On the geometry of generalized metric spaces II. Spaces of isotropic curvature

By HIDEO IZUMI (Yokosuka) and MAMORU YOSHIDA (Fujisawa)

§0. Introduction

Let M be an n-dimensional differentiable manifold and $T(M)$ its tangent bundle. We consider the bundle M_{T} which does not contain zero vector of $T(M)$, that is, $M_{T}:=T(M)-\{0\}$. A generalized metric space M_{n} (or a generalized Finsler space) is a pair $\left(M_{T}, g_{i j}(x, y)\right)$, where $g_{i j}(x, y)$ is a symmetric tensor satisfying the following conditions:
(a) $g_{i j}(x, y)$ is positively homogeneous of degree zero in y^{i}, (b) $g_{i j}$ is positive definite, (c) $g^{*}{ }_{i j}:=\frac{1}{2} \partial^{2} F^{2} / \partial y^{i} \partial y^{j}$ is non-degenerate, where $F^{2}:=g_{i j} y^{i} y^{j}$.

In the previous paper [1] we introduced three types of connections in $M_{n}($ see $\S 1): C \Gamma(N)=\left(F_{j}{ }^{i}{ }_{k}, C_{j}{ }^{i}{ }_{k}\right), R \Gamma(N)=\left(F_{j}{ }^{i}{ }_{k}, 0\right)$ and $B \Gamma(G)=$ $\left(G_{j}{ }^{i}{ }_{k}, 0\right)$ and the curvature tensors are $\left(R_{h}{ }^{i}{ }_{j k}, P_{h}{ }^{i}{ }_{j k}, S_{h}{ }^{i}{ }_{j k}\right.$) for $C \Gamma(N)$, $\left(K_{h}{ }^{i}{ }_{j k}, F_{h}{ }^{i}{ }_{j k}, 0\right)$ for $R \Gamma(N)$ and $\left(H_{h}{ }^{i}{ }_{j k}, G_{h}{ }^{i}{ }_{j k}, 0\right)$ for $B \Gamma(G)$ respectively.

Let $\kappa_{h i j k}$ be one of the above seven curvature tensors of M_{n}. For the plane $\pi(X, Y)$ spanned by two independent vectors X^{i} and Y^{i} in M_{n}, the scalar

$$
\begin{equation*}
\kappa(x, y, \pi(X, Y)):=\kappa_{h i j k} X^{h} Y^{i} X^{j} Y^{k} /\left(g_{h j} g_{i k}-g_{h k} g_{i j}\right) X^{h} Y^{i} X^{j} Y^{k} \tag{0.1}
\end{equation*}
$$

is called the sectional curvature for $\pi(X, Y)$ with respect to $\kappa_{h i j k}$. If the sectional curvature κ is independent of any X^{i} and Y^{i}, then the space $M_{n}(n>2)$ is called to be isotropic with respect to $\kappa_{h i j k}$, or of κ-isotropic curvature. We assume that the scalar κ does not vanish.

The purpose of the present paper is to investigate the properties on generalized metric spaces of R-, K - and H-isotropic curvature.

We shall show that a generalized metric space of K-isotropic curvature is a Riemannian space of constant curvature (§3) and a generalized metric space of H-isotropic curvature is a Finsler space of constant curvature ($\S 4$).

It seems that R-isotropic curvature on a generalized metric space has not yet been sufficiently investigated.

The terminology and notations are the same as in the paper [1] unless otherwise stated.

The authors wish to express their sincere gratitude to Professor T. Sakaguchi for his valuable advices.

§1. Preliminaries

In this section we shall quote some quantities and relations from the paper [1] for later use.

Let M_{n} be a generalized metric space with tensor $g_{i j}(x, y)$ mentioned in $\S 0$. As usual we raise or lower indices by means of $g_{i j}$.

Three types of connection forms defined on M_{n} are given as follows:

$$
\begin{aligned}
& \omega_{j}^{i}=F_{j}{ }_{k} d x^{k}+C_{j}{ }^{i} \delta y^{k}, \quad \delta y^{k}:=d y^{k}+N^{k}{ }_{m} d x^{m} \quad \text { for } C \Gamma(N), \\
& \omega_{j}^{i}=F_{j}{ }^{i} d x^{k} \quad \text { for } R \Gamma(N) \quad \text { and } \quad \omega_{j}^{i}=G_{j}{ }^{i}{ }_{k} d x^{k} \quad \text { for } B \Gamma(G),
\end{aligned}
$$

where

$$
\begin{aligned}
& F_{j}^{i}{ }_{k}:=\frac{1}{2} g^{i h}\left(d_{j} g_{h k}+d_{k} g_{h j}-d_{h} g_{j k}\right), d_{k}:=\partial_{k}-N_{k}^{h} \dot{\partial}_{h}, \quad \partial_{k}:=\partial / \partial x^{k}, \\
& \dot{\partial}_{h}:=\partial / \partial y^{h}, \quad C_{j}{ }^{i}{ }_{k}:=\frac{1}{2} g^{i h}\left(g_{h k(j)}+g_{h j(k)}-g_{j k(h)}\right), \quad g_{j k(h)}:=\dot{\partial}_{h} g_{j k}, \\
& G_{j}{ }^{i}{ }_{k}:=\dot{\partial}_{k} G^{i}{ }_{j}, \quad G_{j}^{i}:=\dot{\partial}_{j} G^{i}, \quad G^{i}:=\frac{1}{4} g^{* i h}\left(y^{j} \partial_{j} \dot{\partial}_{h} F^{2}-\partial_{h} F^{2}\right) \\
& g^{* i h} g^{*}{ }_{h j}=\delta_{j}^{i},
\end{aligned}
$$

