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On k-Lagrange geometry

By MAGDALEN SZ. KIRKOVITS (Sopron)

Abstract. In this paper we describe the theory of k-Lagrange-geometry. It is a
suitable geometrical model for studying variational problems of multiple integrals in a
k

geometrical manner. We consider the vector bundle n = (@ TM,x, M | and study

k
the geometry of the total space E = @D TM.
1

1. Introduction

Preliminaires and motivations.

It is known that the fundamental problem in the calculus of variations
for multiple integrals can be briefly formulated as follows ([11]). Let R be
some domain of the space of the variables z*. (In the sequel Latin and Greek
indices assume the values 1,...,n and 1,... ,k (k < n), respectively, the
summation convention being used in both cases.) We will call admissible
the class of functions z*(t*),z'(t%),... defined on the same domain G, of
t> if they are of class C? and coincide with each other on the boundary
aGg of G(

Suppose that we have a function £(z?(t?), 2/ (tﬂ)) &) := 8z /ot
also of class C? and defined over each space Cy : z' = :::'(t" ) of the ad-
missible class. Moreover, let G be a fixed, bounded and simply connected
domain in the k-dim. space of t*. One can then form the foﬁowmg k-fold
integral

(1.1) I(C,,):/L(xf(tﬂ),:eg(t”)) d(t);  d(t):=dt'...dt"

The fundamental variational problem for a multiple integral (1.1) is to
establish necessary and sufficient conditions for an admissible set of func-

tions z'(¢®) in order that it gives an extreme of (1.1) relative to other



264 Magdalen Sz. Kirkovits

admissible sets. A necessary condition for this is that the first variation 6
of the fundamental integral (1.1) should vanish. This implies that z'(t%)
must satisfy the system of n second order partial differential equations:

(L2} &ll) = J 31? - aﬁ. =0 (summation over a).

di*oxs. O

Remark. €; are the components of the covariant Euler-Lagrange vec-
tor ([12]).

A question of the variational calculus for single or multiple integrals is
the equivalence between two variational problems of the same type. This

was studied by C. CARATHEODORY ([1]), A. MOGR ([9], [10]) and also by
H. Runp ([11], [12]).

In [4] the authoress has considered a generalized version of the equiva-
lence of two variational problems for single integrals treated by MOOR ([9]).
This problem has the following form in Lagrange spaces (M, L*(z,y)) and

(M, L(zx,y)) ([6], [7])
(1.3) ei(L*(z,y)) = Mz,y) €i(L(z,y)); Mz, y) #0,

where A depends not only on z but on y too. In [4] two geometrical
conditions were found which are equivalent to (1.3). Moreover, necessary
and sufficient conditions for this equivalence were established. We note
that in the proofs only geometrical methods of the theory of Lagrange
spaces were used.

A. MOOR ([10]) gave the most general definition of the equivalence
of two variational problems for multiple integrals and he investigated it in
some important cases but he did not investigate its geometrical meanings.

Our purpose is to construct a geometrical model for multiple integrals
in the calculus of variations, then to study the MOOR equivalence in a
geometrical manner and to give other applications. In a joint paper ([8])
we have briefly sketched the first results. Now we describe the theory of k-
Lagrange geometry by using as a model the geometry of the total space of
a vector bundle developed by R. MIRON ([5]). We remark that our theory
is based on the study of a metric which is derived from a Lagrangian and
thus it differs from Giinther’s theory ([3]).

k
2. Vector bundles, differential structure on E = @TM
1

We consider the 1-jet bundle 7'(R*,TM) (k < n) over an n—dimensi-
onal manifold M. This bundle is isomorphic to the vector bundle

Hom(R*,TM) — M. Moreover, if we fix a basis (e1,. ,ex) of R* there is



On k-Lagrange geometry 265

k-times

x * - *
the isomorphy: Hom(R¥,TM)~ @TM =TM & TM & ...& TM ([3]).
1

k
We shall systematically use the latter fact. Denoting E = @ TM and by
1

7 its projection on M, we shall study the vector bundle n = (E, 7, M) and
the geometry of the total space E. Clearly dim E = nk.

