A note on 'optimal measures'

By ISTVÁN FAZEKAS (Debrecen)

Abstract

The aim of the paper is to give an elementary proof for the structure theorem of 'optimal measures'.

The structure theorem of 'optimal measures' was proved in [2] using the Zorn lemma. In this paper an elementary proof for that structure theorem is given.

Definition 1 (see [1], [2]). Let (Ω, \mathcal{A}) be a measurable space. A function $\mu: \mathcal{A} \rightarrow[0,1]$ is called an 'optimal measure' if
(A1) $\mu(\emptyset)=0, \mu(\Omega)=1$;
(A2) $\mu(A \cup B)=\max \{\mu(A), \mu(B)\}$ for all $A, B \in \mathcal{A}$;
(A3) if $A_{n} \in \mathcal{A}, n=1,2, \ldots$, with $A_{1} \supseteq A_{2} \supseteq \ldots$, then $\mu\left(\bigcap_{n=1}^{\infty} A_{n}\right)=$ $\lim _{n \rightarrow \infty} \mu\left(A_{n}\right)$.

Throughout the paper only measurable subsets of Ω will be used. $A_{n} \downarrow A$ means that $A_{1} \supseteq A_{2} \supseteq \ldots$ and $\bigcap_{n=1}^{\infty} A_{n}=A\left(A_{n} \uparrow A\right.$ is defined in an analogous way). $a_{n} \downarrow a$ means that the sequence of numbers $\left\{a_{n}\right\}$ is decreasing and it converges to a ($a_{n} \uparrow a$ is defined similarly).

Let $(\Omega, \mathcal{A}, \mu)$ with 'optimal measure' μ be fixed. The following sequence of simple remarks leads to the description of the structure of μ. (We give a self-contained proof, some parts of our arguments are parallel to those of [2].)

This research was supported by the Hungarian Foundation for Scientific Research under Grant Number OTKA-T016993/1996.

Remark 2. Axiom (A3) implies that there is no infinite sequence of pairwise disjoint sets B_{n} such that $B_{n} \geq \varepsilon>0$ for all n.
μ is monotone. There are no infinite 'properly' increasing chains of sets:

Remark 3. Let $A_{i} \in \mathcal{A}, i=1,2, \ldots$ If $A_{1} \subseteq A_{2} \subseteq \ldots$, then there exists n_{0} such that $\mu\left(\bigcup_{i=1}^{\infty} A_{i}\right)=\mu\left(A_{n}\right)$ if $n \geq n_{0}$.

Proof. Let $A=\bigcup_{i=1}^{\infty} A_{i}, \quad \varepsilon=\mu(A)$. The case $\varepsilon=0$ is obvious. Let $\varepsilon>0$. As $A-A_{n} \downarrow \emptyset$, if $n \rightarrow \infty$, so there exists n_{0} such that $\mu\left(A-A_{n}\right)<\varepsilon$ if $n \geq n_{0}$. As $\varepsilon=\mu(A)=\max \left\{\mu\left(A_{n}\right), \mu\left(A-A_{n}\right)\right\}$ we obtain that $\mu\left(A_{n}\right)=\varepsilon$ if $n \geq n_{0}$.

It follows from the axioms that $\mu\left(\bigcup_{i=1}^{n} A_{i}\right)=\max _{1 \leq i \leq n} \mu\left(A_{i}\right)$. The same is true for countably infinite unions:

Remark 4 (Lemma 1.4 of [2]). Let $A_{i} \in \mathcal{A}, i=1,2, \ldots$. Then $\mu\left(\bigcup_{i=1}^{\infty} A_{i}\right)=\max _{1 \leq i<\infty} \mu\left(A_{i}\right)$.

The proof follows from Remark 3.
Remark 5. Let $\varepsilon>0$. Then the set of values of $\mu(A), A \in \mathcal{A}$, which are greater than ε is finite.

Proof. If $M=\{\mu(A): A \in \mathcal{A}, \mu(A)>\varepsilon\}$ is an infinite set, then there exists a point of accumulation of M. Then there exists either a strictly increasing infinite sequence $\left\{\varepsilon_{i}\right\} \subseteq M$ or a strictly decreasing infinite sequence $\left\{\varepsilon_{i}\right\} \subseteq M$. The first case contradicts to Remark 4. In the second case let $\mu\left(A_{i}\right)=\varepsilon_{i}, i=1,2, \ldots$, and let $B_{i}=A_{i}-\left(\bigcup_{k>i} A_{k}\right)$, $i=1,2, \ldots$ Then B_{1}, B_{2}, \ldots are pairwise disjoint. Moreover, the strictly decreasing property imply $\mu\left(B_{i}\right)=\varepsilon_{i}, i=1,2, \ldots$. This contradicts to Remark 2.

