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On the classification of
nilpotent Lie algebras of maximal rank

By M. K. PRISCO (Green Bay)

1. Introduction

In this paper we concern ourselves with maximal rank nilpotent Lie
algebras over an algebraically closed field of characteristic 0. After intro-
ducing terminology and some known results, we begin by discussing the
weight systems of these algebras. We then focus our attention on maximal
rank nilpotent Lie algebras on two linearly independent generators. Given
a weight system, there exists a projective algebraic variety in which each
point corresponds to a class of isomorphic algebras having the given weight
system, and such that any two algebras corresponding to distinct points
in the variety are nonisomorphic. While there are uncountably many non-
isomorphic nilpotent Lie algebras of bounded dimension over a given field,
there are only finitely many weight systems, each of which corresponds to
a set of isomorphism classes which is a projective algebraic variety.

This work is based on that of G. FAVRE, [2]. For a summary and
discussion of varieties corresponding to maximal rank algebras on more
than two generators, see [1].

2. Preliminaries

All Lie algebras under discussion here will have a fixed algebraically
closed field K of characteristic 0 as their field of scalars.
Let p and s be positive integers. Following the notation in [2], let

m(s,p) denote the free Lie algebra on s linearly independent genera-
tors Eq, E,, ..., E, which is nilpotent of step p. Given an s-tuple a =
(ny,na2,...,ns) of nonnegative integers, we write m® for the subspace of
m = m(s, p) which is homogeneous of degree n; in E; for : = 1,2,... ,s.
Elements of m® are said to be of degree a and of total degree |a| =
ny + nz + - - - 4+ n,. Note that because m is a Lie algebra, the set

Rm = {a = (n1,n3,...,n,):0<n; €Z, 1< |al <p, and
la| > 1 = n; < |a| for each i}
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consists of all degrees of m.

Any nilpotent Lie algebra of step p on s linearly independent gen-
erators may be regarded as a quotient of m by an ideal a satisfying
CP(m) € a C C?%(m) (where C*(m) is the kth ideal in the descending

central series of m, i.e., C¥(m) = @m®, where the sum is over all o with
k < |a| < p). The algebras of prime concern here are those which are of
maximal rank:

Definition 2.1. A quotient g of m is of mazimal renk if and only if
there exists an ideal a of m such that g ~ m/a and a = ®(anNm®), where
the sum is over all « € Rm.

The above definition of the maximal rank condition differs from that
in [2]. However,.the two definitions are easily seen to be equivalent. (For

the details, see [4].) Note that if a quotient g of m is of maximal rank,
then dimg/C?(g) = s.

he main tool used in the study of finite-dimensional nilpotent Lie
algebras in [2] is the maximal torus and its corresponding weight system.
The standard weight system for m is Pm = {(a, dimm?) : « € Rm}. In
our study of maximal rank nilpotent (MRN) step p quotients of m, we need
not concern ourselves with maximal tori. There is an equivalence relation
on the collection of all weight systems which gives rise to the following.

Fact 2.2. When g is a MRN quotient of m, the weight system of g
is equivalent to one of the form {(a,da) : a € R} where R C Rm and
1 <da < dimm®°.

Thus weight systems of MRN Lie algebras may be thought of as sets
of (s + 1)-tuples of nonnegative integers. It should be noted, however,
that one cannot take an arbitrary subset R of Rm and randomly choose
integers da with 1 < da < dim m® for each a € R and expect to produce
a weight system. This predicament is the topic of the next section.

Now suppose we are given a weight system. The following algorithm
will produce a set A™ in which eaclg1 element corresponds to a class of
isomorphic MRN Lie algebras, each having the given weight system. Again
the reader is referred to (2] for more details.

Classification algorithm 2.3. Let P = {(a,da) : @ € R} be a
weight system. Let B = {a;,a2,...,a,} be a basis of R, so each a € R
can be written a = nja; + nsag + -+ - + nya, for some 0 < n; € Z.

1. Let m = m(s, p), where p = maz{|a|: @ € R}. We can regard R as

a subset of Rm. Let

A ={ideals vof m: dim(vNm®)= dimm® — da for a € R, and

= dimm® for @« € Rm — R}.

(Then m/v has weight system P for each v € A.)
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2. Let S, be the symmetric group on s letters. S, acts on Pm by

o.(a,dimm®) = (a?,dim m?),

where if a = En;a; then a? = Enja,;)

for 0 € S,. Let G be the subgroup of S, which leaves P invariant,
ie.,, G={o €8S, :da=da’ for each a € R}.

3. G acts on m by 0. E; = E,(;). This induces an action on A. Let A~
be a system of orbit representatives.

4. The map associating each a in A~ with the isomorphism class of m/a
defines a bijection from A™ onto the set of isomorphism classes of
MRN Lie algebras with weight systems equivalent to P.

3. Weight Systems

The classification algorithm (2.3) assumes we already have a weight
system for a MRN Lie algebra. While we may think of such a system as
a set of (s + 1)-tuples of nonnegative integers, it is difficult to say when a
set of (s 4+ 1)-tuples is a weight system. In this section we provide some
necessary conditions.

Given m = m(s, p), Rm, and Pm as previously described, set ma =
dim m® for each « € Rm. Let a; = (8,;,62j,... ,6,;) for 3 =1,2,...,s
(where é;; is the Kronecker-4).

Lemma 3.1. Let 3 and f + aj € Rm with § # a;. Let
{X1,X2,...,X,} be a linearly independent subset of m®. Then [E;, X;] #
0 fori=1,2,...,r, and {[E;, X,],[E;, X3),...,[Ej, X;]} is linearly inde-
pendent.