Let (U, ) be a chart on M. Then (U x R*" ) is a vector chart of the
k
vector bundle  where ¢ : 7=1(U) = U x R*". For any X, € @ T: M, z €
1
M we get

(2.1) P(X:)=(va), va€TM.
Hence we have for every fixed a

(2.2) )gz = y! (0/0z"),.

k
This means that any vector X, € @ T, M is determined by the following
1

components
(2.3) X, = (yid/0z,... ,yj0/0z") .

We put (z') = ¥(z) and define

(2.4) h:x~Y(U) = ¢(U) x RF"
by
(2.5) WXs,... X,) = (a',y,) € R* x R*"

which are canonical coordinates on #~!(U). The set of charts (7#~'(U), h)
k

defines a vector atlas on E = @ TM.
1

Denote 1; o d);'l(:r") = (7?), then

(Ao B MY 00) = (@@ s oo s 2™) BT (zlve ). (85 :=8/02%)
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i.e. for a coordinate transformation on U the corresponding coordinate
transformation on #~!(U) is

(2.6) 7’ =7(z',...,z2"); rank(OZ’)=n
' 7. =3yt  (a=T1,k)

The transformation law shows that (y’ ) can be considered as a contravari-

ant vector. In the sequel we denote y!, by y® where ( ;) := a and use a

shorter notation a, b, c,...(a',b',c,...) instead of double contravariant (or

covariant) indices (}) (or (¢)) and ('c;) (or (§)) respectively, if the com-

putation allows it.

Let T, E be the tangent space of E at u. Its basis is (8;,0;") := (9;, 9a),
where 0; := 0/0z*' and 0, := 0 = 0/0y,,. Hence a tangent vector X, €
T, E looks locally as follows
27 X, =X'8;+ X.0° :=X'0; + X9,

' (6 = 1,nk, (X*) € R®, (X*)€ R™).

k
The change of the local basis on E = @ TM is given by
1

0; = 0T 0k + 9;07"y4By;  (Bx :=0/07") (D}, := 0/dy,,)

2.8) ki e
( o = 6.3"6,‘ (=1,8)

The dual basis is denoted by (dz',dy.). Its transformation law follows
from (2.6):

d7 = T dz*;

(2.9) . SR T _
dy, = 0;0:T 'yl dz" + OkT'dy,, (a=1,k).

k
Let us consider the vector bundle (GB TM,n, M ) = (E,n,M). Then
1

Dr : TE — TM is the differential map of =. The mapping D7 is a

m—morphism which maps the tangent bundle (TE,7g, E) of E into the

tangent bundle (TM,n,M) of M. Here rg : TE - Eand n : TM —- M

are the projections. Put (VE,ny,E) := kerDr. VE = (VE,ny,FE) 1s

called vertical subbundle over E. Its total space is VE = |J V,E. The
u€E

vertical subspace V,E of T, E is spanned by {0,}. It is easy to see that
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X, € V,E iff X' = 0. The map u — V,E over E determines the vertical
distribution. Since [9,, 0] = 0 one gets that this distribution is integrable.
Now we define for each a an operator

(2.10) J:T.E—T.E
by
(2.11) J@)=0, J@%=0 (B=TF).

It is easy to check that

(2.12) J=0 snd keeJ =ImT =ViE

hold for every a.
So we have obtained that the manifold E can be endowed with k—different
almost tangent structures.

o
It is not difficult to see that the Nijenhuis tensor associated to J
vanishes for every a, i.e. the almost tangent structures are integrable.

k
3. Nonlinear connection on E = @ TM
1

By the general theory the following sequence of vector bundles
(3.1) 0—-VE {;’ TE = 7*TM — 0

is an exact sequence. Here 7n*(TM) is the pull-back of TM over E by
7, ¢ is the inclusion map and 7!(X) is given by #!/(X) = (7p(X), D7(X))
where g : TE — E is the projection.