and we have $N^{i}{ }_{k}=F_{j}{ }^{i}{ }_{k} y^{j}$.
The covariant derivatives of a vector $v^{i}(x, y)$ are defined as follows:
(a) $v^{i}{ }_{k}:=d_{k} v^{i}+F_{j}{ }^{i}{ }_{k} v^{j} \quad$ for $C \Gamma(N)$ and $R \Gamma(N)$,
(b) $v^{i} /(k):=v^{i}{ }_{(k)}+C_{h}{ }^{i}{ }_{k} v^{h} \quad$ for $C \Gamma(N)$,
(c) $v^{i} / / k:=\bar{d}_{k} v^{i}+G_{h}{ }^{i}{ }_{k} v^{h}, \bar{d}_{k}:=\partial_{k}-G^{h}{ }_{k} \dot{\partial}_{h} \quad$ for $B \Gamma(G)$.

Here the following relations are satisfied:
(a) $C_{0}{ }^{i}{ }_{k}=C_{j}{ }^{i}{ }_{0}=0$,
(b) $C_{j k}:=C_{j}{ }^{0}=g_{i j(k)} y^{i}$,
(c) $C_{0 k}=C_{j 0}=0$,
(d) $g_{i j(k)}=C_{i j k}+C_{j i k}$,
where the index 0 denotes transvection by y;

$$
\begin{equation*}
v^{i} / / k=v^{i}{ }_{/ k}+D_{h}{ }^{i}{ }_{k} v^{h}-P^{h}{ }_{k} v^{i}{ }_{(h)}, \tag{1.3}
\end{equation*}
$$

where $D_{h}{ }^{i}{ }_{k}:=G_{h}{ }^{i}{ }_{k}-F_{h}{ }^{i}{ }_{k}$ and $P^{h}{ }_{k}:=G^{h}{ }_{k}-N^{h}{ }_{k}=D_{0}{ }^{h}{ }_{k}=D_{k}{ }^{h}{ }_{0}$;
(a) $P_{j}{ }^{0}{ }_{k}=P_{j}{ }^{i}{ }_{0}=0$,
(b) $P_{0}{ }^{i}{ }_{k}=2 P^{i}{ }_{k}$,
(c) $P^{i}{ }_{0}=P^{0}{ }_{k}=0$,
where $P_{j}{ }^{i}{ }_{k}:=N^{i}{ }_{j(k)}-F_{j}{ }^{i}{ }_{k}$ and
(a) $D_{j}{ }^{0}{ }_{k}=-\left(g_{i k}+C_{i k}\right) P^{i}{ }_{j}$,
(b) $C_{j k / 0}=-2 D_{j}{ }^{0}{ }_{k}$.

The connection $C \Gamma(N)$ is a metrical connection, that is, $g_{i j / k}=0$, $g_{i j /(k)}=0$.

It is known if $C_{i j}=0$ or $C_{i j k}=0$, then the generalized metric space reduces to a Finsler space or a Riemannian space respectively.

The so-called Ricci formulae for a vector $v^{i}(x, y)$ are given as follows:
(a) $v^{i}{ }_{j} / \mathrm{lk}-j \mid k=R_{h}{ }^{i}{ }_{j k} v^{h}-R^{h}{ }_{j k} v^{i} /(h)=K_{h}{ }^{i}{ }_{j k} v^{h}-R^{h}{ }_{j k} v^{i}{ }_{(h)}$,
(b) $v^{i} / / j / / k-j \mid k=H_{h}{ }^{i}{ }_{j k} v^{h}-H^{h}{ }_{j k} v^{i}{ }_{(h)}$,
where $-j \mid k$ means the interchange of indices j, k in the foregoing term and subtraction, for instance $A_{j m} B_{i}{ }^{m}{ }_{k}-j \mid k=A_{j m} B_{i}{ }^{m}{ }_{k}-A_{k m} B_{i}{ }^{m}{ }_{j}$. Here the curvature tensors $R_{h}{ }^{i}{ }_{j k}, K_{h}{ }^{i}{ }_{j k}, H_{h}{ }^{i}{ }_{j k}$ are defined as follows:

$$
\begin{align*}
& \text { (a) } R_{h}{ }^{i}{ }_{j k}:=K_{h}{ }^{i}{ }_{j k}+C_{h}{ }^{i}{ }_{m} R^{m}{ }_{j k}, \\
& \text { (b) } K_{h}{ }^{i}{ }_{j k}:=d_{k} F_{h}{ }^{i}{ }_{j}+F_{h}{ }^{m}{ }_{j} F_{m}{ }^{i}{ }_{k}-j \mid k, \tag{1.7}\\
& \text { (c) } H_{h}{ }^{i}{ }_{j k}:=\bar{d}_{k} G_{h}{ }^{i}{ }_{j}+G_{h}{ }^{m}{ }_{j} G_{m}{ }^{i}{ }_{k}-j \mid k,
\end{align*}
$$

and the torsion tensors $R^{i}{ }_{j k}$ and $H^{i}{ }_{j k}$ are defined by
(a) $R^{i}{ }_{j k}:=d_{k} N^{i}{ }_{j}-j \mid k$,
(b) $H^{i}{ }_{j k}:=\bar{d}_{k} G^{i}{ }_{j}-j \mid k$.