PROOF. First note that since § # aj, X e m? = [Ej, X] # 0 unless
|3+ aj| >por X =0. Thus if ¥y = f 4+ a; € Rm, then
{(E;, X,1),[Ej, X3),... ,[Ej,X,]} is a set of nonzero vectors in m?. The
linear independence follows easily. O

Theorem 3.2. Let R C Rm and let P = {(#,d3) : p € R and
1 <dp € Z}. Suppose P is the weight system for a MRN quotient g of m
which is of step p. Then
(i) BE R=>1<dB <mp. :
(i) owERaddei=1Trs=1.2;... ;8
(iii) for each integer k with 1 < k < p, there exists # € R with |3| = k.
(iv) € Rm = dp < Zd(f — ai) (1 =1,2,...,8), where we set df = 0 if
f € Rm — R. In particular, 3 — ai ¢ R for eachi = 3 ¢ R.
(v) B€ R = dB < mfB —max{r(f —ai) : 1 < i < s} where we set
raa = ma — do for each « € Rm.
PROOF. Since g is of maximal rank, there exists an ideal a of m
satisfying a = @(a N m®) such that g ~ m/a.
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(i) This follows from 2.2.

(i1) By (i), if @i € R, then dai = 1 since mai = 1. Since g is of maximal
rank, dim g/C?(g) = s. Thus £dai = s (where the sum is over all ai € R).
Therefore ai € R for each: =1,2,...,s.

(iii) From (ii) we know the result holds when k = 1. Fix k, 1 < k < p.
Suppose there is no # € R with |3| = k. Then for every « € Rm with
|a| = k, we must have a N m® = m®; this implies a N C*(m) = C*(m),
which implies m/a (hence g) has step at most k — 1. This contradicts our
hypothesis that g is of step p.

(iv) First note that the space m? is spanned by monomials
[E.,[E.,..., [E., E,]...]] where * represents various subscripts, the sub-
script j appearing n; times if 8 = (ny,ns,... ,n,) = Ln,ai. Thus we see
that m? C £[m®, m?~*‘]. This implies 7(m?) C Z[r(m®), 7(m?~*¥)],
where 7 : m — m/a is the quotient map, ie., (m/a)® C
2[(m/a)*',(m/a)?~*]. Hence df < T dim[(m/a)*, (m/a)?~*‘]. Now
dim[(m/a)*, (m/a)?~%] < dim(m/a)’~* = d(f — ai). Thus df <
Td(B — ai).

(v) Let B € R. We show df < mf—r(B—ai) foreach 7, 1 <1 < s. First
note that if r(f—ai) = 0, the inequality reduces to d3 < mf, which follows
from (i). Fix ¢ and suppose r = r(f — ai) > 0. Then there exist linearly
independent vectors X;,X5,... ,X, in aNnm?~2, Let Y; = [E;, X;). By
3.1, {\1,Y,,...,Y,} is a linearly independent subset of a N m?. Expand
to a basis {¥1,Y2,... ,Yms} of m?. Then {n(Y;) : 1 < j < mfB} spans
m(m?), but 7(Y;) =0 for 1 < j <r. Thus dimn(m?) <mp—-r. O

At this point it might be helpful to recall the formula for the dimension

of the weight spaces m®: let a = (ny,n,,...,n,) € Rm and let |a| = n.
Then
ma = dimm® = (1/n) ) u(d)(n/d)!/[(n1/d)\(nz/d)!-- - (n,/d)!]
d|n.~

where p is the Mobius function. This formula has been used to compute
all values of ma for m = m(2,7). (See Figure 1.)

Before attempting to create a weight system, we make one final ob-
servation.
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Figure 1. Dimension of m®, a = (ny,ny).
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Fact 3.3. If P = {(3,dB) : B € R and 1 < dB < mf} is the weight
system for a MRN quotient of m = m(s, p) which is of step p > 1 and
rank s, for some R C Rm, then Q = {(3,dB) € P : |B| < p} is the weight
system for a maximal rank quotient of m which is of step p — 1 and rank
s, hence for a maximal rank quotient of m(s,p — 1).

ProoOF. If P is a system, then there is some ideal a of m(s, p) such
that m/a is of maximal rank s and step p, such that m/a has system P,
and such that a = @(aNm?) (a € Rm). Let b = &(aN m®) (Ja| < p).
Let ¢ = b @ CP(m). Since a is an ideal, ¢ is an ideal; m/c has system Q,
as does m(s,p—1)/b. O

The theorem and fact together suggest that one possible procedure
for creating a weight system is to work recursively, starting with a known
system. However, without a known system, it is perhaps more feasible to
proceed inductively.

Ezample $.4. Let us attempt to create a weight system P for a max-
imal rank 2, step 7 quotient m/a of m = m(2,7). We know we must have
(ai,1) € P for i = 1 and 2. Also, since we want m/a to be of step 7, we
cannot have m*!) C a. Thus since m(1,1) = 1, we need ((1,1),1) € P. In
other words, Pm(2,2) C P. Indeed, let us take Pm(2,3) C P.

Next let us build on Pm(2,3) to obtain a weight system for a step 4
quotient of m(2,4). This merely requires that for each a € {(3,1),(2,2),
(1,3)}, we choose values for da with 0 < da < ma. Let us take d(3,1) =
d(1,3) = 1 but d(2,2) =0, i.e., take Py = Pm(2,3)U{((3,1),1),((1,3),1)}
as our system.