Definition 8.1. A nonlinear connection on E is a splitting at the left of
the sequence (3.1), i.e. amap C : TE — VE such that C o« = id|vg. The
kernel HE = (HE, ny, E) of the morphism C is a subbundle of TE =5
which will be called the horizontal bundle over E.

One gets for the total spaces
(3.2) TE=HE®@QVE (Whitney sum).

Conversely, the existence of a subbundle HE of TE =5 E which
satisfies (3.2) implies the existence of a morphism like C, i.e. a nonlinear
connection on E.
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Remark 3.1. By a general result there exist always nonlinear connec-
tions on E provided M is paracompact ([5]).

The exact sequence (3.1) looks locally as follows
0 — $(U) x R*™ x {0} x R*™ 5 (U) x R*™ x R™ x R*" —

— p(U) x R*" x R® = 0,

where
!'(x'.l yT O,X) = (x3 y‘O’ ‘Y); Tr!(I?y'!X’X) i (I’ yQX)'

Here z := (z'), y := (y*) and X := (X'), X := (X*).
The map C' is described locally as

(2,9, X, X) = (2,9,0,Cy(z,y, X, X)),

where C,, is a map linear in X and X . The condition C o = id|y g implies
that

(3.3) (a) Co(z,y, X, X) = Xi + Nii(z,y) X7 := X® + N% X7,
This shows that C can locally be written as
(33) (b) (Is y1X!X) _}(x1y101Xa +Naj(3:1y)Xj)‘

We have obtained a set of real functions N°; defined on the domain of the
local charts of E. These functions determine a nonlinear connection N.
It is not difficult to check that if N'; is a similar set of functions

on 71 (V) with UNV # 0 then on 7=} (U N V) we have the following
transformation law

(3.4) Nui(Z,9)0,7 = BT Nk (z,y) — vk 0,8 T".

Conversely, a set of functions N%; which transform by (3.4) when the local
chart is changed, defines a nonlinear connection on E.
In view of (3.2) the existence of a nonlinear connection implies the

existence of a T-isomorphism between HE —% E and E — M. It follows
that every tangent vector field Z on M determines a horizontal vector

Z" on E such that Dn(Z") = Z. Z" is the horizontal lift of Z. Taking
8; = (0;)" one obtains a local basis of H,E (u € E). Generally we have
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§; = Al9; + B ,9%. From Dx(é;) = d; and C(4;) = 0 we get A! = §] and
B), = -N};

at!

respectively. Thus we have
(3.5) §; = 8; — N1,0¢ := 8; — N%9,.

It is clear that (é;,8,) is an adapted basis for the decomposition (3.2). Its
dual basis is (dz*, éy®), where

(3.6) 6y® = dy® + N*dz’.
Their transformation laws are

(a) 6 = O, (3, := 8/62°) (b) OF = 87D, (3, := /)

(3.7) ; .
(c) dz' = 9;7'dz? (d) 6y, = 9,T 6yl

By a direct calculation we obtain

(3.8) (a) [6,0k] = R%jx0. (b) [¢;,0s] = OpN;0,
where
(3.9) R%x = 6 N*% — 8; N%;.

Thus the horizontal distribution u — H, E is integrable iff R%;x = 0.

Definition 8.2. The tensor algebra spanned by 1, é;, 9,, dz', §y° is
called the algebra of d-tensor fields over F(E).

For convenience we give examples of tensor fields of type (1, 1), (2, 0)
and (0, 2): t';6; @ dz?, t%0a ® 6yb, t1%6; ® O, 1°%0, ® By, taj6y® ® dz’.

Remark 3.2. All the coefficients of these tensor products change like
the coefficients of a tensor field on M with respect to the Latin indices,
the Greek indices being unchanged.

