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Notes on topological properties of ¢(L) spaces

By DANUTA STACHOWIAK - GNILKA (Poznan)

Abstract. The purpose of this paper is to investigate some topological properties
of the space ¢(L) with the topology determined by a symmetric. Also, the connections
between this topology and other topologies in (L) are examined.

1. Let E be a nonempty set and let ¥ be a o-algebra of subsets of E.
Moreover, let u be a nonnegative, nontrivial and finite measure on X. Let
¢ be an even, nonnegative, finite function on (—o00, 00), nondecreasing on

(0, 00), for which limoocp(u) = 00, ¢(0) = 0 and ¢(u) > 0 for u > 0. We

denote by ¢(L) the set of all real-valued, g—mesurable functions f defined
on E with equality p—almost everywhere for which

] A F())dp < .

E

If f,g € (L), then the number
d1.9) = [ of(z) - gla))dn
E

is called the p—distance between f and g¢.
Further, we denote by

Ay(fie) ={g € p(L) : dy(f,9) < €}

the e-neighbourhood of f € ¢(L), where ¢ > 0 is arbitrary. By T, we de-
note the topology generated by the subbase {A,(f,€)} fex(r)- The topo-

e>0
logical space obtained in this manner we denote (¢(L), 7).
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By 7;, we denote the topology determined by the symmetric d,, (see
(1] or [3]). Hence U € 74, if and only if for any f € U there is an ¢ > 0
such that A,(f,e) C U. The topological space ¢(L) with this topology is
denoted by (¢(L), Ty, ).

Now, we define the operator p as follows
p(A) = {f € (L) : A,(f,e)N A # 0 for every € > 0},

where A C ¢(L) is an arbitrary set.
he purpose of this paper is to investigate conditions under which the
operator p is a closure operator for (¢(L),7;,). We examine the problem

of metrizability of a space (¢(L), 73, ). Further, we introduce a base in this
space and we compare the 7, topology with the 7, topology and with
the Orlicz topology (see [2]).

In the sequel we shall need the following definitions:

We say that a function ¢ satisfies the condition (A;) if there exist
constants C' > 0, ug > 0 such that

w(2u) < Cp(u) for u > uyp.

We say that a sequence (fn)n>1, fn € ¢(L) for n > 1 is convergent
to f € ¢(L) in the sence of the p-distance if and only if for every € > 0
there exists a natural number N(¢) such that d (f,,f) < € for n > N(¢).

2. In this section we show under which conditions the operator p is a
Kuratowski operator.

One can easily show that the following lemma holds.

Lemma 2.1. The operator p has the following properties:
1° A C p(A) for every A C ¢(L),
2° p(@) =0,
3° p(AUB) = p(A)U p(B) for every A,B C ¢(L),
4° if AC B, then p(A) C p(B) for every A,B C ¢(L).

Lemma 2.2. Let A C ¢(L) be an arbitrary set. Then p(p(A)) C p(A)
if and only if the following property
(2.1) for each f € (L) ande > 0 thereisaé > 0 such that for each
g € Ay(f,6) there exists ay > 0 such that A,(g,7) C Ax(f,¢€)
1s fulfilled.

PROOF. Sufficiency. Let us suppose that f € p(p(A4)) and f & p(A).
Then there is an a > 0 such that A,(f,a)N A = 0. Further A,(f,6)N
p(A) # 0, where a § = §(f,a) > 0 is chosen accordingly to (2.1). Hence
thereis g € A,(f, ) such that g € p(A). From (2.1) thereisay = v(g) > 0
such that A (g,7) C Ay(f,a). Clearly A (g,7) N A # 0. This implies
that A,(f,a)N A # 0, a contradiction.
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Necessity. Let p(p(A)) C p(A) for all A C ¢(L) and let us suppose
that the property (2.1) is not fulfilled. Then thereis f, € ¢(L) and gy > 0
such that for all é > 0 there is ¢ € A,(fo,6) such that
9 € p(p(L)\Ay(fo,€0)). Thisimplies that A,(fo,8)Np(P(L)\Ae(fo,€0)) #
0 and so fo € p(p(¢(L) \ Ap(fo,€0))). Hence fo € p(p(L) \ Ap(fo,e0))-
That is A,(fo,0) N (@(L) \ Ax(fo,0)) # 0, a contradiction.