Suppose Py C Ps where Ps is a weight system for a step 5 quotient of
m(2,5). Then since d(3,1) = 1,d(2,2) = 0,d(1,3) =1 and

r{3,1)=0,12,2)=1,7r(1,3) =0,
we see that 0 < da < 1 for @ = (4,1) or (1, 4) by (i) of 3.2, while
by either (iv) or (v), 0 £ da < 1 for a = (3,2) or (2,3). Let P; =
PyU{((4,1),1),((3,2),1)}. Is Ps a weight system? Let us find an ideal a of
m(2, 5) such that m/a has system Ps. We will need dim(aNm®) = ra for
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each a € Rm(2,5); ra =0for |a|] <3 ora € {(3,1),(1,3),(4,1)}; r(2,2)
=m(2,2) =1, r(3,2) = m(3,2) -1 =1, #(2,3) = m(2,3) = 2 and
r(1,4) = m(1,4) = 1. Thus let a be the ideal of m(2,5) generated by
m(2,2) @ m(293) @ m{l”‘), i'e_’ a= m(2,2) @ [m(l,O), m(zvz)] @ m(zba) @ m{l!‘).
Then m(2,5)/a is of maximal rank 2 and step 5 with weight system Ps.

Now let us find a weight system P; O Ps for a step 6 quotient of
m(2, 6). Since d(4,1) = 1,d(3,2) = 1,d(2,3) = 0,d(1,4) = 0 and

r{4,1)=0,r(3,2) =1,7(2,3) =2,r(1,4) =1,

we see that by (v) of 3.2, we must have d(4,2) < 2 — 1 = 1; by either (iv)
or (v) we must have d(3,3) < 1; by (iv), d(2,4) = d(1,5) = 0 and by (i),
d(5,1) < 1. Suppose we choose Ps = Ps U{((5,1),1),((4,2),1), ((3,3),1)}.
Can we find an appropriate ideal a’' of m(2,6) such that m(2,6)/a’ has
system Pg? We will need dim (a' N m®) = ra, where r(4,2) =1, r(3,3) =
2, r(2,4) = m(2,4) = 2 and r(1,5) = m(1,5) = 1. We will also need
a C a'. However, this presents a problem, since then the subspace
S = [m®), [m™?) m?2)]] + [mH?) m?3] C a’' N m33), but it can
be shown that dimS = 3 while we need dim(a’ N m(®?) = 2. Thus
Pg cannot be a weight system. (Note that this shows that (i) — (v) in
3.2 are not sufficient conditions for a weight system.) However, the set
P = Ps U {((5,1),1),((4,2),1)} is a weight system: we can take a’' =
ad [m{l.O), [m(l'o), m(z,z)]] &mG3) am2 gm(19; a’ is then an ideal of
m(2,6) such that m(2,6)/a’ is of maximal rank 2 and step 6 with weight
system Pj.

Finally, let us build on P§ to obtain our desired system P. Since
d(5,1) =1, d(4,2)=1, d(3,3)=0, d(2,4) =0, d(1,5) = 0 and
r(5,1) =0, r(4,2) =1, r(3,3) =3, r(2,4) =2, r(1,5) = 1, we see that
d(6.1) < 1; by (iv), d(5,2) < 2, d(4,3) < 1, d(3,4) = d(2,5) = d(1,6) = 0.
So, let P = Pg U{((6,1),1),((5,2),2), ((4,3),1)}. Let a” be any ideal of
m(2, 7) satisfying a"” = a’' @ [(m(1?,a’ N m*?)] @ (a”" N m*¥) 3 mB3Y g
m(?3) ¢ m(1®), where a” N m** D [m(®, a’ N m*?)] 4+ (M%), M)
and dim (a” Nm(*?¥) = 4. (Note that dim [m(*?), a’Nm*?] = 1 = r(5,2)
and 3 < dim ([m(®",a’ N m*?] + (m(**), m®3]) < 4.) Then m/a" is of
maximal rank 2 and step 7, and m/a" has weight system P.

4. Digraphs

It is helpful to have pictorial representations for m(s, p) and its ideals
which give rise to MRN quotients. The pictures that seem to be the most
natural are, in fact, weighted digraphs.

We begin with m = m(s, p). Take Rm to be the set of vertices, and
Em= {(a,a+ai):1<1i<sand a,a+ ai € Rm}. The edges symbolize
the action of the adjoint maps ad E;, in that ad E;(m®) C m®*®‘, The
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digraph (Rm, Em) is connected and cycle—free. The verticesai (1 <i < s)
each have in—degree 0 and out—degree s —1 (since 2ai  Rm). The vertices
a with |a| = p each have in-degree at least 1 and out-degree 0. Other
vertices typically have in-degree between 1 and s and out-degree s. By
associating each dimension ma to the vertex a, we make (Rm, Em) into
a weighted digraph. See Figure 2.

Now let a be an ideal of m with the property that a = @(a N m®)
(e« € Rm), so m/a is MRN. For each a € Rm, let ra = dim (aNm®). Let
V={a€ Rm:ra>0}. Let Fa = {(a,a+ ai) € Em: a,a + ai € V}.
Then (V, Ea) is the digraph associated with a. This digraph is a subgraph
of (Rm, Em), so is also cycle-free. It consists of finitely many connected
components, and has the property that if @ € V' and if there is a directed
path in (Rm, Em) from a to 3, where |3| = p, then that directed path is
also in (V| Ea). (This condition is necessary for a to be an ideal.) Associate
ra with each a € V to make (V, Fa) a weighted digraph. For example, the
digraph associated with the ideal a” of m(2,7) described in 3.4 is shown
in Figure 3.