It is obvious that the number of pairwise disjoint sets A_{i} with $\mu\left(A_{i}\right)=$ $\varepsilon>0$ is finite. Moreover, the cardinality of such sets is bounded:

Remark 6 . Let $\varepsilon>0$. Then there exists a finite constant k_{ε} such that for any sequence of pairwise disjoint sets $A_{i} \in \mathcal{A}$, with $\mu\left(A_{i}\right)=\varepsilon$, $i=1,2, \ldots, k$ we have $k \leq k_{\varepsilon}$.

Proof. Suppose that there exists a sequence $n_{i} \rightarrow \infty$ such that for each $i=1,2, \ldots$ there exist pairwise disjoint subsets of Ω

$$
A_{1}^{(i)}, A_{2}^{(i)}, \ldots, A_{n_{i}}^{(i)}
$$

with $\mu\left(A_{k}^{(i)}\right)=\varepsilon, k=1,2, \ldots, n_{i}, i=1,2, \ldots$. We can assume that for each i the set $\left\{A_{1}^{(i)}, \ldots, A_{n_{i}}^{(i)}\right\}$ is maximal in the sense that there is no subset C_{i} with $\mu\left(C_{i}\right)=\varepsilon$ and $C_{i} \cap A_{k}^{(i)}=\emptyset$ for each k. Let $\left\{\hat{A}_{1}^{(1)}, \ldots, \hat{A}_{n_{1}}^{(1)}\right\}$ be defined as $\left\{A_{1}^{(1)}, \ldots, A_{n_{1}}^{(1)}\right\}$. It is easy to see that one can substitute the original set $\left\{A_{1}^{(2)}, \ldots, A_{n_{2}}^{(2)}\right\}$ with a set $\left\{\hat{A}_{1}^{(2)}, \ldots, \hat{A}_{n_{2}}^{(2)}\right\}$ which consists of pairwise disjoint sets with $\hat{A}_{k}^{(1)} \supseteq \hat{A}_{k}^{(2)}$ for $k=1,2, \ldots, n_{1}$ and $\mu\left(\hat{A}_{k}^{(2)}\right)=\varepsilon$ for $k=1,2, \ldots, n_{2}$. Now, apply the above argument for $\left\{\hat{A}_{1}^{(2)}, \ldots, \hat{A}_{n_{2}}^{(2)}\right\}$ and $\left\{A_{1}^{(3)}, \ldots, A_{n_{3}}^{(3)}\right\}$. By induction we get an array of sets for which $\bigcap_{i} \hat{A}_{k}^{(i)}=B_{k}, i=1,2, \ldots$, is a sequence of pairwise disjoint sets with $\mu\left(B_{k}\right)=\varepsilon$ for each k. It is a contradiction.

The main feature of an atom (in terminology of [2] indecomposable atom) that it can not be split into two 'essential' parts. More precisely:

Definition 7. A set $A \in \mathcal{A}$ is called an atom if $\mu(A)>0$ and and for any $B \in \mathcal{A}$ either $\mu(A \cap B)=\mu(A), \mu(A-B)=0$, or $\mu(A-B)=\mu(A)$, $\mu(A \cap B)=0$. A set of pairwise disjoint atoms is called maximal if there is no set of positive μ measure which is disjoint to each member of the set.

Remark 8. Let the values of the function $\mu: \mathcal{A} \rightarrow[0,1]$ be $\delta_{1}>\delta_{2}, \ldots$, $\delta_{k} \downarrow 0$ (otherwise the sequence $\delta_{1}, \delta_{2}, \ldots$ is finite). For each δ_{k} let

$$
B_{1}^{(k)}, B_{2}^{(k)}, \ldots, B_{n_{k}}^{(k)}
$$

be pairwise disjoint subsets with $\mu\left(B_{l}^{(k)}\right)=\delta_{k}$, for $l=1,2, \ldots, n_{k}$, for which the cardinality n_{k} is maximal. Then the sets

$$
\hat{B}_{i}^{(k)}=B_{i}^{(k)}-\left[\bigcup_{l>k}\left(\bigcup_{j=1}^{n_{l}} B_{j}^{(l)}\right)\right],
$$

$i=1,2, \ldots, n_{k}, k=1,2, \ldots$, is a maximal set of pairwise disjoint atoms.

