Notes on topological properties of $\varphi(L)$ spaces

By DANUTA STACHOWIAK - GNIŁKA (Poznań)

Abstract. The purpose of this paper is to investigate some topological properties of the space $\varphi(L)$ with the topology determined by a symmetric. Also, the connections between this topology and other topologies in $\varphi(L)$ are examined.

1. Let E be a nonempty set and let Σ be a σ -algebra of subsets of E. Moreover, let μ be a nonnegative, nontrivial and finite measure on Σ . Let φ be an even, nonnegative, finite function on $(-\infty, \infty)$, nondecreasing on $(0, \infty)$, for which $\lim_{u \to \infty} \varphi(u) = \infty$, $\varphi(0) = 0$ and $\varphi(u) > 0$ for u > 0. We denote by $\varphi(L)$ the set of all real-valued, μ -mesurable functions f defined on E with equality μ -almost everywhere for which

$$\int_{E} \varphi(f(x))d\mu < \infty.$$

If $f, g \in \varphi(L)$, then the number

$$d_{\varphi}(f,g) = \int_{E} \varphi(f(x) - g(x))d\mu$$

is called the φ -distance between f and g. Further, we denote by

$$A_{\varphi}(f,\varepsilon) = \{g \in \varphi(L) : d_{\varphi}(f,g) < \varepsilon\}$$

the ε -neighbourhood of $f \in \varphi(L)$, where $\varepsilon > 0$ is arbitrary. By \mathcal{T}_{φ} we denote the topology generated by the subbase $\{A_{\varphi}(f,\varepsilon)\}_{\substack{f \in \varphi(L) \\ \varepsilon > 0}}$. The topological space obtained in this manner we denote $(\varphi(L), \mathcal{T}_{\varphi})$.

By $\mathcal{T}_{d_{\varphi}}$ we denote the topology determined by the symmetric d_{φ} (see [1] or [3]). Hence $U \in \mathcal{T}_{d_{\varphi}}$ if and only if for any $f \in U$ there is an $\varepsilon > 0$ such that $A_{\varphi}(f,\varepsilon) \subset U$. The topological space $\varphi(L)$ with this topology is denoted by $(\varphi(L), \mathcal{T}_{d_{\varphi}})$.

Now, we define the operator p as follows

$$p(A) = \{ f \in \varphi(L) : A_{\varphi}(f, \varepsilon) \cap A \neq \emptyset \text{ for every } \varepsilon > 0 \},$$

where $A \subset \varphi(L)$ is an arbitrary set.

The purpose of this paper is to investigate conditions under which the operator p is a closure operator for $(\varphi(L), \mathcal{T}_{d_{\varphi}})$. We examine the problem of metrizability of a space $(\varphi(L), \mathcal{T}_{d_{\varphi}})$. Further, we introduce a base in this space and we compare the $\mathcal{T}_{d_{\varphi}}$ topology with the \mathcal{T}_{φ} topology and with the Orlicz topology (see [2]).

In the sequel we shall need the following definitions:

We say that a function φ satisfies the condition (Δ_2) if there exist constants C > 0, $u_0 > 0$ such that

$$\varphi(2u) \leq C\varphi(u)$$
 for $u \geq u_0$.

We say that a sequence $(f_n)_{n\geq 1}$, $f_n\in\varphi(L)$ for $n\geq 1$ is convergent to $f\in\varphi(L)$ in the sence of the φ -distance if and only if for every $\varepsilon>0$ there exists a natural number $N(\varepsilon)$ such that $d_{\varphi}(f_n,f)<\varepsilon$ for $n>N(\varepsilon)$.

2. In this section we show under which conditions the operator p is a Kuratowski operator.

One can easily show that the following lemma holds.

Lemma 2.1. The operator p has the following properties:

1° $A \subset p(A)$ for every $A \subset \varphi(L)$,

 $2^{\circ} p(\emptyset) = \emptyset,$

3° $p(A \cup B) = p(A) \cup p(B)$ for every $A, B \subset \varphi(L)$,

4° if $A \subset B$, then $p(A) \subset p(B)$ for every $A, B \subset \varphi(L)$.

Lemma 2.2. Let $A \subset \varphi(L)$ be an arbitrary set. Then $p(p(A)) \subset p(A)$ if and only if the following property

(2.1) for each $f \in \varphi(L)$ and $\varepsilon > 0$ there is a $\delta > 0$ such that for each $g \in A_{\varphi}(f, \delta)$ there exists a $\gamma > 0$ such that $A_{\varphi}(g, \gamma) \subset A_{\varphi}(f, \varepsilon)$ is fulfilled.

