Publ. Math. Debrecen
39/3—4 (1991), 253-261

Equation solving iterations based on tangential
convex functions

By MAGDOLNA VARTERESZ (Debrecen)

Abstract. For solving nonlinear equations SZABO [3] worked out a combined
root-finding algorithm which is based on Newton’s method and the always convergent
method of tangential parabolas. In this paper we are going to give generalizations of
this algorithm. To construct our combined methods we shall use the always convergent
methods of tangential convex functions which was introduced by us in [4].

§1.

The theory of interval arithmetic [2] was developed by the progress of
digital computers and machine-oriented numerical methods, as well as by
the demand for automatic registration of error accumulation. Later on,
with the help of this theory root-finding algorithms were worked out, which
are always convergent under strong conditions. These methods usually
generate such a quickly decreasing (in the sense of inclusion) interval-
sequence which contains zeros of a real function f : [a,b) = I C R — R.
In general, the function f is strictly monotone, differentiable as often as
necessary and obeys

f(a)- f(b) <O.

For the application of such methods it is necessary to know the intervals
containing the range of the derivatives f(¥), k =1,...,p.
MOORE [2]| was the first to give a procedure of this kind, i.e. the

interval arithmetic variant of Newton’s iteration. Then ALEFELD and
HERZBERGER [1] worked out further always convergent methods.

In this paper we present always convergent combined root-finding al-
gorithms which show great similarity with the results in [1]. At the same
time, none of the developed methods apply the tools of interval arith-
metic. A similar procedure can be found in SZABO [3]. Our methods can
be considered as generalizations of this procedure.
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Definition ([3]). An iteration function F(z,r) and the iteration
method given by this function are said to be always convergent with re-
spect to the function f : I C R — R, if we start from an arbitrary point
xo € I, f(zo) # 0, then the iteration sequence {z,} given by

(11) Tn41 =F(:r,.,r), n=0,1,...

1° is monotone;

2° converges to the zero a € I of f lying nearest to the right (or
to the left) of o — if such a exists — depending on the fact that during
the whole iteration process the direction parameter r is chosen as 1 (or
—1) consistently;

3° leaves I, if such a zero a does not exists.
We denote the set of always convergent iteration functions by A(f, I).

The method of tangential convex functions given by us in [4] is an

example for an always convergent iteration:
Suppose that

( f:[a,b) =1 C R — R is twice continuously
differentiable in I and the inequalities
(1.2) |ff$)| S M #0,
|f'(z)] < M, #0,
If"(@)| <My #0, z€l
are fulfilled.

Furthermore let

(g:(—h,h) = H C R — R be twice continuously
differentiable in H,

9(0)=4¢'(0)=0  and

' g (zx)>0 I zéH.

Let still exist g2 > 0 such that for suitable ¢ > 0
the condition ¢, < ¢"(z) is satisfied,

crefser s () aeeg ()] o

The Theorem 2.1. in [4] holds for the iteration function

(1.3)

Fen)=e-¢7 (-3r@) +o7 [T g (71 (-Sr@)
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s = sign(f(zo)), o €1

of the tangential convex functions method, i.e. if conditions (1.2) and (1.3)
are fulfilled then Fy(z,r) € A(f,I). Assume that

(@ € I is a simple zero of f,
0<m1 < |f’($)|s z€] and
(1.4) ¢ ¢"(z) < Qq,

zefot (E ot 2y) ot (La st -2y

If conditions (1.2), (1.3) and (1.4) are fulfilled, for the error estimate of
the tangential convex functions method we get

+ M,

5Q
(1.5) Icn+1| S % Ieﬂlzs
where e, = z, — a. (Theorem 2.2 in [4])
§2.
Suppose that the function f obeys (1.2) ,
(2.1) f(a)- f(b)) <0 and

f 1is either convex or concave in I.

(Consequently f' is monotone and f has an unique, simple zero in I.)
Let now, for example,

(2.2) f(a)>0 and f"(z)<0, z€ I
Starting from the points @y = a and by = b we calculate the iteration
sequences {a,} and {b,} by the help of the formulas

Qn+1 =Fg(aﬂ11)1 n=0111"°

and

il ) r o
Fi(bn)’ ne=l1,.:. .

So we get the sequence of intervals
Jn o [an,bn]g n= 0,1,... .

Usually if f is concave in I, we apply the tangent method (Newton’s
method) starting from that endpoint of I in which the value of f is
negative. If f is convex, we apply the tangent method starting from
f-positive endpoint of I.

bn+1 = b, —
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Theorem 2.1. If conditions (1.3) and (2.1) hold, then the sequence of
intervals J, calculated according to the above described method has the
following properties:

ol T s A G G SRR
.o Jﬂjjﬂ+11 ﬂ=0,1,... 3

3° 'Eo Te=w, fla)=0,

PROOF. Suppose that (2.2) is fulfilled. Then because of the Lemma
2.1. in [4] our tangential convex function is under f,so a, < a,
n=0,1,... . Since f is concave, our tangent is above f, that is
a<b,, n=0,1,... . Thus we have a € J, for all n > (.

Furthermore, {a,} is monotone increasing (Theorem 2.1. in [4]) and
{b.} is monotone decreasing, so Jn D Jn+1, n =0,1,....

Finally, by virtue of (2.1), f has an unique zero « in I and
Fy,(z,1) € A(f,I). From this it follows that {a,} tends to a. On the other
hand the relations

f(b) <0, f"(z)<0, =zel
are valid, therefore {b,} also tends to a. Because of

nlln}”(bn = an) == 0

the sequence of diameters of 7,

AiTs) =By —8ns n=01:u

o0
tends to zero and so we get (| Jn = a.
n=0
In other cases proof is similar. O

The decreasing of the diameters d(J,) of the intervals J, can be
estimated as follows:

Theorem 2.2. If conditions (1.3), (1.4) and (2.1) are fulfilled and f'
keeps its sign in I, then

5Q2 + M,
where m; = min {|f'(a)|, |f'(b)|}.