Remark §.3. The functions R?;; define the d-tensor field R =

R“jkd.rj ® dz* ® 8, which is called the integrability tensor of the horizontal
distribution (cf. [6]).

k
4. Tensorial structures on E = @TM
1

Let us suppose that there exists on E a nonlinear connection such
that (3.1) holds. Then two supplementary projectors v, h and an almost



270 Magdalen Sz. Kirkovits

product structure P = h — v can be considered. Locally these operators
are as follows:

(a) v(&i)=0  (b) v(8:) =0,
(4.1) () h(&)=& (d) h(d.)=0

(e) P(&i)=6  (f) P(8a)=—0a.
It is easy to check that the following equalities hold

(4.2) JP=J; PI==T
for every a.

For P we have

Theorem 4.1. If P: T,E — T,E (u € E) is an endomorphism satis-
fying (4.2) then P? = I and the eigenspace corresponding to the eigenvalue
—1 is a vertical subspace.

PROOF.
A. P can be expressed locally as follows:

P(8;) = P’;0; + P*;8,; P(8,) = P,’9; + P.,%5,.
Then 3 P = 3 yields PJ; = 6{ and P,’ = 0. Moreover, P.:c; = —5 implies
that P(9,) = —0,. Hence P(9;) = 9; + P%0, and P(0,) = —0,. Using

these expressions a short calculation shows that P? = I.

B. Suppose that PX = - X (X € T,FE). From this and .;P — ; we
obtain 7X = JPX = ._’_]'(—X) = —JX and hence JX = 0. This implies
X'=0in X = X'9; + X%8,,i.e. X € V,E.

To a nonlinear connection we can associate a set of F'—structures in

K. Yano's sense ([13]). Indeed, if we put

(4.3) E(éi) i where 697 = {
F(07) = 6°%s,

we get k tensor fields of type (1, 1) on E which satisfy

1L, o=
0, aff

(4.4) FPyF=0 (a=T1F

as it is easy to check.
Another set of tensorial structures on E can be defined as follows:

(45) Q) =d7, Q@) =6, QO)=0 (a#5).
We can easily calculate that
(4.6) Q@ -Q=o.

In the last part of the next section we study the integrability of these
structures.
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&
5. d—connections on E = @ TM
1

Let us suppose that E is endowed with a nonlinear connection.

Definition 5.1. A linear connection on E is a map C : TE — FE for
which

C(z,y, X, X) = (z, X* + K&(2)X'y®)  (a,b=1,nk)

holds.

Remark 5.1. The real functions Kj.(z) defined on M determine a
linear connection D on E ([6]).

Definition 5.2. A linear connection D on E is said to be a distin-
guished connection (shortly d-connection) if D preserves by parallelism
the vertical distribution u — V,E as well as the horizontal distribution
u— HE.

Theorem 5.1. A linear connection D on E is a d-connection iff one
of the following conditions holds:

(a) vDx(hY)=0, hDx(vY)=0 (X,Y € X(E))

(b) Du=0, Dh=0

{c) DP=0

(d) DxY = hDx(hY)+vDx(vY) (X,Y € X(E))

(e) vDx(hw)=0, hDx(vw) =0 (w € AY(E), X € X(E))
(f) Dxw = hDx(hw)+ vDx(vw).

PROOF.
A. Suppose that D is a d-connection. The Definition 5.2. gives

Dx(hY) € HE and Dx(vY) € VE. Hence we directly get the condi-
tion (5.1) (a). The conditions Dv = 0 and Dh = 0 are equivalent to
Dx(vY) = vDyxY and to Dx(hY) = hDxY respectively. Since we have
an almost product structure P = h—v the condition (c) is equivalent to (b).
Moreover, since DxY = hDx(hY )+ vDx(hY) + hDx(vY) 4+ vDx(vY)
(cf. [6]) and D is a d—connection we get the condition (d). The conditions
(e) and (f) are analogous to (a) and (d).