PROOF. Sufficiency. Let us suppose that $f \in p(p(A))$ and $f \notin p(A)$. Then there is an $\alpha > 0$ such that $A_{\varphi}(f,\alpha) \cap A = \emptyset$. Further $A_{\varphi}(f,\delta) \cap p(A) \neq \emptyset$, where a $\delta = \delta(f,\alpha) > 0$ is chosen accordingly to (2.1). Hence there is $g \in A_{\varphi}(f,\delta)$ such that $g \in p(A)$. From (2.1) there is a $\gamma = \gamma(g) > 0$ such that $A_{\varphi}(g,\gamma) \subset A_{\varphi}(f,\alpha)$. Clearly $A_{\varphi}(g,\gamma) \cap A \neq \emptyset$. This implies that $A_{\varphi}(f,\alpha) \cap A \neq \emptyset$, a contradiction.

Necessity. Let $p(p(A)) \subset p(A)$ for all $A \subset \varphi(L)$ and let us suppose that the property (2.1) is not fulfilled. Then there is $f_0 \in \varphi(L)$ and $\varepsilon_0 > 0$ such that for all $\delta > 0$ there is $g \in A_{\varphi}(f_0, \delta)$ such that $g \in p(\varphi(L) \setminus A_{\varphi}(f_0, \varepsilon_0))$. This implies that $A_{\varphi}(f_0, \delta) \cap p(\varphi(L) \setminus A_{\varphi}(f_0, \varepsilon_0)) \neq \emptyset$ and so $f_0 \in p(\varphi(L) \setminus A_{\varphi}(f_0, \varepsilon_0))$. Hence $f_0 \in p(\varphi(L) \setminus A_{\varphi}(f_0, \varepsilon_0))$.

Now, we shall show the sufficient and necessary condition under which

That is $A_{\varphi}(f_0, \varepsilon_0) \cap (\varphi(L) \setminus A_{\varphi}(f_0, \varepsilon_0)) \neq \emptyset$, a contradiction.

the property (2.1) is fulfilled.

Lemma 2.3. If $\varphi(+0) = 0$ and if φ statisfies the condition (Δ_2) , then the property (2.1) is fulfilled.

PROOF. There is an $\alpha > 0$ such that $\varphi(\alpha) < \frac{\varepsilon}{3\mu E}$. There exists a constant $C_{\alpha} > 0$ such that $\varphi(2u) \leq C_{\alpha}\varphi(u)$ for $u \geq \frac{\alpha}{2}$ and hence

$$\varphi(u+v) \le C_{\alpha} (\varphi(u) + \varphi(v))$$
 if $\max(u,v) \ge \frac{\alpha}{2}$.

Let $A_{\varphi}(f,\varepsilon)$ be a given neighbourhood and let $0<\delta<\frac{\varepsilon}{3C_{\alpha}}$. Let $g\in A_{\varphi}(f,\delta)$. Now, we choose a $\gamma>0$ such that $\gamma\leq \delta$. We shall prove that $A_{\varphi}(g,\gamma)\subset A_{\varphi}(f,\varepsilon)$. Let $h\in A_{\varphi}(g,\gamma)$. Then

$$\begin{split} d_{\varphi}(f,h) &\leq \int\limits_{E_{1}} \varphi \big(\mid f(x) - g(x) \mid + \mid g(x) - h(x) \mid \big) d\mu + \\ &\int\limits_{E_{2}} \varphi \big(\mid f(x) - g(x) \mid + \mid g(x) - h(x) \mid \big) d\mu \leq \varphi(\alpha) \mu E_{1} + C_{\alpha}(\delta + \gamma) < \varepsilon, \end{split}$$

where $E_1 = \left\{ x \in E : |f(x) - g(x)| < \frac{\alpha}{2} \text{ and } |g(x) - h(x)| < \frac{\alpha}{2} \right\}$ and $E_2 = E \setminus E_1$. This implies that $h \in A_{\varphi}(f, \varepsilon)$.

Lemma 2.4. Let μ be an atomless measure. If the property (2.1) is fulfilled, then the condition (Δ_2) holds.

PROOF. Let $f \in \varphi(L)$ and $\varepsilon > 0$ be arbitrarily chosen. We choose a natural number $n \ge 1$ such that

$$\int\limits_F \varphi \big(f(x)\big) d\mu < \delta \quad \text{ if } \mu F \leq \frac{\mu E}{n},$$

where a $\delta = \delta(f, \varepsilon) > 0$ is chosen accordingly to the property (2.1).