In this case, the following relations are valid:
(a) $R^{i}{ }_{j k}=R_{0}{ }^{i}{ }_{j k}=K_{0}{ }^{i}{ }_{j k}, H^{i}{ }_{j k}=H_{0}{ }^{i}{ }_{j k}$,
(b) $H_{h}{ }^{i}{ }_{j k}=K_{h}{ }^{i}{ }_{j k}+E_{h}{ }^{i}{ }_{j k}, E_{h}{ }^{i}{ }_{j k}:=D_{h}{ }^{i}{ }_{j / k}+D_{h}{ }^{m}{ }_{j} D_{m}{ }^{i}{ }_{k}-$ $-P^{m}{ }_{k} G_{h}{ }^{i}{ }_{j m}-j \mid k, G_{h}{ }^{i}{ }_{j k}:=\dot{\partial}_{k} G_{h}{ }^{i}{ }_{j}$,

$$
\begin{aligned}
& \text { (c) } H^{i}{ }_{j k}=R^{i}{ }_{j k}+E^{i}{ }_{j k}, \\
& E^{i}{ }_{j k}:=E_{0}{ }^{i}{ }_{j k}=P^{i}{ }_{j / k}+P^{m}{ }_{j} D_{m}{ }^{i}{ }_{k}-j \mid k, \\
& \text { (d) } H^{i}{ }_{k}=R^{i}{ }_{k}+E^{i}{ }_{k}, \\
& H^{i}{ }_{k}:=H^{i}{ }_{0 k}, R^{i}{ }_{k}:=R^{i}{ }_{0 k}, E^{i}{ }_{k}:=E^{i}{ }_{0 k}, \\
& \text { (e) } E_{0}{ }^{0}{ }_{j k}=0, E^{i}{ }_{k}=-P^{i}{ }_{k / 0}-P^{i}{ }_{m} P^{m}{ }_{k}, \\
& \text { (f) } H^{i}{ }_{j k(h)}=H_{h}{ }^{i}{ }_{j k}, H^{i}{ }_{k(j)}-H^{i}{ }_{j(k)}=3 H^{i}{ }_{j k} .
\end{aligned}
$$

From the Bianchi identities, we shall list the following:
(a) $R_{h}{ }^{i}{ }_{j k}+h|j| k=C_{h}{ }^{i}{ }_{m} R^{m}{ }_{j k}+h|j| k$,
(b) $K_{h}{ }^{i}{ }_{j k}+h|j| k=0$,
(c) $H_{h}{ }^{i}{ }_{j k}+h|j| k=0$, and consequently
(d) $E_{h}{ }^{i}{ }_{j k}+h|j| k=0$,
where $+h|j| k$ means the cyclic permutations of indices h, j, k in the foregoing term and summation, for instance $A_{h m} B_{j}{ }^{m}{ }_{k}+h|j| k=A_{h m} B_{j}{ }^{m}{ }_{k}+$ $A_{j m} B_{k}{ }^{m}{ }_{h}+A_{k m} B_{h}{ }^{m}{ }_{j}$.

Moreover we have the useful expressions

$$
\begin{gather*}
R_{h i j k}-R_{j k h i}=B_{h i j k}, \tag{1.11}\\
K_{h i j k}-K_{j k h i}=\frac{1}{2}\left(T_{h i j k}-g_{h i(m)} R^{m}{ }_{j k}+g_{j k(m)} R_{h i}^{m}\right) \\
H_{h i j k}-H_{j k h i}=\frac{1}{2}\left(T_{h i j k}-g_{h i(m)} R^{m}{ }_{j k}+g_{j k(m)} R_{h i}^{m}\right)+ \\
+E_{h i j k}-E_{j k h i},
\end{gather*}
$$

where

$$
\begin{aligned}
2 B_{h i j k} & :=T_{h i j k}+\left(C_{h i m}-C_{i h m}\right) R_{j k}^{m}-\left(C_{j k m}-C_{k j m}\right) R_{h i}^{m}, \\
T_{h i j k} & :=g_{h j(m)} R_{i k}^{m}+g_{i k(m)} R_{h j}^{m}-j \mid k,
\end{aligned}
$$

and they satisfy the following relations:

$$
\begin{align*}
2 B_{h i j k}+h|j| k= & \left(3 C_{h i m}+C_{i h m}\right) R^{m}{ }_{j k}- \tag{1.14}\\
& -\left(C_{j k m}-C_{k j m}\right) R^{m}{ }_{h i}+h|j| k, \\
T_{h i j k}+h|j| k= & 2 g_{h i(m)} R_{j k}^{m}+h|j| k . \tag{1.15}
\end{align*}
$$

Lastly, we shall prove the following result:

Lemma 1.1. If a tensor $A_{h i j k}$ of degree 4 satisfies

$$
\begin{gather*}
A_{h i j k}+A_{j i h k}+A_{h k j i}+A_{j k h i}=0, \tag{1.16}\\
A_{h i j k}=-A_{h i k j} \tag{1.17}\\
A_{h i j k}-A_{j k h i}=U_{h i j k} \tag{1.18}\\
A_{h i j k}+h|j| k=V_{h i j k} \tag{1.19}
\end{gather*}
$$

where $U_{h i j k}$ and $V_{h i j k}$ are certain tensors, then $A_{h i j k}$ is expressible as

$$
\begin{equation*}
6 A_{h i j k}=U_{h i j k}+U_{j i h k}-U_{k i h j}-U_{h i k j}+2 V_{h i j k} . \tag{1.20}
\end{equation*}
$$