Proof. It is obvious that the sets $\hat{B}_{i}^{(k)}$ are disjoint. As the sequence $\left\{\delta_{k}\right\}$ is strictly decreasing we have $\mu\left(\hat{B}_{i}^{(k)}\right)=\delta_{k}$ for all i and k. As the cardinality of each set $\left\{B_{1}^{(k)}, B_{2}^{(k)}, \ldots, B_{n_{k}}^{(k)}\right\}$ is maximal therefore each $\hat{B}_{i}^{(k)}$ is an atom and there is no set of positive μ-measure outside $\bigcup_{k=1}^{\infty} \bigcup_{i=1}^{n_{k}} \hat{B}_{i}^{(k)}$.

The above remarks imply the following structure theorem.
Theorem 9 (see [2], Theorem 1.2). There exists a countable set of atoms $A_{i}, i=1,2, \ldots$, such that for each $B \in \mathcal{A}$ we have $\mu(B)=$ $\max \left\{\mu\left(B \cap A_{i}\right): i=1,2, \ldots\right\}$.

Remark 10. The maximal set of disjoint atoms is unique in the following sense. If $\left\{A_{i}: i=1,2, \ldots\right\}$ and $\left\{B_{i}: i=1,2, \ldots\right\}$ are two maximal sets of pairwise disjoint atoms then there exists a one-to-one correspondence $A_{i} \rightarrow B_{i}$, say, of the first set onto the second such that $\mu\left(A_{i} \cap B_{i}\right)=\mu\left(A_{i}\right)=\mu\left(B_{i}\right)$ and $\mu\left(A_{i} \cap B_{j}\right)=0$ for $i \neq j$.

Remark 11. Atoms in the 'optimal measure theory' are the same as in the Lebesgue measure theory in the following sense. If A is an atom with $0<\mu(A) \leq 1$ where μ is a measure in Lebesgue measure theory then A is an atom endowed with the same 'optimal measure' μ and vice versa.

Remark 12. The structure of 'optimal measures' is far from being as rich as measures in Lebesgue's theory. Optimal measure can be described as follows. Choose a sequence $a_{n} \downarrow 0$ with $0<a_{n} \leq 1$, for all n, and choose atoms A_{n} (in the sense of the Lebesgue measure theory) with $\mu_{n}\left(A_{n}\right)=a_{n}$, $n=1,2, \ldots$ Let $\Omega=\bigcup_{n=1}^{\infty} A_{n}$, and let \mathcal{A} be the σ-algebra generated by the σ-algebras on atoms A_{n}, and let $\mu(A)=\max _{1 \leq n<\infty} \mu_{n}\left(A_{n} \cap A\right)$ for each $A \in \mathcal{A}$.

Furthermore, it is easy to see that any measurable function is almost surely constant on an atom. Moreover, if $f^{(n)}, n=1,2, \ldots$, is a sequence of measurable functions on $(\Omega, \mathcal{A}, \mu)$, where μ is an 'optimal measure', then one can find a maximal set $A_{k}, k=1,2, \ldots$, of pairwise disjoint atoms such that each function is constant on each atom. Therefore up to a set of zero measure the sequence of functions can be described with the sequence of numerical sequences $\left\{\varphi_{k}^{(n)}, k=1,2, \ldots\right\}, n=1,2, \ldots$, where $\varphi_{k}^{(n)}=f^{(n)}(\omega)$ if $\omega \in A_{k}$, for each k and n.

References

[1] N. K. Agbeko, On optimal averages, Acta Math. Hungar. 63 (2) (1994), 133-147.
[2] K. N. Agbeko, On the structure of optimal measures and some of its applications, Publ. Math. Debrecen 46/1-2 (1995), 79-87.

ISTVÁN FAZEKAS
INSTITUTE OF MATHEMATICS AND INFORMATICS
LAJOS KOSSUTH UNIVERSITY
H-4010 DEBRECEN P.O.B. 12
HUNGARY
E-mail: fazekasi@math.klte.hu
(Received October 19, 1996; revised April 24, 1997)