We define for $1 \le k \le n$

$$g_k(x) = \begin{cases} 0 & \text{if } x \in E_k ,\\ f(x) & \text{if } x \in E \setminus E_k , \end{cases}$$

where $E = \bigcup_{k=1}^{n} E_k$, $E_i \cap E_j = \emptyset$ for all $i \neq j$ and $0 < \mu E_k = \frac{\mu E}{n}$ for all $1 \leq k \leq n$.

Clearly $g_k \in \varphi(L)$ and $g_k \in A_{\varphi}(f, \delta)$ for $1 \leq k \leq n$. From (2.1) for each $1 \leq k \leq n$ there is a $\gamma_k > 0$ such that $A_{\varphi}(g_k, \gamma_k) \subset A_{\varphi}(f, \varepsilon)$.

Now, we choose natural numbers $m_k \geq 1$ $(1 \leq k \leq n)$ such that

$$\int\limits_{G} \varphi \big(f(x) \big) d\mu < \gamma_{k} \ \text{if} \ \mu G \leq \frac{\mu E_{k}}{m_{k}}.$$

We define for $1 \le i \le m_k$ $(1 \le k \le n)$

$$f_i(x) = \left\{ \begin{array}{ll} f(x) & \text{if } x \in E \setminus E_k \ , \\ -f(x) & \text{if } x \in F_i \ , \\ 0 & \text{if } x \in E_k \setminus F_i \ , \end{array} \right.$$

where $E_k = \bigcup_{i=1}^{m_k} F_i$ $(1 \le k \le n)$, $F_i \cap F_j = \emptyset$ for all $i \ne j$, $0 < \mu F_i = \frac{\mu E_k}{m_k}$ for all $1 \le i \le m_k$ $(1 \le k \le n)$.

It is clear that $f_i \in \varphi(L)$ and $f_i \in A_{\varphi}(g_k, \gamma_k)$ for $1 \leq i \leq m_k$ $(1 \leq k \leq n)$. Hence $f_i \in A_{\varphi}(f, \varepsilon)$ for $1 \leq i \leq m_k$ $(1 \leq k \leq n)$. Thus $\varepsilon > \int\limits_E \varphi \big(f_i(x) - f(x) \big) d\mu \geq \int\limits_{F_i} \varphi \big(2f(x) \big) d\mu$ for $1 \leq i \leq m_k$ $(1 \leq k \leq n)$ and so

$$\int\limits_{E_k} \varphi \big(2f(x) \big) d\mu = \sum_{i=1}^{m_k} \int\limits_{F_i} \varphi \big(2f(x) \big) d\mu < m_k \cdot \varepsilon \quad \text{ for } 1 \leq k \leq n.$$

Further

$$\int_{E} \varphi(2f(x)) d\mu = \sum_{k=1}^{n} \int_{E_{k}} \varphi(2f(x)) d\mu < \varepsilon \cdot \sum_{k=1}^{n} m_{k} < \infty.$$

We conclude that $2f \in \varphi(L)$ if $f \in \varphi(L)$. But this implies (compare [5], Lemma 2.3) that φ satisfies the condition (Δ_2) .

Lemmas 2.1 - 2.4 immediately imply

Theorem 2.1. If $\varphi(+0) = 0$, then the condition (Δ_2) is sufficient, and if μ is an atomless measure, it is also necessary for the operator p to be a Kuratowski operator.

3. Here we examine the connection between the operator p and the closure operator for $T_{d_{\varphi}}$.

Proposition 3.1. A set $U \subset \varphi(L)$ is open in the $\mathcal{T}_{d_{\varphi}}$ topology if and only if $\varphi(L) \setminus U = p(\varphi(L) \setminus U)$.

PROOF. $U \in \mathcal{T}_{d_{\varphi}}$ if and only if for every $f \in U$ there is an $\varepsilon > 0$ such that $A_{\varphi}(f,\varepsilon) \cap (\varphi(L) \setminus U) = \emptyset$ and so $f \in \varphi(L) \setminus p(\varphi(L) \setminus U)$. Hence $p(\varphi(L) \setminus U) = \varphi(L) \setminus U$.

Now, we define the operator I_p as follows $I_p(A) = \varphi(L) \setminus p(\varphi(L) \setminus A)$, for an arbitrary set $A \subset \varphi(L)$.

Lemma 3.1. The operator I_p has the following properties:

1° $I_p(A) \subset A$ for every $A \subset \varphi(L)$,

2° $f \in I_p(A_{\varphi}(f,\varepsilon))$ for every $f \in \varphi(L)$ and $\varepsilon > 0$,

3° if $\varphi(+0) = 0$, then the condition (Δ_2) is sufficient and if μ is an atomless measure, then it is also necessary in order that $I_p(A) \in \mathcal{T}_{d_{\varphi}}$ for every $A \subset \varphi(L)$.

