Interval-filling sequences of order N and a representation of real numbers in canonical number systems

By B. KOVÁCS¹ and GY. MAKSA² (Debrecen)

Abstract. In this paper the authors give a characterization for interval-filling sequences of order N and using this result they show that each real number has representations in every (real) canonical number system, and give the complete analogue of a Theorem of DARÓCZY and KÁTAI for the real case.

Introduction

The concept of interval-filling sequences has been introduced by DARÓCZY, JÁRAI and KÁTAI in [1]. If (λ_n) is a strictly decreasing sequence of positive real numbers and $\sum_{n=1}^{\infty} \lambda_n < +\infty$ then (λ_n) is interval-filling if

for all $x \in [0, \sum_{n=1}^{\infty} \lambda_n]$ there exists a sequence $(a_n) : \mathbb{N} \to \{0, 1\}$ such that

 $x = \sum_{n=1}^{\infty} a_n \lambda_n$. A characterization of interval-filling sequences can be found in [1], [2] and [3].

Let \mathbf{R}_i be an integral domain (with unit element), $\alpha \in \mathbf{R}_i$ and $\mathcal{N} = \{k_1, \dots, k_n\}$ a finite subset of the rational integers \mathbf{Z} . $\{\alpha, \mathcal{N}\}$ is called a number system in \mathbf{R}_i if every $\gamma \in \mathbf{R}_i$ has a unique representation in the form

(1.1)
$$\gamma = a_0 + a_1 \alpha + \dots + a_k \alpha^k$$
, $a_i \in \mathcal{N}$, $(0 \le i \le k)$, $a_k \ne 0$ if $k \ne 0$.

¹ Research supported in part by Grants 273 and 400 from the Hungarian National Foundation for Scientific Research.

²Research supported by Grant 400 from the Hungarian National Foundation for Scientific Research.

If $\mathcal{N} = \{0, 1, \dots, n\}$ then the number system $\{\alpha, \mathcal{N}\}$ is called a canon-

ical number system.

This concept is a natural generalization of negative base number systems in \mathbf{Z} considered by several authors. In [4] one can read a necessary and sufficient condition for the existence of canonical number systems in \mathbf{R}_i . In [5] Pethő and Kovács characterized all those integral domains which have number systems and gave necessary and sufficient conditions for $\{\alpha, \mathcal{N}\}$ to be a number system in an order ϑ . In [6] Kátai and Szabó proved that if $\{\alpha, \mathcal{N}\}$ is a canonical number system in the ring of Gaussian integers, then every complex number γ can be written in the form

(1.2)
$$\gamma = a_k \alpha^k + \dots + a_1 \alpha + a_0 + a_{-1} \alpha^{-1} + \dots,$$

 $a_i \in \mathcal{N}, \ (i = k, k - 1, \dots).$

This result was extended for some families of integral domains in [7], [8], [9]. In connection with this DARÓCZY and KÁTAI proved that for every non-real complex number α , $|\alpha| > 1$, there exists a set $\{0, 1, \ldots, n\}$ such that every complex number γ can be represented in the form (1.2) ([10]).

In this paper we first give a characterization for interval-filling sequences of order N. Using this theorem we show that if $\{\alpha, \mathcal{N}\}$ is a canonical number system in an integral domain \mathbf{R}_i such that α is real, then any real number γ can be written in the form (1.2), furthermore we prove the real analogue of the theorem of DARÓCZY and KÁTAI.

Results and proofs

In the following \mathbf{R}_i will denote an integral domain of characteristic 0, \mathbf{N} the set of positive integers, \mathbf{Z} the ring of integers, \mathbf{Q} the field of rationals and \mathbf{R} the field of reals. If α is an algebraic element over \mathbf{Q} , $\mathbf{Z}[\alpha]$ denotes the subring of $\mathbf{Q}(\alpha)$ generated by \mathbf{Z} and α .

For a given α and \mathcal{N} let $\mathbf{S}(\alpha)$ be the set of all numbers γ which can

be written in the form (1.2).

In order to prove our theorems we need some further information on canonical number systems.

From [4] we know the following

Lemma 1. Let \mathbf{R}_i be an integral domain of characteristic 0. Then there exists a canonical number system in \mathbf{R}_i if and only if $\mathbf{R}_i = \mathbf{Z}[\alpha]$ for some element α which is algebraic over \mathbf{Q} .

PROOF. See Theorem 1 in [4].

Lemma 2. If $\{\alpha, \mathcal{N} = \{0, 1, ..., n\}\}$ is a canonical number system in a $\mathbb{Z}[\beta]$ and the defining polynomial of α is $a_n x^n + \cdots + a_1 x + a_0$, $a_i \in \mathbb{Z}$, then $n = |a_0| - 1$.