Proof. Interchanging indices h and j in (1.18), we get

$$
\begin{equation*}
A_{j i h k}-A_{h k j i}=U_{j i h k} \tag{1.18}
\end{equation*}
$$

If we take the sum of the three equations (1.16), (1.18) and (1.18)' and use (1.17), we obtain

$$
\begin{equation*}
2\left(A_{h i j k}-A_{j i k h}\right)=U_{h i j k}+U_{j i h k} . \tag{1.21}
\end{equation*}
$$

The cyclic change $h \rightarrow k \rightarrow j \rightarrow h$ of indices in (1.21) gives

$$
\begin{equation*}
2\left(A_{k i h j}-A_{h i j k}\right)=U_{k i h j}+U_{h i k j} \tag{1.21}
\end{equation*}
$$

Subtracting (1.21)' from (1.21), we have

$$
\begin{equation*}
2\left(2 A_{h i j k}-A_{j i k h}-A_{k i h j}\right)=U_{h i j k}+U_{j i h k}-U_{k i h j}-U_{h i k j} \tag{1.22}
\end{equation*}
$$

Making use of (1.19) on the left hand side of (1.22), we can see (1.20). Q.E.D.

§2. A generalized metric space of R-isotropic curvature

First we consider a generalised metric space of R-isotropic curvature. In this case, from the relation corresponding to (0.1) we have

$$
\begin{equation*}
\left[R_{h i j k}-R(x, y)\left(g_{h j} g_{i k}-g_{h k} g_{i j}\right)\right] X^{h} Y^{i} X^{j} Y^{k}=0 \tag{2.1}
\end{equation*}
$$

When we put

$$
r_{h i j k}:=R_{h i j k}-R(x, y)\left(g_{h j} g_{i k}-g_{h k} g_{i j}\right),
$$

provided equation (2.1) holds for any X^{i} and Y^{i}, then the following equation must hold:

$$
\begin{equation*}
r_{h i j k}+r_{j i h k}+r_{h k j i}+r_{j k h i}=0 \tag{2.2}
\end{equation*}
$$

On the other hand, the tensor $r_{h i j k}$ obeys the following relations using the properties of $R_{h i j k}$:

$$
\begin{gather*}
r_{h i j k}=-r_{h i k j} \tag{2.3}\\
r_{h i j k}-r_{j k h i}=R_{h i j k}-R_{j k h i}=B_{h i j k} \tag{2.4}\\
r_{h i j k}+h|j| k=R_{h i j k}+h|j| k=C_{h i m} R_{j k}^{m}+h|j| k \tag{2.5}
\end{gather*}
$$

Consequently, $r_{h i j k}$ satisfies the conditions for $A_{h i j k}$ in Lemma 1.1, where $U_{h i j k}=B_{h i j k}$ and $V_{h i j k}=C_{h i m} R_{j k}^{m}+h|j| k$. Therefore $r_{h i j k}$ has the form

$$
\begin{aligned}
6 r_{h i j k} & =B_{h i j k}+B_{j i h k}-B_{k i h j}-B_{h i k j}+2\left(C_{h i m} R_{j k}^{m}+h|j| k\right) \\
& =3 B_{h i j k}-\left(B_{h i j k}-2 C_{h i m} R_{j k}^{m}+h|j| k\right)
\end{aligned}
$$

Making use of the definition of $B_{h i j k}$ and (1.14) in the above equation, we obtain

$$
\begin{align*}
6 r_{h i j k}= & {\left[\left(C_{i k m}+2 C_{k i m}\right) R_{h j}^{m}+\left(C_{h j m}+2 C_{j h m}\right) R_{i k}^{m}-j \mid k\right]+} \tag{2.6}\\
& +2\left(C_{h i m}-C_{i h m}\right) R_{j k}^{m}-\left(C_{j k m}-C_{k j m}\right) R_{h i}^{m} .
\end{align*}
$$

Consequently, we have the following
Theorem 2.1. A generalized metric space of R-isotropic curvature is characterized by (2.6).

Making use of (2.6), we shall prove the following two propositions.
Proposition 2.2. In a generalized metric space of R-isotropic curvature, if the relation

$$
\begin{equation*}
R_{j k}^{i}=R\left(y_{j} h_{k}^{i}-y_{k} h_{j}^{i}\right) \quad\left(h_{k}^{i}:=\delta_{k}^{i}-y^{i} y_{k} / F^{2}\right) \tag{2.7}
\end{equation*}
$$

is satisfied, then the following equation holds:

$$
\begin{equation*}
R_{h i j k}=R\left(g_{h j} g_{i k}-g_{h k} g_{i j}\right) \tag{2.8}
\end{equation*}
$$

Proof. If we substitute (2.7) into (2.6), then direct calculations show $r_{h i j k}=0$. Hence (2.8) is obtained.
Q.E.D.