Now suppose for some R C Rm, P = {(a,da) : a € R} is a weight
system for MRN quotients of m. Then there exists an ideal a of m such
that a = &(aNm®) and m/a has system P. We can determine the weighted
digraph (V, Ea) as follows.

Let «a € Rm. If a € R and daa = ma, then a € V. If a € R but
da < ma, then @« € V and this vertex has weight ra = ma — da. If
a € R, then a € V and we assign this vertex the weight ma. An edge
(a,a + ai) € Fa if and only if & and a + ai both belong to V.

Figure 2. The weighted digraph associated with m(2, 7).
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Figure 3. The (weighted) digraph associated with a".

5. Examples of Classifying Spaces

Recall that each weight system for MRN Lie algebras gives rise to a set
A~ of isomorphism classes of MRN Lie algebras having the given weight
system. More specifically, let m = m(s,p) and let P = {(a,da) : a € R}
be a weight system, where R is some subset of Rm. Then A~ = A/G =
{ideals v of m : dim(v N m?®) = ra for all @ € Rm}/G, where ra =
ma — da for a € R and ra = ma for a € Rm — R, and where the
subgroup G of S, is the group of symmetries of P. Now if we write v
for vim®, then A={®v® («¢€Rm) : dimv® =ra and @ v is an ideal}
C V = IlIGr;o(m®) (a« € Rm), where Gr,o(m®) is the Grassmanian
variety consisting of all ra-dimensional subspaces of m®. Moreover, for
®v® to be an ideal, it is (necessary and) sufficient that [E;, v®] C vt
for : = 1,2,...,s. Since these conditions are algebraic, A is an algebraic
subvariety of the variety V| and is therefore itself a projective variety. The
action of G on A is also algebraic, so A™ is a projective variety. Although
we will typically refer to A™ as a space, this does not mean we are not
concerned with the geometry of A™.

Ezample 5.1. Fix s and p, and consider only those weights a with
|| = p. For each such a, choose integers ra, 0 < ra < ma, such that
some ra # 0 and some ra # ma; let a* be any ra—~dimensional subspace
of m®. Then a = @Ga® (|a| = p) is an ideal C C?(m), and we see that A =
IIGr,o(m?®) (|a| = p). For each a, let da = ma —ra. Then A corresponds
to the weight system P = Pm(s,p — 1)U {(a,da) : |a| = p}. A~ = A/G
for some G < S, which depends on the choice of the ra’s.

In general, the structure of A™ is fairly complicated. For this reason,
we will describe A™ in certain special cases which can be handled by
explicit calculations, but yet, which yield interesting varieties. In each
example, P is the system of a maximal rank quotient m/a of m(2,p),
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where a C C"(m(2,p)) with p — 2 < n < p. In addition, there are only
two possibilities for the symmetry group G: the trivial group and the
symmetric group S, ~ Z,.

G is trivial precisely when the weight system P contains an element
((ny,n2),d(ny,nz)) such that (z) there is no element ((n2,n1),d(n2,ny)) €
P, or (1) there is such an element, but d(ns,n;) # d(n,,n2). When G
iil trlivia.l, the set A™ of orbit representatives is identical to the set A of
ideals.

G = S; whenever the system P is symmetric in a1 and a2, i.e.,

whenever ((ny,n3),d(ny,n;)) € P if and only if ((ny,n;),d(n;,n2)) € P.
In this case, the orbits of G consist of pairs {a,a’}, where (12).a = a’;
recall (12) . E; = E; for {s,j} = {1,2}.

A weight system P is called complete if for each a € R, da =

dim m*®. Véhen a system is complete, there is only one isomorphism class
of algebras with that system, namely A = {&#m® (a € Rm — R)}. Now
for p < 5, all systems are complete, since each space m® with |a| < 5 is
one-dimensional.

When p = 5, there are two weight spaces of dimension two, so it is
possible to have weight systems which are not complete. However, those
systems which are not complete still do not yield very complicated va-
rieties: the set A will consist of a single point (when only one algebra,
up to isomorphism, has the given system), a projective variety KP! (i.e.,
Gri(m®), where a = (3,2) or (2,3)) contained in C*(m), or a product
of these with up to three factors. (With more than three factors, the
quotients would no longer be of step 5.)

That the set A corresponding to a given system consists of a single
point is not, however, always obvious, even when p = 5.

Ezample 5.2. Let P = { ((1,0),1), ((0,1),1), ((1,1),1), ((1,2),1),
((1,3),1), ((2,3),1), ((1,4),1) }. First note that P is a weight system: let
a=m?Y gmc gm?»? g mt*V g m®? @ [m®) m22)]. Then a is
an ideal of m(2,5), and m(2,5)/a is of maximal rank. Moreover, any ideal
v in the set A must satisfy v(2!) = m(21), which implies that v = m®
for a = (3,1), (2,2), or (4,1), and that v(?*) contains [m(®""), m(?:?)] and
(M9 m(22)] 4 [m(®D m®D)], That the latter subspace is, in fact, m(3:?)
follows from the theorem below. Thus A = {a}; since the symmetry group
G is trivial, A~ = A/G consists of a single point.

Before discussing any other examples, we prove a needed result. Let
m = L(2). Let T = T(spank{E;, E;}) be the tensor algebra. Make T
into a Lie algebra in the usual way, i.e.,set [X,Y]=X®Y -Y ®X for all
X,Y € T. Now let : : {E,;, E;} — T be given by «(E;) = E; for i = 1,2.
By the universal property of the free Lie algebra m, : extends uniquely to
a Lie homomorphism ¢ : m — T. We identify spank { E,, E;} with T!. We
will show that for any nonzero X € m, if [E,, [E,, X]|] and [E;, [E;, X]]
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are not identical, then they are linearly independent. We will need the
following.