PROOF. See the proof of Theorem 1 in [4].

Lemma 3. Let $\{\alpha, \mathcal{N}\}$ be a canonical number system in a $\mathbb{Z}[\beta]$, where $\beta \neq 0$ is a real algebraic element over \mathbb{Q} . Then $\alpha < -1$ holds.

PROOF. i) $\mathbf{Z}[\beta]$ contains negative elements, but in the case $\alpha \geq 0$ each element $\gamma \in \mathbf{Z}[\beta]$, which has a representation in the form (1.1) is non-negative, consequently if α is the base of a canonical number system then $\alpha < 0$.

ii) If
$$-1 < \alpha < 0$$
, then $\left| \sum_{i=0}^{\infty} a_i \alpha^i \right| < K$, $a_i \in \mathcal{N}$, $i = 0, 1, \dots$

From this we get that the set of those numbers, which have representation in the form (1.1) is bounded, but $\mathbf{Z}[\beta]$ is not bounded. This means that $\alpha \leq -1$ if $\{\alpha, \mathcal{N}\}$ is a canonical number system in $\mathbf{Z}[\beta]$.

iii) If $\alpha = -1$ then $\mathbf{Z}[\beta] = \mathbf{Z}$ and it is well-known that $\{q, \{0, 1, \dots, |q| - 1\}\}$ is a canonical number system in \mathbf{Z} if and only if $q \leq -2$ holds. This completes the proof.

Lemma 4. Let α be an algebraic element over \mathbf{Q} with degree n. If $\{\alpha, \mathcal{N}\}$ is a canonical number system in $\mathbf{Z}[\beta]$ then $|\alpha^i| \geq 1$, $1 \leq i \leq n$, holds for each conjugate $\alpha^{(i)}$ of α .

PROOF. See Lemma 3 in [5].

Lemma 5. Let $\{\alpha, \mathcal{N}\}$ be a number system in $\mathbb{Z}[\beta]$, where β is an algebraic integer of degree $n \geq 1$ over \mathbb{Q} and let us suppose that $|\alpha| \leq |\alpha^{(i)}|$ for every conjugate $\alpha^{(i)}$ of α over \mathbb{Q} . Then $\mathbb{S}(\alpha) = \mathbb{R}$ or \mathbb{C} according to $\alpha \in \mathbb{R}$ or $\alpha \in \mathbb{C} \setminus \mathbb{R}$.

PROOF. See Theorem 2 in [9].

Lemma 6. Let α be a non-real algebraic integer of degree 3 (over \mathbf{Q}). If $\{\alpha, \mathcal{N}\}$ is a canonical number system in a $\mathbf{Z}[\beta]$ then $\mathbf{S}(\alpha) = \mathbf{C}$.

PROOF. See Theorem 3 in [9].

Now we introduce a generalization of interval-filling sequences. Let N be a positive integer, let Λ_N denote the set of all real sequences (λ_n) for which $|\lambda_n| > |\lambda_{n+1}| > 0$ for all $n \in \mathbb{N}$ and

$$\sum_{n=1}^{\infty} \left| \lambda_n \right| < +\infty.$$

Define the real numbers L^- , L^+ and L by

$$L^{-} = \sum_{n=1}^{\infty} \frac{|\lambda_n| - \lambda_n}{2}, \quad L^{+} = \sum_{n=1}^{\infty} \frac{|\lambda_n| + \lambda_n}{2} \quad \text{and} \quad L = L^{+} + L^{-}.$$

A sequence $(\lambda_n) \in \Lambda_N$ is called an interval-filling sequence of order N if for all $x \in [-NL^-, NL^+]$ there exists a sequence $(a_n) : \mathbb{N} \to \{0, 1, \dots, N\}$ such that

$$x = \sum_{n=1}^{\infty} a_n \lambda_n.$$

It is clear that every x which has the above representation is located

in $[-NL^-, NL^+]$.

If $\lambda_n > 0$ for all $n \in \mathbb{N}$ and N = 1 then we have the concept of intervalfilling sequence introduced in [1]. In this particular case the following characterization theorem is proved in [1], [2] and [3] and in the case N = 1it is proved by Z. BOROS (unpublished).