Proposition 2.3. In a generalized metric space of R-isotropic curvature, if the symmetric tensor $C_{i j}$ is proportional to $h_{i j}$, namely

$$
\begin{equation*}
C_{i j}=\lambda h_{i j} \quad(\lambda \neq-1) \tag{2.9}
\end{equation*}
$$

then the following equation holds:

$$
\begin{equation*}
R_{j k}^{i}=R\left(y_{j} \delta_{k}^{i}-y_{k} \delta_{j}^{i}\right) \tag{2.10}
\end{equation*}
$$

Proof. Transvecting (1.7) (a) by y_{i} and using (1.2) (b), we get $K_{h}{ }^{0}{ }_{j k}=-\left(g_{h m}+C_{h m}\right) R^{m}{ }_{j k}$, transvection of which by y^{k} gives

$$
\begin{equation*}
K_{h j}=\left(g_{h m}+C_{h m}\right) R_{j}^{m} \tag{2.11}
\end{equation*}
$$

where $K_{h j}:=K_{h}{ }^{0}{ }_{j 0}$. Similarly, if we transvect (1.10) (b) by $y_{i} y^{k}$, then we obtain

$$
\begin{equation*}
K_{h j}=K_{j h} \tag{2.12}
\end{equation*}
$$

On the other hand, transvecting (2.6) by y^{h} and using (1.2) (a), (b), we get

$$
\begin{align*}
6 r_{0 i j k}= & \left(C_{i k m}+2 C_{k i m}\right) R_{j}^{m}-\left(C_{i j m}+2 C_{j i m}\right) R_{k}^{m}- \\
& -\left(C_{j k m}-C_{k j m}\right) R_{i}^{m}-2\left(C_{i m} R_{j k}^{m}+\right. \tag{2.13}\\
& \left.+C_{j m} R_{k i}^{m}+C_{k m} R_{i j}^{m}\right) .
\end{align*}
$$

Further transvection of (2.13) by y^{j} yields, with-(1.2) (c) in mind,

$$
\begin{equation*}
2\left(R_{i k}-F^{2} R h_{i k}\right)=C_{k}^{m} R_{m i}-C_{i}^{m} R_{m k} \tag{2.14}
\end{equation*}
$$

where $R_{i k}:=R_{0 i 0 k}$.
Moreover, if we use the hypothesis (2.9), then from (2.11) we have

$$
\begin{equation*}
R_{h j}=K_{h j} /(1+\lambda) \tag{2.15}
\end{equation*}
$$

Consequently, substituting (2.15) and (2.9) into (2.14) and noting (2.12), we get

$$
\begin{equation*}
R_{h j}=F^{2} R h_{h j} \tag{2.16}
\end{equation*}
$$

Using (2.16), we can easily see that
(2.17) $\left(C_{i k m}+2 C_{k i m}\right) R_{j}^{m}-\left(C_{i j m}+2 C_{j i m}\right) R_{k}^{m}-\left(C_{j k m}-C_{k j m}\right) R_{i}^{m}=0$, because of $C_{i j k}=C_{k j i}$.

On the other hand, we see

$$
K_{h 0 j k}=-\left(g_{h m}+C_{h m}\right) R_{j k}^{m}=-(1+\lambda) R_{0 h j k}
$$

which yields

$$
\begin{equation*}
C_{i m} R^{m}{ }_{j k}+i|j| k=-\lambda K_{i 0 j k} /(1+\lambda)+i|j| k=0 \tag{2.18}
\end{equation*}
$$

Therefore, if we apply (2.17) and (2.18) to the right hand side of (2.13), then we can conclude $r_{0 i j k}=0$, namely $R_{0 i j k}=R\left(y_{j} g_{i k}-y_{k} g_{i j}\right)$, which is equivalent to (2.10).
Q.E.D.

Propositions 2.2 and 2.3 yield the following
Theorem 2.4. If $C_{i j}=\lambda h_{i j}(\lambda \neq-1)$, the generalized metric space of R-isotropic curvature is characterized by

$$
R_{h}{ }^{i}{ }_{j k}=R\left(g_{h} \delta_{k}^{i}-g_{h k} \delta_{j}^{i}\right) .
$$

§3. A generalized metric space of K-isotropic curvature

Secondly, we consider a generalized metric space of K-isotropic curvature. In this case, if we put

$$
k_{h i j k}:=K_{h i j k}-K\left(g_{h j} g_{i k}-g_{h k} g_{i j}\right),
$$

then we must have

$$
\begin{equation*}
k_{h i j k}+k_{j i h k}+k_{h k j i}+k_{j k h i}=0 . \tag{3.1}
\end{equation*}
$$

It is easily shown that the tensor $k_{h i j k}$ satisfies the following relations:

$$
\begin{gather*}
k_{h i j k}=-k_{h i k j}, \tag{3.2}\\
k_{h i j k}-k_{j k h i}=K_{h i j k}-K_{j k h i} \tag{3.3}\\
=\frac{1}{2}\left(T_{h i j k}-g_{h i(m)} R^{m}{ }_{j k}+g_{j k(m)} R^{m}{ }_{h i}\right), \\
k_{h i j k}+h|j| k=K_{h i j k}+h|j| k=0 . \tag{3.4}
\end{gather*}
$$

