma 4.5, the space in consideration is a Finsler
space. Then, noticing (4.8) we have P'y = 0, which means that D;*; =
P;*y + P jxy = P;'x. Hence (4.14) (a) follows from (1.9) (b) and the other
from Py'y = 2P = 0. Q.E.D.

(4.14)

Now we ready to prove the following

Theorem 4.7. A generalized metric space of H-isotropic curvature is
a Finsler space of constant curvature.

PROOF. Transvecting (4.5) by y* and using Lemma 4.6, we have
6hoijk = —2Ciim R" k + 2Cikm R™ j + 3Eijx — Ejroi + Exjoi — Exji + Eji.
Noting Ry = H'x + F2Hh} and Lemma 4.6, we obtain
(4.15) 6hoijx = 6(Hijx—H(y;9ik—yrgij)) =0, or Hijk = H(yjé;;—ykéj-).

By virtue of a well-known theorem ([4], p.133), a Finsler space which
satisfies (4.15) is a Finsler space of constant curvature, that is,

hhijk = Hiijx — H(ghjgik — grrgi;) = 0.
Q.E.D.
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Remark. The right hand side of (4.5) reduces to 2(Pyi;/x + HChijyx)

—j|k after some calculation using (4.15). This is consistent with the well-
known identity in a Finsler space (e.g. [2], (2.7) (b))

Hpije + Hingk = 2(Prije — Privy;) — 2Chim H;™ k.
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