Lemma 5.8. Leta,b € K witha,b,a+b# 0. Let f = a ad E, ad E>+
bad E; ad E, : T — T. Then ker(f) = T?, the scalars.

PROOF. For T € T, f(T) = a|E,,[E,,T]| + bE,,[E,,T)] = (sup-
pressing ®) a(El EQT- E] TE2 — EQTE] +TE2E1)+5(E2 E]T"‘EgTE] —
EITEz + TE[EQ) = G'.El EzT + bEzE1T P (a o b)El TEg o (a + b)EgTE] +
aTE;E, + bTE,E; = (%).

If T € T°, (*) reduces to 0, so T C ker( f).

Now let T € ker(f), so (¥) = 0. We may assume T € T" for n > 0.

Case 1: n = 1. Then T = ¢, E, + ¢2 E», ¢; € K. Combining like terms
in (%), we get

0 = (—(a+ b)ey + bey )E\EL E; + (ac; — (a + b)) Ey EQ E,
+ (other monomials)
= —acy) E\Ey Ey — bea Ey Ey By + (other monomials),

so —ac; = 0 = —bey, since the distinct monomials are linearly independent.
Thus &y =0=¢c3, and T =0.

Case 2: n=2. Then T = ¢, E\E + ¢12E1E; + ¢c1 B2 By + c2 B2 Es,
cij € K. Again combining like terms in (x), we get

0 =(—(a+ b)ery + benr )E1EVELEy + (aczz — (a + b)eg ) Ey E2ER B,
+ (beyz + beay )EL E\EVE; + (acya — (a + b)eay + berg ) Ey B2 Eq B,
+ (other monomials)
= —ac)\EyE\E Ey — beypo Ey Ey ER By + b(cy2 + ¢y ) E2 ErEL By
+ (a + b)(c12 — ¢21)E E2 E1 E3 + (other monomials).

Since a,b and a + b are nonzero, we get ¢y = 0 = ¢332, ¢12 + ¢21 = 0 and
c12 — c21 = 0. The latter two equations together imply that ¢y = 0 = ¢,
and therefore T = 0.

Case 3: n 2 3. Then T = E\T) + E; T, = T{El + T::Ez, with T,‘,T: €
T"~! for i = 1,2. From (%) we get

0 =E\(aE;T — (a + b)TEz) + Eo(bELT — (a + b)TE,)
+ T(aEyE, + bE, E,)
=E1(aE;T — (a + b)TE; + aTy B2 E; + bT, E, E3)
+ Ey(bEyT — (a + b)TE, + a2 E2E; + bT3 E\Es),
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which implies
(**) (GEQT-— (a+b)TE2 +aT1E'2E1 +bT1E1E2) =1

and

(%% %) (bE\T — (a + b)TE, + aT, E,E, + b1, E\E;, = 0.

First we consider (#x) :
aEy(T\Ey + TLE;) — (a + b)TE; + aT\E2Ey + bTYE\E; =0 =
(aE2 T + aTy Ey)Ey + (aE2Ty — (a+ b)T + bT1E1)E; =0 =
a(E;T{ + T1 E2) = 0 and aE;T) — aT — bT + bT1 E; = 0.

From the first equation (since a # 0), we get E;T] + T1E; = 0.

Say T; = E\T;; + E;T;3 for 1 = 1,2. Then EQT; + E\T\,E; + E; T, E, =
0= E2(T; s T]gEz) = 0 and E]T]]Eg === T; = —leEg and T“ = 0
(so T} = E;T)3). From the second equation, we get

0= G'.EQT; o= G(EI Tl + EQTQ) o bEl Tl + EQTQ) + bElegEl
= El(—ﬂTl — bT]) + Eg(aTg’ w— aTz v ng + bT]gEl)
= EI(_—(_G + b)Tl) + Eg(a(Té — TQ) + b(T]gE} —_ Tz)),

from which we conclude —(a + b)T} =0, so T} = 0.

Now (#*x) is just (»*) with E; and E; exchanged, with a and b exchanged,

and with T3 in place of T;. Thus (% + %) yields T, = 0, so that T = 0.
Thus we see that ker(f) N T" = 0 unless n =0, so ker(f) =T°. O

Theorem 5.4. Let X be any nonzero element of m(2,p). Then ei-
ther [Ey,[E,, X]] and [E, [E,, X]] are identical, or else they are linearly
independent.

PROOF. (T,2) is a universal enveloping algebra of m. Let a,b and f
be as in the lemma and let ¢ = a ad E;, ad E;+bad E; ad F; : m — m.
It is then easy to show 1p = fi. Now suppose X € ker(y). Then 0 =
1(X) = fuX) =1X € T° = X = 0. Thus ker(p) = {0}.

We have now shown that if a + b # 0 and a # 0 # b, then
(a ad E; ad E;) (X)+(bad E; ad E,)(X) # 0 for X # 0. In other words,
if (ad E, ad E;)(X) and (ad E; ad E,)(X) are not identical, then they are
linearly independent. O

Corollary 5.5. If X € m is homogeneous of degree n # 2, then
[Ey, [E,, X)) and [E,, [E,, X]] are linearly independent.