PROOF. 1° Apply Lemma 2.1.1°; 2° Evident.

3° Sufficiency. By Lemmas 2.2 and 2.3 we obtain:

 $\varphi(L) \setminus I_p(A) = p(\varphi(L) \setminus A) = p(p(\varphi(L) \setminus A)) = p(\varphi(L) \setminus I_p(A))$ for every

set $A \subset \varphi(L)$. Proposition 3.1 gives $I_p(A) \in \mathcal{T}_{d_{\varphi}}$.

Necessity. Let $I_p(A) \in \mathcal{T}_{d_{\varphi}}$. Then (see Proposition 3.1) $\varphi(L) \setminus I_p(A) = p(\varphi(L) \setminus I_p(A))$ for an arbitrary set $A \subset \varphi(L)$. Hence $p(\varphi(L) \setminus A) = p(p(\varphi(L) \setminus A))$ and thus φ satisfies the condition (Δ_2) (see Lemmas 2.2 and 2.4).

In the sequel we shall denote the $\mathcal{T}_{d_{\varphi}}$ -closure of a set A by \overline{A} .

Theorem 3.1. The $\mathcal{T}_{d_{\varphi}}$ -closure operator has the following properties: $1^{\circ} p(A) \subset \overline{A}$ for every set $A \subset \varphi(L)$,

 2° $A = \overline{A}$ if and only if A = p(A),

3° if $\varphi(+0) = 0$, then the condition (Δ_2) is sufficient, and if μ is an atomless measure, then it is also necessary in order that $\overline{A} = p(A)$.

PROOF. 1° and 2° are trivial.

3° Sufficiency. Let us suppose that there is a set $A \subset \varphi(L)$ such that $p(A) \nsubseteq \overline{A}$. Then there is $f \in \varphi(L)$ such that $f \in \overline{A}$ but $f \not\in p(A)$. Hence (see Lemma 3.1) we have $I_p(A_{\varphi}(f,\varepsilon)) \cap A \neq \emptyset$ and $A_{\varphi}(f,\varepsilon) \cap A = \emptyset$ for some $\varepsilon > 0$, a contradiction.

Necessity. Let p(A) = A for every $A \subset \varphi(L)$ and suppose φ does not satisfy the condition (Δ_2) . Then from Lemmas 2.2 and 2.4 there is a set $A \subset \varphi(L)$ such that $p(A) \not\subseteq p(p(A))$. Hence $\overline{A} \not\subseteq \overline{A}$, a contradiction.

Corollary 3.1. Let $\operatorname{Int} A = \varphi(L) \setminus \overline{\varphi(L) \setminus A}$ for $A \subset \varphi(L)$. Then 1° $\operatorname{Int} A \subset I_p(A)$ for every set $A \subset \varphi(L)$,

 $2^{\circ} A = \operatorname{Int} A \text{ if and only if } A = I_p(A),$

3° if $\varphi(+0) = 0$, then the condition (Δ_2) is sufficient, and if μ is an atomless measure, then it is also necessary in order that $\operatorname{Int} A = I_p(A)$.

Remark 3.1. If $\varphi(+0) = 0$, then the condition (Δ_2) is sufficient, and if μ is an atomless measure, then it is also necessary in order that $f \in \operatorname{Int} A_{\varphi}(f, \varepsilon)$ for all $f \in \varphi(L)$ and $\varepsilon > 0$.

PROOF. Sufficiency follows from Lemma 3.1.2° and Corollary 3.1.3°. Necessity. Let us suppose that $f \in \operatorname{Int} A_{\varphi}(f, \varepsilon)$ for every $f \in \varphi(L)$ and $\varepsilon > 0$ and suppose φ does not satisfy the condition (Δ_2) . Then (see Corollary 3.1.3°) there is a set $A \subset \varphi(L)$ such that $\operatorname{Int} A \nsubseteq I_p(A)$. Hence there is $g \in \varphi(L)$ such that $g \in I_p(A)$ and $g \notin \operatorname{Int} A$. This implies that $A_{\varphi}(g,\varepsilon) \cap (\varphi(L) \setminus A) = \emptyset$ and $\operatorname{Int} A_{\varphi}(g,\varepsilon) \cap (\varphi(L) \setminus A) \neq \emptyset$ for some $\varepsilon > 0$, a contradiction.