Now, we shall show the sufficient and necessary condition under which
the property (2.1) is fulfilled.

Lemma 2.3. If p(4+0) = 0 and if ¢ statisfies the condition (A, then
the property (2.1) is fulfilled.

PROOF. There is an a > 0 such that p(a) < — 3 E There exists a

constant Co > 0 such that p(2u) < Cap(u) for u > § a.nd hence

N R

@(u+v) < Calp(u) +¢(v) if max(u,v)>

Let A,(f,c) be a given neighbourhood and let 0 < é < %— Let

g € Ay(f,8). Now, we choose a ¥ > 0 such that y < §. We sha.ll prove
that A,(g,7) C Ay,(f,¢). Let h € Ay (g,7). Then

dg( f,h) / o( | 1(2) —a(2) | + ] 9(2) - hz) | Y+

E,

]so( | £(z) - 9(2) | + | 9(=) - h(z) | )dis < p(@)nEr + Cal6 +7) <e,
E,

where E, = {.r €EE :| f(z)—g(z) |< § and | g9(z) — h(z) |< %}
and E; = E \ E;. This implies that h € A,(f,¢).

Lemma 2.4. Let u be an atomless measure. If the property (2.1) is
fulfilled, then the condition (A,) holds.

PROOF. Let f € ¢(L) and € > 0 be arbitrarily chosen. We choose a
natural number n > 1 such that

[et@)du<e itur <2,

F

where a § = §(f,e) > 0 is chosen accordingly to the property (2.1).
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We definefor 1 < k<n
_J 0 ifz € Ey ,
(=) =1 §(z) ifz€E\E,
where E = CJE;;, E,-ﬂE,-=Bforalli;éjand0<pEk=%fora.ll
k=1
IS ks
Clearly gx € ¢(L) and gx € Ay(f,6) for 1 < k < n. From (2.1) for

each 1 < k < n there is a 9; > 0 such that A, (gx,7k) C Au(f,€).
Nows, we choose natural numbers mg > 1 (1 < k < n) such that
: pnEy
[ets@)dn < it w6 < B2,

mg
G
We definefor 1 <i: <my; (1< k<n)

f(z) ifze E\ E;,
filx)= —-f(z) ifzeF;,
0 lfIEEk\‘Fla

Mg
where Ep = Frlken), ENF;=0fceli# 3, 0< pF; =
t=]
BE: for all 1 <i <my (1< k<n).
It is clear that f; € (L) and f; € A (gk, ) for 1 <@ < my (1 <
k <n). Hence f; € A,(f,e)for 1 <i <my (1 <k <n). Thus

e > [o(fi(z) = f(z))du 2 [@(2f(z))duforl <i < mp (1<k<n)
E F;

and so

/‘P(zf(.r))d,u - Z/gﬁ(?f(r))dp Cme-e orlskEm
Ex =1 F;
Further

[er@)in=3" [oCs@)du<e: Y m <.
k=]£’:* k=1

E

We conclude that 2f € ¢(L) if f € ¢(L). But this implies (compare
[5], Lemma 2.3) that ¢ satisfies the condition (A;).

Lemmas 2.1 - 2.4 immediately imply

Theorem 2.1. If ¢©(+0) = 0, then the condition (A,) is sufficient,
and if p is an atomless measure, it is also necessary for the operator p to
be a Kuratowski operator.
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3. Here we examine the connection between the operator p and the
closure operator for 7y, .

Proposition 3.1. A set U C ¢(L) is open in the T3, topology if and
only if (L) \ U = p(p(L) \ U).

PRrOOF. U € Ty, if and only if for every f € U there is an € > 0 such
that A,(f,e)N(e(L)\U) = @ and so f € (L) \ p(¢(L) \ U). Hence
P(p(L)\U) =p(L)\U.

Now, we define the operator I, as follows
I,(A) = ¢(L)\ p(¢(L) \ A), for an arbitrary set A C ¢(L).

Lemma 3.1. The operator I, has the following properties:
1° I,(A) C A for every A C ¢(L),
2° f € I,(Ay(f,¢)) for every f € ¢(L) and € > 0,
3° if (40) = 0, then the condition (A1) is sufficient and if y is an atomless
measure, then it is also necessary in order that I,(A) € Ty, for every
A Cp(L).

PROOF. 1° Apply Lemma 2.1.1°; 2° Evident.