B. A direct calculus shows that any condition in (5.1) is sufficient in
order that D should be a d-connection.

The following decomposition holds and is unique for every X,Y €
X(E):

(5.2) DxY = DaxY + D,xY.
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Putting
(5.3) D%Y = D,xY, D%w = Dyxw, D%(f) = (hX)f
for X,Y € X(E), w € AY(E), f € A°(E) (cf. [6]) and extending this

operator by lmeanty and Leibniz rule one obtains an operator of covari-
ant derivation in the algebra of the d-tensor fields over E called the h-
covariant derwation. Similarly putting

(5.4) D%Y = D,xY, D%w = Dyxw, D%(f) = (vX)f

we obtain the operator of the v—covariant derivation in the same algebra.
In local coordinates D* and D", respectively appear as follows:

(a) D} 6; =Lib; D)& =L%,0% Db f=6cf
(b) Djyed; = Cjiedi; Dypd) = ClR07: Dy f =0/ f.

Jok

(5.5)

So we obtain a set of functions defined locally on E

(56) DU = (Lix(z,y), L4(z,y), Ci(x,v), Clit(z, )

which gives a d-connection D.

Let ' = 2'(7) and T' = 7'(z) respectively be a transformation of the
local coordinates on a neighbourhood of M. Then the above coefficients
change as follows:

Lk = 0,30;2"0ia" Ly, — Om0aT'0;2™ Dy
L:ik = 9,7'0; :cmakx“L;‘f,m OO 5.5-3"‘5kx";

Cjk = 8,7'0;2™02"C3¥ ;

T = 0,70,z Brz"C1P

ammn’®

(5.7)

Theorem 5.2. The formulae (5.7) characterize the coefficients of a
d—-connection. If a set of functions DI satisfying (5.7) is given on E then
by (5.5) (a), (b) and (5.7) we obtain h-and v-covariant derivatives, and
by (5.2) a d-connection on E.

We give the local form of the h- and v—covariant derivatives of some
tensor fields:
h—covariant derivative:

v-covariant derivative: :
e = D05 OS5 — CL18;.
It is obvious that the vector field C' = y®0, is globally defined on E.
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Definition 5.3. A d-connection D on E is said to be of Cartan type
if
(a) D%C =0, (b) D%C =vX
hold for every X € X(E) and
(5.8) (c) D% =y’Li — N% =0.
D% is called the deflection tensor of D.
Theorem 5.3. A d-connection D on E is of Cartan type iff
(5.9) D% =0 and y*Cg, = 0.
Indeed, the conditions in (5.9) are equivalent to (5.8) (a), (b), (¢).
The torsion of a d-connection D on FE is defined as usual:

T(X,Y):=DxY - DyX - [X,Y]); (X,Y € X(E)).

Decomposition into vertical and horizontal parts leads to the following fiv
d-tensor fields which will be called the torsion tensors of D :

T(X,Y) = hT(hX,hY) = D% (RY) — D2 (hX) — h[hX, hY];
R(X,Y) = vT(hX,hY) = —v[hX, hY];
C(X,Y) = AT(hX,vY) = —D¥(hX) — h[hX,vY];
P(X,Y) = vT(hX,vY) = D% (vY) — v[hX,vY];
S(X,Y) =vT(vX,vY) = DY (vY) — D} (vX) — v[oX,vY].
(X,Y € X(E)).

(5.10)

In local coordinates we get
T(8;,6x) =T';bi; R(bk,8;) = R%xBa; C(bk,0) = Cisbi
P(6k,0) = P%k0a; S(05,0:) = Cy.0a
and the torsion tensor fields of the d-connection D are
(@) Thj=Li—Ly (b)) R% =6;N% — 5N
(c) Chy (d) PYr=0N%—L% (e) S% =Cj.—Cg.

In the usual way we get six curvature tensors. These are the followi
ones in local form:

R(6x,8;)61 = Ri'j1é;, R(6x,6;)0 = Ry*;x0a,
(5.12) R(8.,6)8; = Pj'i.$;, R(8.,6x)0 = Py*c0a,
R(acm ab)‘sj — Sjibcél-v R(ad1 ac)ab = S'bacdaav

Next we define a particular case of d-connection.