Consequently, $k_{h i j k}$ satisfies the conditions for $A_{h i j k}$ in Lemma 1.1, where $U_{h i j k}=\frac{1}{2}\left(T_{h i j k}-g_{h i(m)} R^{m}{ }_{j k}+g_{j k(m)} R^{m}{ }_{h i}\right)$ and $V_{h i j k}=0$. Therefore $k_{h i j k}$ has the form

$$
\begin{aligned}
6 k_{h i j k}= & \frac{1}{2}\left(T_{h i j k}+T_{j i h k}-T_{k i h j}-T_{h i k j}-g_{h i(m)} R_{j k}^{m}-g_{j i(m)} R^{m}{ }_{h k}+\right. \\
& +g_{k i(m)} R^{m}{ }_{h j}+g_{h i(m)} R_{k j}^{m}+g_{j k(m)} R_{h i}^{m}+g_{h k(m)} R_{j i}^{m}- \\
& \left.-g_{h j(m)} R_{k i}^{m}-g_{k j(m)} R_{k i}^{m}\right) .
\end{aligned}
$$

Making use of the definition of $T_{h i j k}$ and (1.15) in the above equation, we obtain

$$
\begin{equation*}
6 k_{h i j k}=\left(2 g_{h j(m)} R^{m}{ }_{i k}+g_{i k(m)} R^{m}{ }_{h j}-j \mid k\right)-2 g_{h i(m)} R_{j k}^{m} . \tag{3.5}
\end{equation*}
$$

From this equation, we shall derive the following interesting result.

Theorem 3.1. A generalized metric space of non vanishing K-isotropic curvature is a Riemannian space of constant curvature.

Proof. Interchanging indices h and j in (3.3), we get

$$
\begin{equation*}
k_{j i h k}-k_{h k j i}=\frac{1}{2}\left(T_{j i h k}-g_{j i(m)} R_{h k}^{m}+g_{h k(m)} R_{j i}^{m}\right) . \tag{3.3}
\end{equation*}
$$

Summing the three equations (3.1), (3.3) and (3.3)', we have

$$
\begin{align*}
2\left(k_{h i j k}+k_{j i h k}\right)= & \frac{1}{2}\left(T_{h i j k}+T_{j i h k}-g_{h i(m)} R_{j k}^{m}+g_{j k(m)} R_{h i}^{m}-\right. \tag{3.6}\\
& \left.-g_{j i(m)} R_{h k}^{m}+g_{h k(m)} R_{j i}^{m}\right) .
\end{align*}
$$

If we consider $+h|j| k$ in (3.6) and use (3.4) and (1.15), we obtain

$$
\begin{equation*}
g_{h j(m)} R_{k i}^{m}+h|j| k=0 . \tag{3.7}
\end{equation*}
$$

Transvecting (3.7) by y^{h} and making use of (1.2) (b), we have

$$
\begin{equation*}
C_{j m} R_{k i}^{m}+g_{j k(m)} R_{i}^{m}+C_{k m} R_{j i}^{m}=0 . \tag{3.8}
\end{equation*}
$$

Further transvection of (3.8) by y^{k} yields, with (1.2) (c) in mind,

$$
\begin{equation*}
C_{j m} R_{i}^{m}=0 . \tag{3.9}
\end{equation*}
$$

Transvecting (3.5) by $y^{h} y^{j}$ and using (3.9), we obtain

$$
\begin{equation*}
k_{0 i 0 k}=0 \tag{3.10}
\end{equation*}
$$

which gives, by the definition of $k_{h i j k}$,

$$
\begin{equation*}
R_{i k}=F^{2} K h_{i k} \tag{3.11}
\end{equation*}
$$

Substituting (3.11) into (3.9), we have

$$
\begin{equation*}
F^{2} K C_{j k}=0 \tag{3.12}
\end{equation*}
$$

Since we assume $K \neq 0$, we must have $C_{j k}=0$. From this result, (3.8) and (3.11), we obtain $g_{j k(i)}=0$. This means that the space in consideration is a Riemannian space.
Q.E.D.

The above proof also yields the following
Corollary 3.2. A Finsler space of K-isotropic curvature is a Riemannian space of constant curvature.

§4. A generalized metric space of H -isotropic curvature

Thirdly, we consider a generalized metric space of H-isotropic curvature. In this case, if we put

$$
h_{h i j k}:=H_{h i j k}-H\left(g_{h j} g_{i k}-g_{h k} g_{i j}\right),
$$

then we must have

$$
\begin{equation*}
h_{h i j k}+h_{j i h k}+h_{h k j i}+h_{j k h i}=0 . \tag{4.1}
\end{equation*}
$$

On the other hand, the tensor $h_{h i j k}$ obeys the following relations:

$$
\begin{align*}
h_{h i j k} & =-h_{h i k j}, \tag{4.2}\\
h_{h i j k}-h_{j k h i} & =H_{h i j k}-H_{j k h i} \tag{4.3}\\
=\frac{1}{2}\left(T_{h i j k}-g_{h i(m)} R^{m}{ }_{j k}\right. & \left.+g_{j k(m)} R^{m}{ }_{h i}\right)+E_{h i j k}-E_{j k h i}, \\
h_{h i j k}+h|j| k & =H_{h i j k}+h|j| k=0 . \tag{4.4}
\end{align*}
$$