Theorem 1. Suppose that $(\lambda_n) \in \Lambda_N$. Then (λ_n) is an interval-filling sequence of order N if and only if

(2.1)
$$|\lambda_n| \le N \sum_{k=n+1}^{\infty} |\lambda_k| for all \ n \in \mathbb{N}.$$

PROOF. Suppose that (λ_n) satisfies condition (2.1) and $y \in [0, NL]$. First we prove that there exists a sequence $(\varepsilon_n(y)) : \mathbb{N} \to \{0, 1, \dots, N\}$ such that

(2.2)
$$y = \sum_{n=1}^{\infty} \varepsilon_n(y) |\lambda_n|.$$

Define the numbers $\varepsilon_n(y)$ inductively in the following way:

$$\varepsilon_1(y) = \begin{cases} k-1 & \text{if } (k-1)|\lambda_1| \le y < k|\lambda_1| \text{ and } k \in \{1, 2, \dots, N\} \\ N & \text{if } N|\lambda_1| \le y \end{cases}$$

If n > 1 and $\varepsilon_1(y), \ldots, \varepsilon_{n-1}(y)$ have been defined then let

$$s_n(y) = \sum_{k=1}^{n-1} \varepsilon_k(y) |\lambda_k|$$
 and

$$\varepsilon_n(y) = \begin{cases} 0 & \text{if } y < s_n(y) + |\lambda_n| \\ k - 1 & \text{if } s_n(y) + (k - 1)|\lambda_n| \le y < s_n(y) + k|\lambda_n| \\ & \text{and } k \in \{2, 3, \dots, N\} \\ N & \text{if } s_n(y) + N|\lambda_n| \le y. \end{cases}$$

In what follows we show that

$$(2.3) y \ge s_n(y) \text{for all } n \in \mathbb{N}$$

with the convention $s_1(y) = 0$. Clearly, (2.3) holds if n = 1. Suppose that n > 1 and $y \ge s_{n-1}(y)$. Since $y - s_n(y) = y - s_{n-1}(y) - \varepsilon_{n-1}(y)|\lambda_{n-1}|$ and $\varepsilon_{n-1}(y) = k$ implies that $y - s_{n-1}(y) \ge k|\lambda_{n-1}|$ if $k \in \{0, 1, \ldots, N\}$ we have (2.3) by induction. Obviously, the limit

$$s(y) = \lim_{n \to \infty} s_n(y)$$

exists and because of (2.3) we get

$$(2.4) y \ge s(y) \ge s_n(y) \text{for all } n \in \mathbb{N}.$$

Consider the set $\mathcal{A} = \{n \in \mathbb{N} : y < s_n(y) + N|\lambda_n|\}$. If $\mathcal{A} = \emptyset$ then $\varepsilon_n(y) = N$ for all $n \in \mathbb{N}$ thus by (2.4) $NL \geq y \geq s(y) = NL$, that is (2.2) holds in this case. If \mathcal{A} is an infinite set then $y < s_n(y) + N|\lambda_n|$ for infinitely many $n \in \mathbb{N}$ therefore $y \leq s(y)$. This and (2.4) imply (2.2). The remaining case is impossible: if m is the greatest element of \mathcal{A} then $\varepsilon_m(y) \leq N - 1$ and $\varepsilon_n(y) = N$ for all n > m. Then it follows from (2.4), according to the definition of $\varepsilon_m(y)$, that

$$s_m(y) + (\varepsilon_m(y) + 1)|\lambda_m| > y \ge s(y) = s_m(y) + \varepsilon_m(y)|\lambda_m| + N\sum_{k=m}^{\infty} |\lambda_k|$$

which contradicts (2.1). Thus (2.2) is proved.

Finally, let $x \in [-NL^-, NL^+]$ and $y = x + NL^-$ in (2.2). Define the numbers

$$\overline{\varepsilon}_n(x) = \frac{(2\varepsilon_n(y) - N)\operatorname{sgn}\lambda_n + N}{2}$$

for all $n \in \mathbb{N}$. Then $\overline{\varepsilon}_n(x) \in \{0, 1, ..., N\}$ and by (2.2) we obtain

$$\sum_{n=1}^{\infty} \overline{\varepsilon}_n(x) \lambda_n = \sum_{n=1}^{\infty} \frac{(2\varepsilon_n(y) - N)|\lambda_n| + N\lambda_n}{2} =$$

$$= \sum_{n=1}^{\infty} \varepsilon_n(y)|\lambda_n| - N\sum_{n=1}^{\infty} \frac{|\lambda_n| - \lambda_n}{2} =$$

$$= y - NL^- = x,$$

that is (λ_n) is an interval-filling sequence of order N.