Proor. If [E},[E;, X]] # [E2,[E;,X]], the conclusion follows from
the theorem. Say [E,,[E,, X]] = [E;,[E;, X]]. Then by Jacobi’s identity,
[El,[Ez,X” = [Eg,[E],X]] + [X, [E],EQ]] = ()= [X, [El,Eg]] =0 =
X € m™Y| which contradicts our hypothesis. Thus [Ej,[E;, X]] and
[Ez, [Ey, X]] are linearly independent. O
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Now consider the collection of examples described in the following
proposition. We require p > 2 so that step p quotients of m(2, p) will not
be abelian of dimension at most 2.

Proposition 5.6. Let m = m(2, p) for some positive integer p; fix ni
and n2 son = n1 4+ n2 < p. Suppose n > 2. Let P be the weight system
{(a,da) : « € Rm} where either

ma —1 for a = (n1,n2),

(1) p=n and da={

mao otherwise;

I ma —1 for a = (n1,n2),(n1+ 1,n2),
(i) p=n+1 and da= (n1,n2+41),

| ma otherwise;
or

[ ma—1 for a = (n1,n2),(n1+ 1,n2),
(n1,n2 4+ 1),(n1 + 2, n2),

(1) p=n+2 and da = (n1,n2 + 2),
ma—2 fora=(n1+1,n2+1),
| ma otherwise.

Then the space A~ of isomorphism classes of MRN quotients of m having
system equivalent to P is KP™™")=1/G for G < Z,.

PROOF. Let P be as given. To prove that P is indeed a system,
we will produce an ideal a of m such that m/a is of maximal rank with
system P. In fact, what the proposition asserts is that any a generated by

a one-dimensional subspace of m("*"?) will have system P. Suppose P is
a system, and let A be as in 2.3. Then a € A = a = ®a®;dima® = 0 for
la] < n and for n < |a| € p with a # (n1 +t,n2 4 3) for 7,5 € {0,1,2},
while dima("*"? = 1, Thus any a € A satisfies anN m(2,n) = KE for
some E € m"'"?),

(i) Let a = KE for any nonzero E € m"""?, Then since n = p, a
is an ideal in A. Conversely, any a in A must be of the form KFE for

some nonzero E € m(""?), Thus A ~ Gr;(m("")) ~ Gr,(K™"1:n2)) ~
KpPm(run2)=1 and A~ ~ KP™1/G (for m = m(n1,n2)).

(ii)) Let a be the ideal generated by E € m("*"?) Then by 3.1,
dima® = 1 for a = (n1 4+ 1,n2) or (n1,n2 4+ 1). Hence P is a system.
Anyac€ A ]must. be generated by a nonzero E € m{"""?  so once again
PR F g

(iii) If a is the ideal generated by a nonzero element of m("*"?) then
3.1 gives us dima® = 1 for a = (n1 4+ 1,n2),(n1,n2 4+ 1),(n1 4+ 2,n2), and
(n1,n2+2), while 5.5 gives us dima("*1:"2+1) = 2 Thus P is a system and
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any a € A must be generated by a one-dimensional subspace of m("""?,
i.e., by a nonzero vector in m(""?), Therefore, A~ ~ KP™~! /G as above.
O

Corollary 5.7. Let P be as in the proposition. If n1 # n2, then the
symmetry group G is trivial (and n1 = n2 = G = Z,).

PROOF. If n1 # n2, then P contains the pairs ((n1,n2), m(ni,n2)—1)
and ((n2,n1), m(n1,n2)) since m(n2,n1) = m(ni,n2). 0O

We now present an example which is a combination of (1) and (ii) in
5.6.

Ezample 5.8. The classifying space for MRN quotients of m(2, 5) hav-
ing system (equivalent to)

P = Pm(2,3)U{((2,2),1),((1,3),1),((3,2),1),((2,3),1),((1,4),1)}

is KP! :
Any a € A satisfies a = a®V) g a*!) g a®?) @ al??) a direct sum of

four one-dimensional subspaces, generated by a®®*!) = m®*") and a one-
dimensional subspace a3 of m(?3), a*1) = [m(1.9) a(V] = m*D
and a®? = [m(®V a®1)]. Since any such a is an ideal, P is a sys-
tem. Also, since any such a is in A, then A = {m®"} x Gr;(m??) ~
{point} x KP! ~ KP'. Here the symmetry group G is trivial (since, e.g.,
((3,1),d(3,1)) € P). Thus A~ ~KP'.

We now discuss two fairly simple situations in which the set A is a
Grassmanian variety.

Proposition 5.9. Let m = m(ni,n2) where n = n1 + n2 > 4, and
let k € Z be such that 2 < k < m. Let P be the weight system
{(a,da) : a € Rm(2,p)} where

m—k for a = (ni,n2),

{i) p=n and da={

or

ma otherwise;

ma — k  for a = (n1,n2),(n1 4+ 1, n2),
(1) p=n+1 and da= (nl,n2+l),
ma otherwise.
Then A~ ~ Gri(K™)/G for G < Z3; unless n1 = n2, the symmetry group
G is trivial.
PROOF. P is a weight system since if we let a be an ideal generated

by any k-dimensional subspace of m(™"? m/a will be MRN of step p
with weight system P.
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For any a € A, we need dima® = 0 for |a| < n and for n < |a| < p
with a # (n1 + i,n2 + j) for i,j € {0,1}. Also, dima(™") = k and
anNm(2,n) = a(®»"2),

(i) For p = n, a = a/®"™) = any k-dimensional subspace of m(""?
and A = Gri(m™")) ~ Gri(K™).