3° Sufficiency. By Lemmas 2.2 and 2.3 we obtain:

@(L)\ I(A) = p(p(L)\ A) = p(p(¢(L) \ 4)) = p(p(L) \ Ip(A)) for every
set A C ¢(L). Proposition 3.1 gives I,(A) € Ty,.

Necessity. Let I,(A) € Ta,. Then (see Proposition 3.1) p(L)\I,(4) =
p(e(L) \ I,(A)) for an arbitrary set A C ¢(L). Hence p(¢(L) \ 4) =
p(p(¢(L) \ A)) and thus ¢ satisfies the condition (A;) (see Lemmas 2.2
and 2.4).

In the sequel we shall denote the 7, —closure of a set 4 by A.

Theorem 3.1. The 74, —closure operator has the following properties:
1° p(A) C A for every set A C ¢(L),
2° A= A if and only if A = p(A),
3° if ¢(4+0) = 0, then the condition (A;) is sufficient, and if p is an
atomless measure, then it is also necessary in order that A = p(A).

PROOF. 1° and 2° are trivial.
3° Sufficiency. Let us suppose that there is a set A C ¢(L) such that

p(A) & A. Then there is f € ¢(L) such that f € A but f ¢ p(A). Hence
(see Lemma 3.1) we have I,(A,(f,e)) N A # 0 and A (f,e)N A =0 for
some ¢ > 0, a contradiction.

Necessity. Let p(A) = A for every A C ¢(L) and suppose ¢ does not
satisfy the condition (A;). Then from Lemmas 2.2 and 2.4 there is a set

A C p(L) such that p(A) & p(p(A)). Hence A & A4, a contradiction.
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Corollary3.1. Let IntA = (L)\ ¢(L)\ A for AC ¢(L). Then
1° IntA C I,(A) for every set A C ¢(L),
2° A =IntA if and only if A = I,(A),
3° if ¢(4+0) = 0, then the condition (A,) is sufficient, and if p is an atom-
less measure, then it is also necessary in order that IntA = I,(A).

Remark 3.1. If p(+40) = 0, then the condition (A2) is sufficient, and
if 4 1s an atomless measure, then it is also necessary in order that f €
IntA,(f,¢) for all f € p(L) and € > 0.

PROOF. Sufficiency follows from Lemma 3.1.2° and Corollary 3.1.3°.
Necessity. Let us suppose that f € IntA,(f,¢) for every f € (L)

and € > 0 and suppose ¢ does not satisfy the condition (A;). Then (see
Corollary 3.1.3°) there is a set A C (L) such that IntA & I,,(A). Hence
there is ¢ € @(L) such that ¢ € I;(A) and ¢ € IntA. This implies that
A (g,e)N(p(L)\ A) =0 and IntA,(g,e)N(p(L)\ A) # 0 for some € > 0,
a contradiction.

4. In this section we shall give the conditions under which the space
(¢(L), Ta,) is metrizable.

Lemma 4.1. If ¢(+0) = 0 and ¢ satisfies the condition (A,), then
the symmetric d, satisfies the following condition: if lim d,(fn,f) =0

and lim d,(fn,gn) =0 then, lim d (g, f) =0.

PROOF. Let € > 0 be arbitrary. There is a §6 > 0 such that ¢(é) <
5—5-5. There exists a constant Cs > 0 such that ¢(u + v) < Cs(p(u)+
@(v)) if max(u,v) > g.

Now, let f, fu,gn € @(L) for n > 1 be such that lim dy(fa,f) =0

and lim dg(f,,gn) = 0. Then there is a natural number N such that
n—oo

dy(fa ) < — and dw(f,,,g,,)<% forn>N. Then
&

4C5s
dy(0n, ) < / allite) =Rl 4 = FE N+
£,
-/59(|gn(1‘) — fa(z)| + |fa(z) — f(z)|)du <& forn > N,
E,

where E; = {a € E : |fa(z) — ga(2)| < & and |fa(z) — f(z)| < £} and
E, = E\ E,.
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From the above lemma and the Niemytzki Theorem (see [4]) we obtain

Theorem 4.1. If o(+0) = 0 and ¢ satisfies the condition (A;) then
the space (p(L), Ty, ) is metrizable.