4. In this section we shall give the conditions under which the space $(\varphi(L), \mathcal{T}_{d_{\varphi}})$ is metrizable.

Lemma 4.1. If $\varphi(+0) = 0$ and φ satisfies the condition (Δ_2) , then the symmetric d_{φ} satisfies the following condition: if $\lim_{n \to \infty} d_{\varphi}(f_n, f) = 0$ and $\lim_{n \to \infty} d_{\varphi}(f_n, g_n) = 0$ then, $\lim_{n \to \infty} d_{\varphi}(g_n, f) = 0$.

PROOF. Let $\varepsilon > 0$ be arbitrary. There is a $\delta > 0$ such that $\varphi(\delta) < \frac{\varepsilon}{2\mu E}$. There exists a constant $C_{\delta} > 0$ such that $\varphi(u+v) \leq C_{\delta}(\varphi(u)+\varphi(v))$ if $\max(u,v) \geq \frac{\delta}{2}$.

Now, let $f, f_n, g_n \in \varphi(L)$ for $n \geq 1$ be such that $\lim_{n \to \infty} d_{\varphi}(f_n, f) = 0$ and $\lim_{n \to \infty} d_{\varphi}(f_n, g_n) = 0$. Then there is a natural number N such that

$$d_{\varphi}(f_n, f) < \frac{\varepsilon}{4C_{\delta}} \text{ and } d_{\varphi}(f_n, g_n) < \frac{\varepsilon}{4C_{\delta}} \text{ for } n > N. \text{ Then}$$

$$d_{\varphi}(g_n, f) \leq \int_{E_1} \varphi \big(|g_n(x) - f_n(x)| + |f_n(x) - f(x)| \big) d\mu +$$

$$\int_{E_2} \varphi \big(|g_n(x) - f_n(x)| + |f_n(x) - f(x)| \big) d\mu < \varepsilon \text{ for } n > N,$$

where $E_1=\left\{x\in E: |f_n(x)-g_n(x)|<\frac{\delta}{2} \text{ and } |f_n(x)-f(x)|<\frac{\delta}{2}\right\}$ and $E_2=E\setminus E_1$.

From the above lemma and the Niemytzki Theorem (see [4]) we obtain

Theorem 4.1. If $\varphi(+0) = 0$ and φ satisfies the condition (Δ_2) then the space $(\varphi(L), \mathcal{T}_{d_{\varphi}})$ is metrizable.

5. We shall consider the problem of existence of a base for the space $(\varphi(L), \mathcal{T}_{d_{\varphi}})$. Before doing so, it will be convenient to prove the following

Lemma 5.1. Let $\varphi(+0) = 0$. The conditions

- (a) $\varphi(u+0) = \varphi(u)$ for u > 0,
- (b) φ satisfies the condition (Δ_2)

are sufficient, the condition (a) is also necessary, and if μ is an atomless measure, then (b) is necessary too, in order that $A_{\varphi}(f,\varepsilon) \in \mathcal{T}_{d_{\varphi}}$ for every $f \in \varphi(L)$ and $\varepsilon > 0$.

PROOF. Sufficiency. If (a) and (b) hold, then (compare [5], Theorem 3.2)

(5.1) for each $f \in \varphi(L)$ and $\varepsilon > 0$ and for each $g \in A_{\varphi}(f, \varepsilon)$ there is a $\delta > 0$ such that $A_{\varphi}(g, \delta) \subset A_{\varphi}(f, \varepsilon)$.

Hence $A_{\varphi}(f,\varepsilon) \in \mathcal{T}_{d_{\varphi}}$ for every $f \in \varphi(L)$ end $\varepsilon > 0$.

Necessity. If the condition (a) does not hold, or if μ is an atomless measure and the condition (b) does not hold, then (compare [5], Theorem 3.2) there are $f_0 \in \varphi(L)$ and $\varepsilon_0 > 0$ such that $A_{\varphi}(f_0, \varepsilon_0) \notin T_{d_{\varphi}}$.

Applying this lemma we obtain

Theorem 5.1. Let $\varphi(+0) = 0$. The conditions

- (a) $\varphi(u+0) = \varphi(u)$ for u > 0,
- (b) φ statisfies the condition (Δ_2)

are sufficient, the condition (a) is also necessary, and if μ is an atomless measure, then (b) is necessary too, in order that the family $\{A_{\varphi}(f,\varepsilon)\}_{f\in\varphi(L)}$ be an open base for the space $(\varphi(L), \mathcal{T}_{d_{\varphi}})$.