(i1) For p = n+1, we get dima® = k for @ = (n1+41,n2) or (n1,n2+1);
indeed a(ru+1,ru) el [m(l,O},a[nl,nz}] and a(nl,nz-H) 2 [m(OJ)’ a(ru,ru)], and
a= a(m,mr) ® a{m+l,m) ® a(m,nz+1)_ Since a(ﬂl+l,ﬂ2) and a(m,n2+l) are
completely determined by a("*"?, once again we have A ~ Griy(K™).

Note that if n1 # n2, P is not symmetric, so A~ = Gri(K™). O

Our next proposition lists six situations in which the set A is the
product of two projective spaces. See Figures 4 — 9 for digraphs of ideals
a = &(aN m?*) such that m/a has the system P described in (i) — (vi)
respectively.

Proposition 5.10. Let (n1,n2),(n1’,n2') € Rm be such that n1 >
n1' with m = m(ni,n2) 2 1 and m' = m(n1',n2') > 1, n=ni14n2>
2, n' =n1'+n2' > 2, and (n1,n2) # (n1’,n2’). Let P be the weight system
{(a,da) : a € Rm(2,p)} where either

(i) p=n=n'and

o L 1 for a = (n1,n2),(n1',n2"),
ma otherwise;

(1) p=n+1, n=n'" withn2+1 < n?', and

ma —1 for a = (n1,n2),(n1',n2'),(n1 + 1, n2),
da = (n1,n2 4+ 1),(n1’ + 1,n2'),(n1',n2" + 1),
ma otherwise;

(i) p=n+2, n=n" withn2+ 2 < n?', and

((ma —1 for a =(n1,n2),(n1',n2"),(n1 + 1,n2),
(n1,n2 4+ 1),(n1" 4+ 1,n2'),(n1’,n2" + 1),
(n1 4+ 2,n2),(n1,n2 + 2),(n1’ 4+ 2,n2"),
(n1',n2' + 2),
ma—2 fora=(n1+1,n2+1),(n'+1,n2" +1),
l ma otherwise;

da = ¢
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(iv) p=n=n'+1 with n2 < n2', and
ma —1 for a = (n1',n2'),(n1,n2),(n1’ + 1,n2'),
da = (n1',n2' +1),
ma otherwise;

(v) p=n+1=n'"+2 withnz2+1<n?, and
[ ma—1 for a = (n1',n2"),(n1,n2),(n1’ + 1,n2"),
(n1',n2' +1),(n1 4+ 1,n2),(n1,n2 + 1),

da = { (n1' 4+ 2,n2"),(n1',n2' + 2);
ma—2 fora=(n1'+1,n2"+1),
| ma otherwise;
or
(vi) p=n=n'+2 with n2 < n2', and

ma—1 for a=(n1',n2'),(n1’'+1,n2"),(n1',n2' + 1),
(n1,n2),(n1’ + 2,n2'),(n1',n2’ + 2),

ma—2 fora=(n1'+1,n2'+1),

ma otherwise.

Then A~ ~ (KP™ x KP™)/G for G < Z,. (Note that we need not

separately consider the cases where n1 < ni1' and n2 > n2' by equivalence
of weight systems.)

da =

PROOF. P is a weight system since if we let a be an ideal generated
by any one-dimensional subspace of m{""? plus any one-dimensional
subspace of m(""'"?) then m/a will be MRN of step p with weight system
F o

Figure 4. System P(z).

@O(n1,n2) ®(n1',n2")
Figure 5. System P(i1).

(n1,n2)
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Figure 6. System P(:it).

@( nl,n2)

(D( nl,n2)

Let a € A. Then a(®*"?) and a(""""?) are each one-dimensional (and
generate a); moreover, [m,a("""?] N [m,a("""*)] = {0}.
([C*(m), a(™"2)] = {0} if k > 2, and likewise for a(™""?) since n (and
n') > p — 2.) Thus each generating space gives rise to a projective space
as a component of A, subject to no additional conditions. O

Corollary 5.11. Unless n = n' and n1' = n2', the symmetry group G
is trivial under the conditions of 5.10.

We now turn our attention to a weight system whose corresponding
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classifying space is particulary interesting.

Ezample 5.12. The classifying space for MRN quotients of m(2,6)
having system P = Pm(2,4) U{((4,1),1),((3,2),2), ((2,3), 1), ((1,4), 1),
((5,1),1),((4,2),2),((3,3),1),((1,5),1)} is KP? blown up at a point:

Any a € A would have to satisfy a = a(*¥ @ a(®? @ a(®>*) with
dima?% = 1 and dima®?% = 2 = dima®%. Thus a®* = m(?>4 and
we see A C Gri(m(>?) x Gry(m®¥) x {m?%}. Also, G is trivial, so
A~ = A

Now any a-= a(?? @ a(®3) g a(24) with dimensions as above will be
an ideal if and only if [m(*?), a(2:3)] C a(3:3); since such an a can be cho-
sen, P is a system. Thus we can take A~ = {(V;, V3, V3) € Gr;(m(®¥) x
Gra(m(®?)) x {m(Y} : 7(V;) C V,}, where 7 = ad E; (restricted to
m(23)), which implies A~ ~ {(V;,V2) € KP' x Gry(K?) : 7(V4) C V2 }.
In the latter description, we can define 7 (using homogeneous coordi-
nates and a Hall basis for m(2,6) — see [3] or [4]) by 7(a;,az) =
(a1,2a; + a,az — ay). Now 7 identifies m(>® with a fixed plane in the
three-dimensional space m®?), so after changing bases, we may assume
7 : K? = K? with 7(z1,22) = (0, —z2,2;). In place of a plane V; in K3,
suppose we take a line orthogonal to V3, i.e., replace V; € Gra(K?) with
(yo,¥1,y2) € KP?. Because T is homogeneous, it defines a map KP' —
Gri1(K3). Since we want 7(z;,z2) C Vo, we need (yo,¥1,y2) and 7(z1,z2)
to be orthogonal, i.e., we need 0 = (0, —z2, 1) (Yo, ¥1,¥2) = —T2y1 +T1¥2.