5. We shall consider the problem of existence of a base for the space
(¢(L), Ty, ). Before doing so, it will be convenient to prove the following

Lemma 5.1. Let ¢(+40) = 0. The conditions
(a) @(u+0)=p(u)foru >0,
(b) ¢ satisfies the condition (Ay)
are sufficient, the condition (a) is also necessary, and if p is an atomless
measure, then (b) is necessary too, in order that A (f,c) € Ta, for every
f€wp(L)ande > 0.

PROOF. Sufficiency. If (a) and (b) hold, then (compare [5], Theorem
3.2)

(5.1) for each f € p(L) and € > 0 and for each g € A,(f,¢)
there is a 6 > 0 such that A(g,6) C A,(f,¢).

Hence A (f,¢) € T4, for every f € o(L) end € > 0.

Necessity. If the condition (a) does not hold, or if i 1s an atomless
measure and the condition (b) does not hold, then (compare [5], Theorem
3.2) there are fy € p(L) and g9 > 0 such that A,(fo,c0) & Ta, -

Applying this lemma we obtain

Theorem 5.1. Let o(+40) = 0. The conditions
(a) @(u+0)=¢(u)foru>0,
(b) ¢ statisfies the condition (A;)
are sufficient, the condition (a) is also necessary, and if pu is an atomless

measure, then (b) is necessary too, in order that the family {A,(f,€)} rep(1)

be an open base for the space (¢(L), T, ). o

By Lemma 3.1, Corollary 3.1 and Remark 3.1 one can easily prove
the following

Theorem 5.2. Let o(40) = 0. The condition (A;) is sufficient and if
p is an atomless measure, then it is also necessary in order that the family
{IntA,(f,€)},5, be an open base for the space (¢(L), 7Ty, ) at the point f

for every f € o(L).

6. We shall give some remarks on convergence in the class ¢(L).
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Lemma 6.1. If a sequence (fn)n>1, fn € ¢(L) for n > 1 is convergent
to f € (L) in the sense of the p-distance, then it is convergent to f in
the 74, topology.

PROOF. Let U € 7;, be an arbitrary set such that f € U. Then
A,(f,e) C U for some ¢ > 0. Since the sequence (fn)n>1 is convergent
to f in the sense of the p-distance, f, € A (f,¢) for n > N(g). Thus
fa € Ufor n > N(e).

Lemma 6.2. Let ¢(40) = 0 and let ¢ satisfy the condition (Aj). If
a sequence (fn)n>1, fn € ¢(L) for n > 1 is convergent to f € (L) in the
74, topology, then it is convergent to f in the sense of the p- distance.

PROOF. Let ¢ > 0 be an arbitrary real. Then f, € Int A,(f,¢) for
n > N, where N is some natural number. Hence d (fn,f) < ¢ forn > N.

The above lemmas immediately imply

Theorem 6.1. Let o(+40) = 0 and let p satisfy the condition ( Ag)
The sequence (fn)n>1, fn € @(L) for n > 1 is convergent to f € (L) in
the T, topology if and only if it is convergent to f in the sense of the

—dlqtance

7. There are connections between 73, and 7,,. On can easily prove
that 7;, C 7. The converse inclusion is described by

Lemma 7.1. Let p(40) = 0 The conditions
(a) @(u+0)=p(u)foru>0,
(b) ¢ satisfies the condition (A;),
are sufficient, the condition (a) is also necessary, and if p is an atomless
measure, the condition (b) is necessary too, in order that T, C Ty,.

PROOF. Sufficiency. Let U C 7, be an arbitrary set. Then U =
g
Ll s (ft-m._egl)). This implies that for any f € U there is tg € T
teT =1

Mty

such that f € [ A, (fl“"].c‘f-m). The property (5.1) implies that there
i=1

ﬂl

is & > 0 such that A,(f,8) C ﬂ A, (f:t']},efm) and so A(f,8) c U.

Hence U € Ta,.

Necessity. If the condition (a) does not hold or, if x4 is an atomless
measure and the condition (b) does not hold, then (see Lemma 5.1) there
are fo € p(L) and g9 > 0 such that A, (fo,€0) ¢ 74,. This implies that
T, £ 1y,;

This lemma immediately implies
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Theorem 7.1. Let ¢(40) = 0. The conditions
(a) @(u+0)=ep(u)foru>0,
(b) ¢ satisfies the condition (A3),
are sufficient, the condition (a) is also necessary, and if y is an atomless
measure, the condition (b) is necessary too, in order that Tq, = T,.