By Lemma 3.1, Corollary 3.1 and Remark 3.1 one can easily prove the following

Theorem 5.2. Let $\varphi(+0) = 0$. The condition (Δ_2) is sufficient and if μ is an atomless measure, then it is also necessary in order that the family $\{\operatorname{Int} A_{\varphi}(f,\varepsilon)\}_{\varepsilon>0}$ be an open base for the space $(\varphi(L), T_{d_{\varphi}})$ at the point f for every $f \in \varphi(L)$.

6. We shall give some remarks on convergence in the class $\varphi(L)$.

Lemma 6.1. If a sequence $(f_n)_{n\geq 1}$, $f_n \in \varphi(L)$ for $n\geq 1$ is convergent to $f \in \varphi(L)$ in the sense of the φ -distance, then it is convergent to f in the $T_{d_{\varphi}}$ topology.

PROOF. Let $U \in \mathcal{T}_{d_{\varphi}}$ be an arbitrary set such that $f \in U$. Then $A_{\varphi}(f,\varepsilon) \subset U$ for some $\varepsilon > 0$. Since the sequence $(f_n)_{n \geq 1}$ is convergent to f in the sense of the φ -distance, $f_n \in A_{\varphi}(f,\varepsilon)$ for $n > N(\varepsilon)$. Thus $f_n \in U$ for $n > N(\varepsilon)$.

Lemma 6.2. Let $\varphi(+0) = 0$ and let φ satisfy the condition (Δ_2) . If a sequence $(f_n)_{n\geq 1}$, $f_n \in \varphi(L)$ for $n\geq 1$ is convergent to $f\in \varphi(L)$ in the $T_{d_{\varphi}}$ topology, then it is convergent to f in the sense of the φ -distance.

PROOF. Let $\varepsilon > 0$ be an arbitrary real. Then $f_n \in \text{Int } A_{\varphi}(f, \varepsilon)$ for n > N, where N is some natural number. Hence $d_{\varphi}(f_n, f) < \varepsilon$ for n > N.

The above lemmas immediately imply

Theorem 6.1. Let $\varphi(+0) = 0$ and let φ satisfy the condition (Δ_2) . The sequence $(f_n)_{n\geq 1}$, $f_n \in \varphi(L)$ for $n\geq 1$ is convergent to $f\in \varphi(L)$ in the $\mathcal{T}_{d_{\varphi}}$ topology if and only if it is convergent to f in the sense of the φ -distance.

7. There are connections between $\mathcal{T}_{d_{\varphi}}$ and \mathcal{T}_{φ} . On can easily prove that $\mathcal{T}_{d_{\varphi}} \subset \mathcal{T}_{\varphi}$. The converse inclusion is described by

Lemma 7.1. Let $\varphi(+0) = 0$ The conditions

(a) $\varphi(u+0) = \varphi(u)$ for u > 0,

(b) φ satisfies the condition (Δ_2) ,

are sufficient, the condition (a) is also necessary, and if μ is an atomless measure, the condition (b) is necessary too, in order that $\mathcal{T}_{\varphi} \subset \mathcal{T}_{d_{\varphi}}$.

PROOF. Sufficiency. Let $U \subset \mathcal{T}_{\varphi}$ be an arbitrary set. Then $U = \bigcup_{t \in T} \bigcap_{i=1}^{n_t} A_{\varphi}\left(f_i^{(t)}, \varepsilon_i^{(t)}\right)$. This implies that for any $f \in U$ there is $t_0 \in T$

such that $f \in \bigcap_{i=1}^{n_{t_0}} A_{\varphi}\left(f_i^{(t_0)}, \varepsilon_i^{(t_0)}\right)$. The property (5.1) implies that there

is $\delta > 0$ such that $A_{\varphi}(f, \delta) \subset \bigcap_{i=1}^{n_{t_0}} A_{\varphi}\left(f_i^{(t_0)}, \varepsilon_i^{(t_0)}\right)$ and so $A(f, \delta) \subset U$. Hence $U \in \mathcal{T}_{d_{\varphi}}$.

Necessity. If the condition (a) does not hold or, if μ is an atomless measure and the condition (b) does not hold, then (see Lemma 5.1) there are $f_0 \in \varphi(L)$ and $\varepsilon_0 > 0$ such that $A_{\varphi}(f_0, \varepsilon_0) \notin \mathcal{T}_{d_{\varphi}}$. This implies that $\mathcal{T}_{\varphi} \not\subset \mathcal{T}_{d_{\varphi}}$.