Thus we have _
A~ ~ {(z1,72;¥0,%1,y2) € KP! x KP? : z,y; = z,y1}. The projec-

tion map A~ — KP? is exactly what Shafarevich calls a o—process in [5],
i.e., the map KP? — A~ which takes (yo,¥1,¥2) to (y1,¥2;¥0,¥1,¥2) for
(yo,v1,y2) # (1,0,0) and to (z;,22;1,0,0) for arbitrary x;,z, otherwise
lets us realize A~ as KP? blown up at a point.

Our final example concerns a weight system whose corresponding
MRN algebras are usually generated by two nonzero vectors of total degree
5. It is, however, possible to choose two vectors in such a way that they do
not generate an algebra with the given system; in this case, an additional
choice (of a vector of total degree 6) must be made.

Ezample 5.13. The classifying space for MRN quotients of m(2,6)
having system (equivalent to) P = Pm(2,4)U {(a,1) : || = 5 or 6} is
(KP? blown up at two points)/Z, :

Assuming P is indeed a system, any a € A would satisfy a = a(®?) @
a?3) galt2 gal®3) ga?4) where dima®? =1 = dima®%, dima*? =
1 =dim al®>%, and dima®® = 2. If we choose one-dimensional subspaces
a®? and a®>?, then a®? = [m( aC?)] and a®*) = [m(®)), a23)];
(M9 a23] and [m(®Y a®?)] are both one-dimensional subspaces of
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a®%)_ In fact, for every choice of subspaces a'®>?) and a(®?) ezcept one,
the space [m»?) a(23)] 4+ [m(%), a(®?)] is two-dimensional, i.e., it is a(®3).
In any case, A C Gr;(m(®?) x Gr;(m®¥) x Gry(m®?) ~ KP! x KP! x
Gra(K3), and more specifically,
A~ {(V1,V2,V3) € KP' x KP! x Gra(K3®) : 7(V1,V2) C Va3} where
7(V1,V,2) = span {ad E»(V;), ad E;(V3)}, or using homogeneous coordi-
nates and a Hall basis,
(a1, az;a3,a4) = spa.n{(al,ag, —ay),(asz,2a3 + ag,a4 — az)}. (Note that
7: KP! x KP! = Gr;(K?) U Gry(K?®).) We see that dim 7(V;,V;) = 1 if
and only if V; = (2 3) and V3 = (2,-1) (in homogeneous coordinates).

Now since P is symmetric in a; and a3, the symmetry group G
is S ~ Z,. One can check that (12).span{(2,3,—3),(b1,b2,b3)} =
span{(2,3,-3),(—=by,b; — 3b;,—b3)}, which is two—dimensional precisely
when span{(2, 3, —3),(b;,bz,b3)} is; when V; = (2,3) and V;, = (2,-1) €
KP!, (12).V; =(-2,-3)=V,and (12).V, =(-2,1) =V

Since the image of m®?) under ad E; and the image of m‘?>*) under
ad E, are each fixed planes in the three-dimensional space m®?)| suppose
we change bases so that ad E; : K? — K? takes (z;,7;) to (0, —z;,7;)
and ad E; : K? — K?® takes (z3,24) to (—z4,0,23). Then we see that
span {(0,—z2,71),(—24,0,23)} is two-dimensional unless z; = 0 = z3
(assuming (z1,22) # (0,0) # (3,24)).

Now to represent the plane V3, choose a line in K3, i.e., (yo,y1,¥2) €
K P?, which is orthogonal to V3. Then we have (0, —z3,z;) € V3 if and
only if (0, —z2,2,) and (yo,¥1,y2) are orthogonal, i.e., z,y2 — z2y; = 0.
Likewise (—x4,0,23) € V3 if and only if z3y; — z4y0 = 0. Thus A ~
{(z1,22; 73, %4590,¥1,¥2) € KP' x KP' x KP? : 2,y; = 2,y and 23y, =
z4yo}. We have (the restriction of) the projection map A — KP? and
the map KP? — A which maps (yo,y1,¥2) to (y1,¥2: Y0, ¥2; Yo, ¥1,¥2) if
(yo0,v1,¥2) # (1,0,0) or (0,1,0), and maps (1,0,0) to (z;,z2;1,0;1,0,0)
and (0,1,0) to (1,0; x3,z4;0,1,0). This lets us realize A as KP? blown up
at the two points (1,0,0) and (0,1,0).

6. Conclusion

For each positive integer s, we can consider any weight system for
nilpotent Lie algebras of maximal rank s to be a set of (s + 1)-tuples of
nonnegative integers. (For fixed step p, we can even think of each MRN
quotient of m(s,p) as an n—tuple of nonnegative integers for sufficiently
large n.) To each such system we associate an algebraic variety, which
may be a single point, a projective space, a product of projective spaces,
a Grassmanian variety, a projective space blown up at one or more points,

etc. Thus one should be able to define a function from the collection of
all systems (s and p fixed) to the collection of all varieties, mapping each
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system to its classifying space. What is not clear, however, is whether
or not such a function can be obtained without looking at each system
individually. Of course, this question may be premature since we are as
yet unable to provide sufficient conditions for a set of (s + 1)-tuples to be
a weight system.
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