(5.11)
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Definition 5.4. A linear d-connection DI’ = (L;k, Lfkj,
on FE is normal if Dg' = 0, i.e. the F-structures I?" are absolute parallel
by D for every a.

Since Dx(FY ) = (DxF)Y +F(DxY) the condition DF = ( is equiv-
alent to

cit, Ch)

ajk

(5.13) Dx(FY) = F(DxY).

From this we obtain in local coordinates for h—covariant derivatives:
(5.14) (a) D} F(§;) = F(D},§;),

ie. (b) o 8 =L, 00

Moreover, we have

(5.15) (a) D!, F(0%) = F(D!0?),
ie. (b) 85L5:6, = Lia,6,.

So we obtain
(5.16) L2 = 88Ls..
If @ # 3 then

h iaBy _ Bk afy _
(5.17) D;s, F(9)) = F(Dy, 9)) = 0.
We can carry out similar calculations for v-covariant derivatives:
(5.18) (a) 50 F(8;) = F(D},6;),
ie. (b) Cria =0,
The next step is the following
(5.19) (a) Dy F(d))= F(Dyd)) (a=n),
ie. (b) 620306, = ¢ 1f%,.
Finally we get
(5.20) erl =80

Hence we have
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Theorem 5.4. A linear d-connection DI is normal iff

(5.21) (a) L2, =65L
and (b) cxl =85!
hold.

Thus a normal d-connection is completely determined by (L; £ C;f)

Its torsions are as follows:

(a) T =Li;-Li (b) Tay;=Riy; () Cji

(5.22) i . g, F Bka o kg
(d) Pl =0/Ni, —68Li, () SH?=85Ck —85CT.

The number of curvatures reduces to three instead of six.

[+]
In the previous section we have defined a set of F-structures F.

Remark 5.2. Because of

af _ A a
(a) FF(&) = —6°%6; =0, (b) FF(6) = —6*F6; =0,
(523} () (agtd)
2 8y g PRo? avgP
(¢) FF(9])=-60;, (d) FF(9])= —-60,
we get
af B o
(5.24) EREFF o o8

On the other hand we have
(5.25) =P

o o
(5.25) shows that the operators P, = —F?% P, = I + F? are two supple-
mentary projectors, and taking their kernels one obtains two distributions
D, and D, which are spanned locally by {3:’} (B # a) and (é;,0¢), re-
spectively.
e}
We define in the sense of V. Duc ([2]) that F is integrable if D; and

D, are involutive. He treated a general Fstructure and proved that it is
integrable iff the Niyjenhuis tensor of its square vanishes.

Next we prove
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Proposition 5.1. The Nijenhuis tensor of }?’2 is equal to zero iff
(5.26) (a) Rf; =0 and (b) 8F(Ng)=0
for any 3 # a.

o
PROOF. The Nijenhuis tensor of F? is

o o o 2] [~ [+
N« (X,Y)= [FQX, FQY] — F? [F2X, Y] — F? [X, FgY} +
(5.27) L
+ FX,Y] (X,Y) € X(E)).

Hence by using (5.10), (5.24) and (5.25) we get for the adapted basis
(0i,0¢) the following equalities:
(a) Neg,(8:,65) = [525,-, ?*253-] — F? [?25,-,5,-] — F? [6.-, 1"-‘25,] +

+ FY(6;,6;) = [6:,6;] = F? [-?‘af', 6,] - F? [6., -F‘a;'] -

— F?[8:,8;] = Rf;0f + F[6:,8,] + F*([8:,8;] - F[6:,85] =

=Rf;;0F + F*(RE,;0) = RE; + R}, (anf) =

=R},;0% + Rf;F(6°%6x) = RY,;0; — RL,;08 = RS,;0%,
(not summing over a, 3 # a),

(b) Na,(8:,05) = [8,,65] — F? [5.-,?‘(5056,-)] i
—F? [F‘( =B, a;'] — F?[5;,02] = [6:,0°] + F2[6;,8%]-
— F?[-6°85;,0°) - F2[6;,07] = 82 N30 + F?[5;,0°] =

=(0F N3] + (0 N3 F(6°%8,) = (97 N3:)0f — (9 Niao)os =
=(3;"N§i)3f (B # a, not summing over a).