Conversely, suppose that (λ_n) is an interval-filling sequence of order N and there exists $m \in \mathbb{N}$ such that

$$|\lambda_m|>N\sum_{k=m+1}^\infty |\lambda_k|.$$
 If $|\lambda_m|>x>N\sum_{k=m+1}^\infty |\lambda_k|$ then $-NL^-\leq x-NL^-\leq NL^+,$

therefore there exists a sequence $(a_n): \mathbb{N} \to \{0, 1, \dots, N\}$ such that

$$x - NL^{-} = \sum_{n=1}^{\infty} a_n \lambda_n, \text{ that is } x = \sum_{n=1}^{\infty} b_n |\alpha_n|, \text{ where}$$

$$b_n = \frac{(2a_n - N)\operatorname{sgn}\lambda_n + N}{2} \in \{0, 1, \dots, N\}$$

for all $n \in \mathbb{N}$. Since $x < |\lambda_m|$ we have that $b_1 = \cdots = b_m = 0$ thus

$$x = \sum_{k=m+1}^{\infty} b_k |\lambda_k| \le N \sum_{k=m+1}^{\infty} |\lambda_k|$$

which is a contradiction.

Theorem 2. Let β be a real algebraic element over \mathbf{Q} and $\{\alpha, \mathcal{N}\}$ a canonical number system in $\mathbf{Z}[\beta]$. Then every real number γ has the representation (1.2).

PROOF. Let α be a real algebraic number over \mathbf{Q} of degree n and $\{\alpha, \mathcal{N}\}$ a canonical number system in $\mathbf{Z}[\beta]$. Define the sequence (λ_n) by $\lambda_n = \alpha^{-n}$, for all $n \in \mathbf{N}$. Because of Lemma 2 the maximum element of the set \mathcal{N} is $|a_0| - 1$. First we shall show that the sequence (λ_n) is an interval-filling sequence of order $|a_0| - 1$. Lemma 3 implies that $\alpha < -1$, thus

$$|\lambda_n| > |\lambda_{n+1}| > 0$$
 for all $n \in \mathbb{N}$ and $\sum_{i=1}^{\infty} |\lambda_i| < +\infty$.

From Theorem 1 we get that the sequence (λ_n) is an interval-filling sequence of order $|a_0| - 1$ if and only if

(3.1)
$$|\lambda_n| \le (|a_0| - 1) \sum_{i=n+1}^{\infty} |\lambda_i| \text{ holds for all } n \in \mathbb{N}.$$

From (3.1) it follows immediately by the definition of (λ_n) that

(3.2)
$$\frac{1}{|\alpha|^n} \le (|a_0| - 1) \sum_{i=n+1}^{\infty} \frac{1}{|\alpha|^i} = \frac{|a_0| - 1}{|\alpha|^{n+1}} \cdot \frac{|\alpha|}{|\alpha| - 1},$$

that is

$$(3.3) |\alpha| \le |a_0|$$

is the necessary and sufficient condition for (λ_n) to be an interval-filling sequence of order $|a_0| - 1$. But $|\alpha^{(i)}| \ge 1$ holds for each conjugate $\alpha^{(i)}$ of α by Lemma 4, consequently

$$|a_0| \ge |\alpha^{(1)}| \, |\alpha^{(2)}| \dots |\alpha^{(n)}| \ge |\alpha|.$$

This means that for any canonical number system $\{\alpha, \mathcal{N}\}$ under the conditions of our theorem, the sequence (λ_n) defined above forms an interval-filling sequence of order $|a_0| - 1$.

Now let $\gamma \in \mathbf{R}$. The length of the interval $[-(|a_0|-1)L^-, (|a_0|-1)L^+]$ is not less then 1 therefore there exists $\gamma_0 \in \mathbf{Z} \subset \mathbf{Z}[\beta]$ such that

(3.5)
$$\gamma - \gamma_0 \in [-(|a_0| - 1)L^-, (|a_0| - 1)L^+].$$

Since $\{\alpha, \mathcal{N}\}$ is a canonical number system in $\mathbf{Z}[\beta]$ and (λ_n) is an intervalfilling sequence of order $|a_0| - 1$, γ_0 and $\gamma - \gamma_0$ can be written as

(3.6)
$$\gamma_0 = a_M \alpha^M + \dots + a_1 \alpha + a_0, \quad a_i \in \mathcal{N}, \ i = 0, 1, \dots, M$$

and

(3.7)
$$\gamma - \gamma_0 = a_{-1}\alpha^{-1} + \dots + a_{-m}\alpha^{-m} + \dots,$$

 $a_i \in \mathcal{N}, i = -1, \dots, -m, \dots.$

Because of (3.6) and (3.7) the proof is complete.