From Theorems 4.1 and 7.1 we obtain

Remark 7.1. If o(u + 0) = @(u) for u > 0 and if ¢ satisfies the
condition (A3), then the space (p(L), 7,) is metrizable.

Note that this remark is a generalization of Ul'vanov Theorem (see
[6]); the assumption that ¢ is a continuous function may be replaced by
the assumption that ¢ is right-continuous at every point.

8. In this section we assume additionally that ¢ is a continuous
function on (—oc, oo). Then it is possible to define an Orlicz space L¥
(see [2]) and to introduce an F-norm on L¥ as follows:

=1nf < a : M)rt -
Ifll = inf {a>0 Eﬁ( I <

a

By 7. we denote the topology generated by the metric o(f, g) =

If —gll. Let K(f,e)={g € L?: o(f,g) <e}.
The set ¢(L) C L¥ with the induced topology 7p+ we denote by

(P(L), T1e).
Lemma 8.1. The topology Ty, is coarser than Ty..

PROOF. Let U € Ty, and let f € U be arbitrary. Then there exists
0 < ¢ < 1 such that A,(f,e) C U. We shall prove that K(f,e) C A,(f,¢€).
Let g € K(f,¢). By Theorem 1.5 in [2] it follows that d,(f,g9) < ||f — g||
and so g € A,(f,c). Hence K(f,e) CU.

Lemma 8.2. Let u be an atomless measure and let ¢ do not satisfy
the condition (A,). Then there are f € p(L) and ¢ > 0 such that K(f.c) €
T

PROOF. There are numbers 1 < u; < us < ... < u, < ... such that

@(un) > 2" and ¢ ((1 - %)un) > 2"p(up) forn>1.

U E,,)._ where the sets E,, satisfy the following

n=1

Let E = (E]l E.)U(E\

conditions:
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pE

EiNE;j=8foralli#j, EaC Eforalln21and0< pE, = 5o

for all n > 1.
Now we define a function f as follows:

u, ifzre€kE,,
f@)=10 ifzeE\ U Eo.

Clearly f € ¢(L). Let an € > 0 be such that ¢ < min(uE,1). There is a

natural number n; > 1 such that 1 > 1+ -“1—1 Let a 6 > 0 be arbitrarily
nE

chosen. Then there is a natural number n, > 1 such that 0 < B < 4.

Let ng = max(n;,ny) and let

()_{211,,0 if z € E,,,
M= fz) ifz€E\E,,

It is clear that ¢ € ¢(L) and g € A, (f,é). Let us suppose that g €

K(f,e). This implies that ||¢g — f|| < € < 1 and hence d, (g,{ <
€. On the other hand dw(? f) > / @ ((1 + -nl—) unn) du > pE, a
0

“No
contradiction. Hence f € K(f.c), g € A,(f,é) but ¢ € K(f,e). That is
Ay(f,8) ¢ K(f,¢) for all 6 > 0. Then K(f,e) € Ta,.

Lemma 8.3. If ¢ satisfies the condition (A;), then Tr. C Ty, .

PROOF. Let U € Tp+ and let f € U be arbitrary. Then there exists
an € > 0 such that K(f,e) C U. There is a natural number n > 1 such that

1 3 € '
— < 2" and there is a & > 0 such that ¢(2"6) < B Hence there exists a
€ 1

constant Cs > 0 such that p(2"u) < Cfe(u) foru > 6. Let 0 < v <
We shall prove that A (f,v) C K(f,c). Let g € A,(f,7). Then

d, (-i: g) = /99 (é(f(r) - y(r))) d#+/tp (é(f(r) = 9(1))) du < %

1 2

£
iCy

where E; = {z € E: |f(z) — g(z)| < 6} and E; = E \ E,.
Hence ||f — g|| < & and so A,(f,v) C U. This implies that U € 7g,.
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Lemmas 8.1 - 8.3 immediately imply

Theorem 8.1. The condition (A,) is sufficient, and if u is an atomless
measure, then it is also necessary in order that Tq, = T .

By Theorems 7.1 and 8.1 we obtain

Remark 8.1. If ¢ satisfies the condition (Aj), then Ty, =T, = Tpe.

If ¢ does not satisfy the condition (A;) and if g is an atomless measure
then 73, & Tpe and Ty, & T,.
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