PROOF. Examine first the case (2.2). In this case f' is monotone
decreasing and keeps its sign in I, therefore we have

0<my =|f(a)l <|f'(z)l, ze€l

d(Jﬂ'l-l)S |d(Jn)|2s n=0,1,...,
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Then because of (1.5) we get

3 5Q2 + M,

~ (a—a,.)z,n=0,1,... .

la — an41]
For the error estimate of Newton’s method we have

|f"(n)] M,
|bpsr —a| < m(bn ~a)? < 2_m1(bn - a)?,

n € (a,b,), n=0,1,... . As a final result we can write that

lbrn+1 — @nt1| = |bnt1 — a| + |a — an4a]| <
- yl(bn —a) + Ll
2my my
5Q2 + M, [
my
5Q2 + M;

my

(a —an)? <
S (bn — @) +(a — an)’] <

S (bn _an)2

as well as

. + M.
d(Tn41) < 2Q2m—l2|d(~7n)|2, n=0,1,....

In the other three cases the proof is quite similar. a

§3.

Now starting from both initial point we apply the methods of tan-
gential convex functions to generate the sequences {a,} and {b,}. Let
agp = a, by = b and let us build the iteration sequences according to

aﬂ-l-]:Fgl(analL nzoslv“s

bn.|.] =F92(bn,—1), n=0,1,... .

Then we get the sequence of intervals 7, = [an,b,], n=0,1,....
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Theorem 8.1. If conditions (1.3) and (2.1) are fulfilled then the inter-
val-sequence {J,} derived from our method has the following properties:

 bs GEJﬂy n=0,1,...;
2° Jn DJﬂ-l'l! n=011$°'°;

o0
3° nojn=a$ f(a)=0.

PROOF. First suppose that f(a) > 0. Then because of the Lemma
2.1. in [4] the curve of the tangential convex function produced by the help
of the convex function g, is always under ff , but the curve of the tangential
convex function produced by the help of g, goes over f, so a, < a and
a < b,, thatisa € J,, n > 0. The case f(a) < 0 is proved in a completely
analogous manner.

It follows that J,4+1 C Jn for every n > 0, since {a,} is monotone
increasing and {b,} is monotone decreasing (Theorem 2.1. in [4]), and the
relation a € 7, is valid for n > 0.

Finally F,, and F,, are always convergent iteration functions and f
has an unique zero a in I, from which it follows that

lim ¢, =a, and lim b, = «.
n—oo n—oo

So
lim d(J,) = lim (b, —a,) =0,
that is =
m To=a. 0O
n=0

In the following theorem we give an error estimate:

Theorem 3.2. If conditions (1.3), (1.4) and (2.1) are fulfilled and f'
keeps its sing in I then

|d(Ta)I?, n=0,1,...,

d(Tns1) < iQ?—nj-‘y"—’

1

where m; = min{|f'(a)|, |f'(d)|},
¢ =max{c",c"},

and Q: = max{Q73',Q3}.

PROOF. Since |f'| is monotone in I, cleary

0<m < |f'(z)], z€l.
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But according to the error estimate (1.5) we have

'-’fng‘ + M,

|a—0n+1|5 2 (a-’an)ga n=0911-"

my
a.nd 92
c g2
S-Q7 + M,
bas1 —al S T2—(b, —a)’, n=0,1,... .
1

It follows that

[brt1 — @nt1| = [bns1 — | + [@ = @nya] <

9t Ao c92 no2
LLQS + M 208 + M
< T (a4 TE DG, oy <
£ M.
< 2Q2m+ 2 [(a—an)? + (ba — @)?] <
1
[
3 M
SlQ—zy-nt—z(bﬂ—a,,)z, N 1 B PR
1

as well as

Q2 + M,

d(Tnt1) < 2 AT, n=0,1,...,

1

which was to be proved . a

§4.

Finally we shall show several numerical examples:
1.) f(z) =expxz +10x —2; M; =expl;
g(z) =z c=M;/2

e b, b, —a,
0 1 1
0.0904041752 0.1572539457 1!
0.0905251012 0.0907532514 10~*
0.0905251012 0.0905251038 10~*
0.0905251012 0.0905251013 1)

W= o3
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2) fz)=2*—-2-1; M =83; M;=2;
3
dz)=vV1+22-1; c= max{\/éM], (@) —Mg}

n an b, b, — an
0 1 —0.5 1

1 —0.6666666667 —0.6105365195 1072
2 —0.6190476191 —0.6180006124 i | g
3 —0.6180344478 —0.6180339880 10~°
4 —0.6180339888 —0.6180339889 | s

3.) f(z)=sinz—08z; M=15; M =15 M;=1;
g(z) =1-V1-2%
PO {Mz, \/M’+\/M‘~|2-4M’Mf+1 }
n (7 7 b, b —an
0 15 3 1
3 1.806832324 2.087995413 1
2 1.888838904 1.912229258 154
3 1.895403150 1.895652628 10
4 1.895494265 1.895494282 102
5 1.095494265 1.895494267 0
4,) f(z)=2*—-2-1; M; =12
g(z)=chz-1;, c=M,
n i b, b, —ay
0 1 2 1
1 1.271346645 1.545454545 1071
2 1.323160837 1.359614916 10-*
3 1.324716597 1.325801345 10°°
4 1.324717957 1.324719049 10™°
5 1.324717957 1.324717957 0
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