If 3 # a then we have

() Na, (8, 87) = [-6:,0] + ;2[&,8?] — F2[5,,0] - F? [6:,951 = 0.
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Moreover, for 8 # a and ¥ # a respectively we get

7,0]+ F2[07,0f] - F*[-0, 0]

1 13y

(5.28) (d) N;,(a:',af) =[-0

- F*(o7,00) =0,
(e) N;.,,(a? ,8]) =0.

By linearity of the Nijenhuis tensor these equalities establish our assertion.

Remark 5.2. The condition (5.26) (b) shows that the functions Ng;
do not depend on y} if 8 # a. Y
Let us consider the formulae (4.5) and (4.6). We define three supple-

o o s 4
mentary projectors. P, =1 -Q* P, =} (Q2 + Q) and

o

Py = % (52 - Q) . So we have three distributions D;, D, and D;. (V.

Duc ([2]) treated a general structure K with K* = K.) In his sense 5
is integrable if the distributions D; + D; (1,7 = 1,2, 3) are involutive. By
this theorem 5 is integrable iff NE? = 0.

Now we prove

Proposition 5.2. The Nijenhuis tensor of E) is equal to zero iff
(2) OfNa;=07Na  (b) Rgy=0
(c) ON3;=0 (B#a) (d) HNu=0 (8+#0)
PROOF. By using the relations (4.5) and (5.27) for NE? it will be

sufficient to calculate that

(5.29)

(a) Ng(6i,85) = [56,-,56}] -Q [56:‘1‘53‘] ~Q [6.-, 55;} +
+Q?[6:,6;] = [67, 8°] — QIO2, 6;] — Q[6:, 8%+
+Q? (RE,;87) = Q((8°N3;)08) — Q((9° N3:)9P )+
+REQ(6°76:) = (92 N2, — B2 N2)6, + R, 0%,

(b) Ng(8:,05) = [326.-,326;’] -Q [56.',6}‘] -Q [5=‘*55§"'] ¥
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+ Q716:,85) = [0¢.8,) - Qlog, o7 - r‘:’z[a.-,a-1+
+Q7((95N3,)92) = —(87 N3:)0? — R, (Qak)

+(8N3)Q(6%%6,) = (3 N2,)0 — (97 N3,)0P — R, 6k =

(5.30) = —0{Nj;8] — R%;;6x (not summing over a; 8 # a);

for B # a we have

©  No(6,))= [3265,565?] =, [55,-,3;?] ) [&-,326;’] ¥
+ @ [6,97] = 107,01 - Q [or,0]] - Qev, 01+
+Q*((8°N2,)d7) = (3P N2,)Q(6°76,) = (8P N3,)02
(not summing over «),

and

(d) Na(a:*,af)ﬂ, (e) N&(af,a;)zo (v # a).

These establish our assertion. We can summarize our results in

Theorem 5.5. Any Ic;' and any 5 respectively is integrable iff the
conditions (5.26) (a), (b) and (5.29) (a), (b), (¢), (d) respectively hold.

Remark 5.2. Integrability of all 6 implies integrability of all Pa‘ . The

converse is not true.

k
6. Geometry of Lagrangians on E = @QTM
1

Let M be endowed with a nonlinear connection.

k
Definition 6.1. A function £ : @ TM\{0} — R is said to be a regular

1
Lagrangian on E if the matrix with the elements
(6.1) gab = 0u O L(2",y°)

is of rank nk.
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Definition 6.2. A k-Lagrange space L} is a pair (M, L(z*,y"*)) where
M is an n-dim. manifold and £(z',y*) is a regular Lagrangian defined

k
over E = PTM.
1

Proposition 6.1. The set of functions g.4(z,y) and g;j(z,y) defines

v-and h-Riemannian structures in the vertical and horizontal bundles as
follows:

(a) g:u—g,: VEXVE—-SR (u€E)
9u(X,Y) = X°Ygu(z,y) (X,Y € X(VE))
(62) (b) g:u—g,: HEXHE - R (u€ E)
g (X, Y) = 9(X*6;, Y2 6;) = X*Y (6, 8;) = X*Y " gi3(2, v);
det||gi;|| # 0, (X,Y € X(HE)).