Consequently, $h_{h i j k}$ satisfies the conditions for $A_{h i j k}$ in Lemma 1.1, where $U_{h i j k}=\frac{1}{2}\left(T_{h i j k}-g_{h i(m)} R^{m}{ }_{j k}+g_{j k(m)} R^{m}{ }_{h i}\right)+E_{h i j k}-E_{j k h i}$, $V_{h i j k}=0$. Therefore $h_{h i j k}$ has the form

$$
\begin{aligned}
6 h_{h i j k}= & \frac{1}{2}\left(T_{h i j k}+T_{j i h k}-T_{k i h j}-T_{h i k j}-g_{h i(m)} R_{j k}^{m}-g_{j i(m)} R_{h k}^{m}+\right. \\
& +g_{k i(m)} R_{h j}^{m}+g_{h i(m)} R_{k j}^{m}+g_{j k(m)} R_{h i}^{m}+g_{h k(m)} R^{m}{ }_{j i}- \\
& \left.-g_{h j(m)} R^{m}{ }_{k i}-g_{k j(m)} R_{h i}^{m}\right)+E_{h i j k}-E_{j k h i}+E_{j i h k}-E_{h k j i}- \\
& -E_{k i h j}+E_{h j k i}-E_{h i k j}+E_{k j h i} .
\end{aligned}
$$

Making use of the definition of $T_{h i j k}$, (1.15) and (1.10) (d), we obtain

$$
\begin{align*}
6 h_{h i j k}= & \left(2 g_{h j(m)} R_{i k}^{m}+g_{i k(m)} R_{h j}^{m}-j \mid k\right)-2 g_{h i(m)} R_{j k}^{m}+ \tag{4.5}\\
& +3 E_{h i j k}-E_{j k h i}+E_{k j h i}-E_{h k j i}+E_{h j k i} .
\end{align*}
$$

Now we put $E_{i k}:=E_{0 i 0 k}, \bar{E}_{h j}:=E_{h 0 j 0}$, and we first show two lemmas in a generalized metric space.

Lemma 4.1. In a generalized metric space, we have

$$
\begin{equation*}
\bar{E}_{h j}=\bar{E}_{j h} . \tag{4.6}
\end{equation*}
$$

Proof. Transvecting (1.10) (d) by $y^{i} y^{k}$ and using (1.9) (e), we have (4.6).

Lemma 4.2. In a generalized metric space, we have

$$
\begin{equation*}
\bar{E}_{h j}=E_{h j}+C_{h i} E_{j}^{i} . \tag{4.7}
\end{equation*}
$$

Proof. Using (1.5), i.e.

$$
\begin{equation*}
C_{h j / 0}=-2 D_{h 0 j}=2\left(g_{i j}+C_{i j}\right) P_{h}^{i} \tag{4.8}
\end{equation*}
$$

and (1.9) (e), we get

$$
\begin{aligned}
\bar{E}_{h j} & =D_{h 0 j / 0}-P_{h}^{i} D_{i 0 j}=-\left(g_{i j}+C_{i j}\right) P_{h / 0}^{i}-C_{i j / 0} P_{h}^{i}-D_{i 0 j} P_{h}^{i} \\
& =-\left(g_{i j}+C_{i j}\right) P_{h / 0}^{i}+D_{m 0 j} P_{h}^{m}=-\left(g_{i j}+C_{i j}\right)\left(P_{h / 0}^{i}+P_{m}^{i} P_{h}^{m}\right) \\
& =\left(g_{i j}+C_{i j}\right) E_{h}^{i}=E_{j h}+C_{i j} E_{h}^{i}=E_{h j}+C_{h i} E_{j}^{i} .
\end{aligned}
$$

Q.E.D.

Next, we consider a generalized metric space of H-isotropic curvature.
Lemma 4.3. In a generalized metric space of H-isotropic curvature, we have

$$
\begin{equation*}
E_{j i}=\bar{E}_{j i}+C_{j m} R_{i}^{m} \tag{4.9}
\end{equation*}
$$

Proof. Interchanging indices h and j in (4.3), we get

$$
\begin{equation*}
h_{j i h k}-h_{h k j i}=\frac{1}{2}\left(T_{j i h k}-g_{j i(m)} R_{h k}^{m}+g_{h k(m .)} R_{j i}^{m}\right)+E_{j i h k}-E_{h k j i} \tag{4.3}
\end{equation*}
$$

Adding (4.1), (4.3) and (4.3)', we obtain

$$
\begin{align*}
2\left(h_{h i j k}-h_{j i k h}\right)= & \frac{1}{2}\left(T_{h i j k}+T_{j i h k}-g_{h i(m)} R_{j k}^{m}+\right. \\
& \left.+g_{j k(m)} R_{h i}^{m}-g_{j i(m)} R_{h k}^{m}+g_{h k(m)} R_{j i}^{m}\right)+ \tag{4.10}\\
& +E_{h i j k}-E_{j k h i}+E_{j i h k}-E_{h k j i} .
\end{align*}
$$

Considering $+h|j| k$ in (4.10) and noticing (4.4) and (1.10) (d), we have

$$
\begin{equation*}
g_{h k(m)} R_{i j}^{m}+\left(E_{j k h i}+E_{h k j i}\right)+h|j| k=0 . \tag{4.11}
\end{equation*}
$$

Transvecting (4.11) by y^{h}, we have

$$
\begin{align*}
C_{k m} R_{i j}^{m} & +C_{j m} R_{i k}^{m}-g_{j k(m)} R_{i}^{m}+E_{j k 0 i}+E_{j 0 k i}+E_{k 0 j i}+ \tag{4.12}\\
& +E_{k j 0 i}+E_{0 j k i}+E_{0 k j i}=0 .
\end{align*}
$$

Moreover, transvecting (4.12) by y^{k} and using (1.9) (e), we have (4.9).
Q.E.D.