Remarks. 1 The Theorem 2 in [8] is a special case of our theorem. 2 It can be seen from the proof that, in general, a real number γ has more than one representation in the form (1.2).

Combining Theorem 2 with Lemmas 5 and 6 we obtain the following Theorem.

Theorem 3. Let β be an algebraic integer over \mathbf{Q} of degree at most 3 and $\{\alpha, \mathcal{N}\}$ be a canonical number system in $\mathbf{Z}[\beta]$. Then every real or complex number can be written in the form (1.2) according to α being real or a nonreal complex number.

PROOF. If α is real then Theorem 2 gives the desired result. If α is a nonreal number of degree 2, then Lemma 5 implies the statement since all conjugates of α have the same absolute value. Finally, if α is of degree 3 and α is not real then our theorem is proved by using Lemma 6.

We note that Theorems 2 in [6], [7] and [8] are particular cases of Theorem 3.

The following theorem is similar to Theorem 5 in [10] for the real case, moreover we can give all possible sets of digits, too.

Theorem 4. Suppose that $\alpha \in \mathbb{R}$, $1 < |\alpha|$. Choose $N \in \mathbb{N}$ such that $N \ge |\alpha| - 1$ and let $\mathcal{N} = \{0, 1, \dots, N\}$. Then every real number γ or non-negative real number γ has the representation (1.2) according to $\alpha < 0$ or $\alpha > 0$.

PROOF. Let k be an odd natural number and $\lambda_n^{(k)} = \alpha^{k+1-n}$, $n = 1, 2, \dots$

Then $(|\lambda_n^{(k)}|)$ is a strictly decreasing sequence and

$$|\lambda_n^{(k)}| = (|\alpha| - 1) \sum_{j=n+1}^{\infty} |\lambda_j^{(k)}| \le N \sum_{j=n+1}^{\infty} |\lambda_j^{(k)}| \quad \text{for all } n \in \mathbb{N}.$$

Now, by Theorem 1, $(\lambda_n^{(k)})$ is an interval-filling sequence of order N. Furthermore

$$L_k^- = \sum_{n=1}^{\infty} \frac{|\lambda_n^{(k)}| - \lambda_n^{(k)}}{2} = -\alpha \frac{\alpha^{k+1}}{\alpha^2 - 1}, \quad L_k^+ = \sum_{n=1}^{\infty} \frac{|\lambda_n^{(k)}| + \lambda_n^{(k)}}{2} = \frac{\alpha^{k+1}}{\alpha^2 - 1},$$

if $\alpha < 0$ and

$$L_k^- = 0, \quad L_k^+ = \frac{\alpha^{k+1}}{\alpha - 1}, \quad \text{if } \alpha > 0.$$

Therefore $\gamma \in [-NL_k^-, NL_k^+]$ if k is large enough and the proof is complete.

References

- Z. DARÓCZY, A. JÁRAI and I. KÁTAI, Intervallfullende Folgen und volladditive Funktionen, Acta Sci. Math. Szeged 50 (1986), 337-350.
- [2] S. KAKEYA, On the partial sums of an infinite series, Science Reports Tohoku, Imp. Univ. (1) 3 (1914), 159-163.

- [3] P. RIBENBOIM, Representation of real numbers by means of Fibonacci numbers, L'Enseignement Math. 31 (1985), 249-255.
- [4] B. KOVÁCS, Integral domains with canonical number systems, Publicationes Mathematicae (Debrecen) 36 (1989), 153-156.
- [5] B. KOVÁCS and A. PETHÖ, Number systems in integral domains, especially in orders of algebraic number fields, to appear (J. Number Theory).
- [6] I. KATAI and J. SZABÓ, Canonical number systems for complex integers, Acta Sci. Math. Szeged 37 (1975), 255-260.
- [7] I. KÁTAI and B. KOVÁCS, Canonical number systems in imaginary quadratic fields, Acta Math. Hungar. 37 (1981), 159-164.
- [8] I. KÁTAI and B. KOVÁCS, Kanonische Zahlensysteme in der Theorie der quadratischen Zahlen, Acta Sci. Math. Szeged 42 (1980), 99-107.
- [9] B. KOVÁCS, Representation of complex numbers in number systems, to appear (Acta Math. Hungar.).
- [10] Z. DARÓCZY and I. KÁTAI, Generalized number systems in the complex plane, Acta Math. Hungar. 51 (3-4) (1988), 409-416.

B. KOVÁCS AND GY. MAKSA KOSSUTH LAJOS UNIVERSITY MATHEMATICAL INSTITUTE 4010 DEBRECEN P.O. BOX 12 HUNGARY

(Received June 9, 1989)