This lemma immediately implies

Theorem 7.1. Let $\varphi(+0) = 0$. The conditions

(a) $\varphi(u+0) = \varphi(u)$ for u > 0,

(b) φ satisfies the condition (Δ₂),

are sufficient, the condition (a) is also necessary, and if μ is an atomless measure, the condition (b) is necessary too, in order that $T_{d_{\varphi}} = T_{\varphi}$.

From Theorems 4.1 and 7.1 we obtain

Remark 7.1. If $\varphi(u+0) = \varphi(u)$ for $u \geq 0$ and if φ satisfies the condition (Δ_2) , then the space $(\varphi(L), \mathcal{T}_{\varphi})$ is metrizable.

Note that this remark is a generalization of Ul'yanov Theorem (see [6]); the assumption that φ is a continuous function may be replaced by the assumption that φ is right-continuous at every point.

8. In this section we assume additionally that φ is a continuous function on $(-\infty, \infty)$. Then it is possible to define an Orlicz space L^{φ} (see [2]) and to introduce an F-norm on L^{φ} as follows:

$$||f|| = \inf \left\{ a > 0 : \int_{E} \varphi\left(\frac{f(x)}{a}\right) d\mu \le a \right\}.$$

By $\mathcal{T}_{L^{\varphi}}$ we denote the topology generated by the metric $\varrho(f,g) = ||f-g||$. Let $K(f,\varepsilon) = \{g \in L^{\varphi} : \varrho(f,g) < \varepsilon\}$.

The set $\varphi(L) \subset L^{\varphi}$ with the induced topology $\mathcal{T}_{L^{\varphi}}$ we denote by $(\varphi(L), \mathcal{T}_{L^{\varphi}})$.

Lemma 8.1. The topology $T_{d_{\varphi}}$ is coarser than $T_{L^{\varphi}}$.

PROOF. Let $U \in \mathcal{T}_{d_{\varphi}}$ and let $f \in U$ be arbitrary. Then there exists $0 < \varepsilon < 1$ such that $A_{\varphi}(f, \varepsilon) \subset U$. We shall prove that $K(f, \varepsilon) \subset A_{\varphi}(f, \varepsilon)$. Let $g \in K(f, \varepsilon)$. By Theorem 1.5 in [2] it follows that $d_{\varphi}(f, g) \leq \|f - g\|$ and so $g \in A_{\varphi}(f, \varepsilon)$. Hence $K(f, \varepsilon) \subset U$.

Lemma 8.2. Let μ be an atomless measure and let φ do not satisfy the condition (Δ_2) . Then there are $f \in \varphi(L)$ and $\varepsilon > 0$ such that $K(f, \varepsilon) \not\in \mathcal{T}_{d_{\varphi}}$.

PROOF. There are numbers $1 < u_1 < u_2 < \ldots < u_n < \ldots$ such that

$$\varphi(u_n) > 2^n$$
 and $\varphi\left(\left(1 + \frac{1}{n}\right)u_n\right) > 2^n\varphi(u_n)$ for $n \ge 1$.

Let $E = \left(\bigcup_{n=1}^{\infty} E_n\right) \cup \left(E \setminus \bigcup_{n=1}^{\infty} E_n\right)$, where the sets E_n satisfy the following conditions:

 $E_i \cap E_j = \emptyset$ for all $i \neq j$, $E_n \subset E$ for all $n \geq 1$ and $0 < \mu E_n = \frac{\mu E}{2^n \varphi(u_n)}$ for all $n \geq 1$.

Now we define a function f as follows:

$$f(x) = \begin{cases} u_n & \text{if } x \in E_n, \\ 0 & \text{if } x \in E \setminus \bigcup_{n=1}^{\infty} E_n. \end{cases}$$

Clearly $f \in \varphi(L)$. Let an $\varepsilon > 0$ be such that $\varepsilon < \min(\mu E, 1)$. There is a natural number $n_1 \ge 1$ such that $\frac{1}{\varepsilon} > 1 + \frac{1}{n_1}$. Let a $\delta > 0$ be arbitrarily chosen. Then there is a natural number $n_2 \ge 1$ such that $0 < \frac{\mu E}{2^{n_2}} < \delta$. Let $n_0 = \max(n_1, n_2)$ and let

$$g(x) = \begin{cases} 2u_{n_0} & \text{if } x \in E_{n_0}, \\ f(x) & \text{if } x \in E \setminus E_{n_0}. \end{cases}$$