Lemma 4.4. In a generalized metric space of H-isotropic curvature, we have

$$
\begin{equation*}
H_{k}^{i}=F^{2} H h_{k}^{i} \tag{4.13}
\end{equation*}
$$

Proof. Transvecting (4.5) by $y^{h} y^{j}$, we see that $6 h_{0 i 0 k}=6\left(H_{i k}-F^{2} H h_{i k}\right)=2 C_{k m} R_{i}^{m}-3 C_{i m} R_{k}^{m}+3 E_{i k}-2 E_{k i}-\bar{E}_{k i}$. Lemmas 4.1 and 4.3 tell us that the right hand side of the above equation vanishes and then (4.13) holds.
Q.E.D.

Lemma 4.5. A generalized metric space of H-isotropic curvature is a Finsler space.

Proof. From Lemmas 4.2 and 4.3 , we see

$$
C_{h i} E^{i}{ }_{j}=-C_{h i} R_{j}^{i}
$$

Hence, using (1.9) (d) and Lemma 4.4, we get

$$
0=C_{h i}\left(R_{j}^{i}+E_{j}^{i}\right)=C_{h i} H_{j}^{i}=F^{2} H C_{h i} h_{j}^{i}=F^{2} H C_{h j}
$$

from which we have $C_{h j}=0$. Therefore the space in consideration reduces to a Finsler space.
Q.E.D.

Lemma 4.6. In a generalized metric space of H-isotropic curvature, we have

$$
\begin{align*}
& \text { (a) } E_{h}{ }^{i}{ }_{j k}=P_{h}{ }^{i}{ }_{j / k}+{P_{h}}^{m}{ }_{j} P_{m}{ }^{i}{ }_{k}-j \mid k, \quad \text { (b) } E_{j k}^{i}=0, E_{k}^{i}=0, \tag{4.14}\\
& \text { (c) } E_{h}{ }^{i}{ }_{j 0}=P_{h}{ }^{i}{ }_{j / 0}, \quad E_{h}{ }^{i}{ }_{0 k}=-P_{h}{ }^{i} k / 0 .
\end{align*}
$$

Proof. From Lemma 4.5, the space in consideration is a Finsler space. Then, noticing (4.8) we have $P^{i}{ }_{k}=0$, which means that $D_{j}{ }^{i}{ }_{k}=$ $P_{j}{ }^{i}{ }_{k}+P^{i}{ }_{j(k)}=P_{j}{ }^{i}{ }_{k}$. Hence (4.14) (a) follows from (1.9) (b) and the other from $P_{0}{ }^{i}{ }_{k}=2 P^{i}{ }_{k}=0$.
Q.E.D.

Now we ready to prove the following
Theorem 4.7. A generalized metric space of H-isotropic curvature is a Finsler space of constant curvature.

Proof. Transvecting (4.5) by y^{h} and using Lemma 4.6, we have $6 h_{0 i j k}=-2 C_{i j m} R_{k}^{m}+2 C_{i k m} R_{j}^{m}+3 E_{i j k}-E_{j k 0 i}+E_{k j 0 i}-E_{k j i}+E_{j k i}$. Noting $R^{i}{ }_{k}=H^{i}{ }_{k}+F^{2} H h_{k}^{i}$ and Lemma 4.6, we obtain
$6 h_{0 i j k}=6\left(H_{i j k}-H\left(y_{j} g_{i k}-y_{k} g_{i j}\right)\right)=0$, or $H^{i}{ }_{j k}=H\left(y_{j} \delta_{k}^{i}-y_{k} \delta_{j}^{i}\right)$.
By virtue of a well-known theorem ([4], p.133), a Finsler space which satisfies (4.15) is a Finsler space of constant curvature, that is,

$$
h_{h i j k}=H_{h i j k}-H\left(g_{h j} g_{i k}-g_{h k} g_{i j}\right)=0 .
$$

Q.E.D.

Remark. The right hand side of (4.5) reduces to $2\left(P_{h i j / k}+H C_{h i j} y_{k}\right)$ $-j \mid k$ after some calculation using (4.15). This is consistent with the wellknown identity in a Finsler space (e.g. [2], (2.7) (b))

$$
H_{h i j k}+H_{i h j k}=2\left(P_{h i j / k}-P_{h i k / j}\right)-2 C_{h i m} H_{j}{ }^{m}{ }_{k} .
$$

References

[1] H. Izumi, On the geometry of generalized metric space I. Connections and identities, Publ. Math., Debrecen 39 (1991), 113-134.
[2] H. Izumi and T. Sakaguchi, Identities in Finsler space, Memoirs of the National Defense Academy, Japan 22 (1982), 7-15.
[3] M. Matsumoto, Foundations of Finsler geometry and special Finsler spaces, Kaiseisha Press, Japan, 1986.
[4] H. Rund, The differential geometry of Finsler spaces, Springer-Verlag, 1959.

```
HIDEO IZUMI
DEPARTMENT OF MATHEMATICS
NATIONAL DEFENSE ACADEMY
YOKOSUKA 239, JAPAN
MAMORU YOSHIDA
DEPARTMENT OF MATHEMATICS
SHONAN INSTITUTE OF TECHNOLOGY
FUJISAWA 251, JAPAN
```

(Received July 12, 1988)