PROOF. Under the conditions rank||ges|| = nk and rank||g; || = n,
for each u € E, g, is a nondegenerate bilinear form on VE x VE and
HE x HE, respectively. Moreover, g(X,Y) = ¢g(Y,X) for all XY €
X(VE) and X(HE), respectively. These prove the Proposition.

We shall denote by ¢g¢ the inverse of the matrix gqs, i.e. the following
relations hold:

(6.3) PV Y N ol PR

where 65 are the components of the Kronecker tensor on E.
Let us suppose that we have h- and v-Riemannian structures, i.e.
gij(z,y) and gup(x,y). Then the following metric can be considered on E

(6.4) G = gij(z,y)dz’ @ da’ + gap(z,y)8y" ® 6y°.

Definition 6.9. A d-connection LD = (Lj-k, L?gk, _;f,:, C'::j) 1s called
metrical with respect to G if

(6.5) gijik =0, gijIT =0, gapx =0, gasli =0,

where the short and long bars mean h- and v-covariant derivatives.
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Theorem 6.1. The following d-connection is metrical and its torsion
tensors T and S vanish:

A
(a) = ; 9" (6,91 + bxgjt — b195k)

(6.6) (b) .ﬁk __aa(N;;k) 93-,(51:9 =05 (Nex 0ve — O3 (N3 )osi)

(c) C,k 29"3&(%:)
(d) O = 290:(&29;3 + g7 — 35977).
vif

PROOF. We can easily see that L® ik and O are symmetricin j, k and

(2 (f), respectively. Moreover, taking into account the relations (5.11)
(a) and (e), we get T' = S = 0. The equalities in (6.5) can be checked by
a direct calculus.

Remark 6.1. If M is endowed with a metric §;;(z) then we can define

its horizontal lift g,(z,y) = X'Y7g,j(z). In this case the coefficients of
LD are simpler, since the g;; depend on z only not on y. We want to

investigate this case. We obtain C_:f = 0. On the other hand

kaj

ol _ 1 L ) 'nﬂ y C‘rfﬁ = 1
kﬂj 290‘-‘.‘6 Jaykay3 gﬂl ka; k.l’] o 26ygay$ :

It follows that C}* J‘? is symmetric in the pair of indices (£), (7), (f ). More-

over we have LJk = 29“(63'91;: + Ok gjt — Qigjk)-

Remark 6.2. The torsion tensors T, S, C of LD considered in Remark
6.1. vanish.

Remark 6.3. Generally R # 0, and from (5.11) (a) and (6.6) (b) we
get

p2

jak = aﬁ?( Jak = __ga1(6 g af( f )g:} a;(N:k)g:f)
This implies

1 ]' Tr e
93¢ Plax = —5(8kg5] = B (Ngrd = B (Ni)gry).

Denote Pf;}‘ =% s Pfak and we see that P is symmetric in (f ) and (7).
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k
Let D be a d-connection on E = @ TM. C, a curve of M,
1
.. k =4 4%
C:Cy— @TM a section of E over Cy and X(z',y,) a k-Lagrangian
1
k
vector field on E = @TM.
1

Definition 6.3. The covariant derivative of the vector field X on C
with respect to D is

DX & o dT° o ) S5
ate = (DeX) G + ( 8;"’() dte
Definition 6.4. A k-Lagrangian vector field X in A'(F) is called par-
. k
allel on the section C: Cy - E = @PTM if
1

(6.7)

DX
dte

(6.8) (a=T,k)

(cf. [7)).
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