It is clear that $g \in \varphi(L)$ and $g \in A_{\varphi}(f, \delta)$. Let us suppose that $g \in K(f, \varepsilon)$. This implies that $\|g - f\| < \varepsilon < 1$ and hence $d_{\varphi}\left(\frac{g}{\varepsilon}, \frac{f}{\varepsilon}\right) \le \varepsilon$. On the other hand $d_{\varphi}\left(\frac{g}{\varepsilon}, \frac{f}{\varepsilon}\right) \ge \int\limits_{E_{n_0}} \varphi\left(\left(1 + \frac{1}{n_0}\right)u_{n_0}\right)d\mu > \mu E$, a contradiction. Hence $f \in K(f, \varepsilon)$, $g \in A_{\varphi}(f, \delta)$ but $g \not\in K(f, \varepsilon)$. That is $A_{\varphi}(f, \delta) \not\subset K(f, \varepsilon)$ for all $\delta > 0$. Then $K(f, \varepsilon) \not\in \mathcal{T}_{d_{\varphi}}$.

Lemma 8.3. If φ satisfies the condition (Δ_2) , then $\mathcal{T}_{L^{\varphi}} \subset \mathcal{T}_{d_{\varphi}}$.

PROOF. Let $U \in \mathcal{T}_{L^{\varphi}}$ and let $f \in U$ be arbitrary. Then there exists an $\varepsilon > 0$ such that $K(f,\varepsilon) \subset U$. There is a natural number $n \geq 1$ such that $\frac{1}{\varepsilon} \leq 2^n$ and there is a $\delta > 0$ such that $\varphi(2^n \delta) < \frac{\varepsilon}{4\mu E}$. Hence there exists a constant $C_{\delta} > 0$ such that $\varphi(2^n u) \leq C_{\delta}^n \varphi(u)$ for $u \geq \delta$. Let $0 < \gamma < \frac{\varepsilon}{4C_{\delta}^n}$. We shall prove that $A_{\varphi}(f,\gamma) \subset K(f,\varepsilon)$. Let $g \in A_{\varphi}(f,\gamma)$. Then

$$d_{\varphi}\left(\frac{f}{\varepsilon},\frac{g}{\varepsilon}\right) = \int\limits_{E_{1}} \varphi\left(\frac{1}{\varepsilon}\big(f(x) - g(x)\big)\right) d\mu + \int\limits_{E_{2}} \varphi\left(\frac{1}{\varepsilon}\big(f(x) - g(x)\big)\right) d\mu < \frac{\varepsilon}{2},$$

where $E_1 = \{x \in E : |f(x) - g(x)| < \delta\}$ and $E_2 = E \setminus E_1$. Hence $||f - g|| < \varepsilon$ and so $A_{\varphi}(f, \gamma) \subset U$. This implies that $U \in \mathcal{T}_{d_{\varphi}}$. Lemmas 8.1 - 8.3 immediately imply

Theorem 8.1. The condition (Δ_2) is sufficient, and if μ is an atomless measure, then it is also necessary in order that $\mathcal{T}_{d_{\varphi}} = \mathcal{T}_{L^{\varphi}}$.

By Theorems 7.1 and 8.1 we obtain

Remark 8.1. If φ satisfies the condition (Δ_2) , then $\mathcal{T}_{d_{\varphi}} = \mathcal{T}_{\varphi} = \mathcal{T}_{L^{\varphi}}$. If φ does not satisfy the condition (Δ_2) and if μ is an atomless measure then $\mathcal{T}_{d_{\varphi}} \not\subseteq \mathcal{T}_{L^{\varphi}}$ and $\mathcal{T}_{d_{\varphi}} \not\subseteq \mathcal{T}_{\varphi}$.

References

- N. N. YAKOVLEV, On O-metrizable spaces, Izv. vyssh. utch. zaved. 2 (189) (1978), 98-104. (in Russian).
- [2] J. MUSIELAK, Przeestrzenie modularne, UAM Poznań (1978). (in Polish).
- [3] S. I. NEDEV, On O-metrizable spaces, Trudy Moskov. matem. ob-va 24 (1971), 201-236. (in Russian).
- [4] V. NIEMYTZKI, On the "third axiom of metric spaces", Trans. Amer. Math. Soc. 29 (1927), 507-513.
- [5] D. STACHOWIAK-GNILKA, Remarks on topological properties of the class $\varphi(L)$, Funct. et Approx. 5 (1977), 31-38.
- [6] P. L. UL'YANOV, On the metrizability of some topological space, Dokl. Akad. Nauk SSSR 234 (1977), 768-771. (in Russian).

DANUTA STACHOWIAK - GNILKA
INSTITUTE OF MATHEMATICS ADAM MICKIEWICZ UNIVERSITY
MATEJKI 48/49
60-769 POZNAŃ,
POLAND

(Received May 8, 1989)