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Interval-filling sequences of order N and a representation
of real numbers in canonical number systems

By B. KOVACS! and GY. MAKSA? (Debrecen)

Abstract. In this paper the authors give a characterization for interval-filling
sequences of order N and using this result they show that each real number has repre-
sentations in every (real) canonical number system, and give the complete analogue of
a Theorem of DAROCzY and KATAl for the real case.

Introduction

The concept of interval-filling sequences has been introduced by DA-
ROCZY, JARAI and KATAI in [1]. If (A,) is a strictly decreasing sequence
o0

of positive real numbers and } A, < +oo then (A,) is interval-filling if

n=|]

for all z € [0, 3 A,] there exists a sequence (a,): N — {0,1} such that
n=1

oo
T = ) apAn. A characterization of interval-filling sequences can be found

n=1
in (1], [2] and [3].

Let R; be an integral domain (with unit element), a« € R; and
N = {ky,...,k,} afinite subset of the rational integers Z. {a, N} is called
? number system in R, if every v € R; has a unique representation in the
orm

(1.1) y=as+aa+---+aa*, a;eN, (0<i<k), ar #0if k #0.
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If N = {0,1,...,n} then the number system {a, N} is called a canon-
ical number system.

This concept is a natural generalization of negative base number sys-
tems in Z considered by several authors. In [4] one can read a necessary
and sufficient condition for the existence of canonical number systems in
R;. In [5] PETHO and KOVACS characterized all those integral domains
which have number systems and gave necessary and sufficient conditions
for {a,N'} to be a number system in an order 9. In [6] KATAI and SzZABO
proved that if {a, N'} is a canonical number system in the ring of Gaussian
integers, then every complex number 4 can be written in the form

(1.2) y=ara*+---+aja+ap+a_ja™ ! +...,
GEN, =k k=T )

This result was extended for some families of integral domains in [7], (8],
[9]. In connection with this DAROCZY and KATAI proved that for every
non-real complex number a, |a| > 1, there exists a set {0,1,...,n} such
that every complex number 7 can be represented in the form (1.2) ([10]).

In this paper we first give a characterization for interval-filling se-
quences of order N. Using this theorem we show that if {a,N'} is a
canonical number system in an integral domain R; such that «a is real,
then any real number v can be written in the form (1.2), furthermore we
prove the real analogue of the theorem of DAROCZY and KATAL

Results and proofs

In the following R; will denote an integral domain of characteristic 0,
N the set of positive integers, Z the ring of integers, Q the field of rationals
and R the field of reals. If a is an algebraic element over Q, Z[a] denotes
the subring of Q(a) generated by Z and a.

For a given a and N let S(a) be the set of all numbers 4 which can
be written in the form (1.2).

In order to prove our theorems we need some further information on
canonical number systems.

From [4] we know the following

Lemma 1. Let R; be an integral domain of characteristic 0. Then
there exists a canonical number system in R, if and only if R; = Z[a] for
some element a which is algebraic over Q.

PROOF. See Theorem 1 in [4].

Lemma 2. If {a,N' = {0,1,...,n}} is a canonical number system in
a Z|[B3) and the defining polynomial of a is a,2™ 4+ --- + ayz + aq, a; € Z,
then n = |ag| — 1.

PROOF. See the proof of Theorem 1 in [4].
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Lemma 3. Let {a,N'} be a canonical number system in a Z|3], where
B # 0 is a real algebraic element over Q. Then a < —1 holds.

PROOF. i) Z[f] contains negative elements, but in the case a > 0
each element v € Z[f], which has a representation in the form (1.1) is
non-negative, consequently if a is the base of a canonical number system
then a < 0.

i) If -1 <a <0, then

m .
Eaia‘l <K, ag,eN,1=01,... .
=0

From this we get that the set of those numbers, which have representation
in the form (1.1) is bounded, but Z[3] is not bounded. This means that

a < —1if {a,N'} is a canonical number system in Z[/].

iii) If @ = —1 then Z[B] = Z and it is well-known that
{¢,{0,1,...,|¢| — 1}} is a canonical number system in Z if and only if
¢ < —2 holds. This completes the proof.

Lemma 4. Let a be an algebraic element over Q with degree n. If
{a,N'} is a canonical number system in Z[3] then |a*| > 1, 1 <1 < n,
holds for each conjugate a'*) of a.

PROOF. See Lemma 3 in [5].

Lemma 5. Let {a,N'} be a number system in Z[3], where j is an
algebraic integer of degree n > 1 over Q and let us suppose that |a| < |a!?|
for every conjugate a'¥ of a over Q. Then S(a) = R or C according to
a€RoraeC\R.

PROOF. See Theorem 2 in [9].

Lemma 6. Let a be a non-real algebraic integer of degree 3 (over Q).
If {a,N'} is a canonical number system in a Z[3] then S(a) = C.

PrOOF. See Theorem 3 in [9)].

Now we introduce a generalization of interval-filling sequences. Let N
be a positive integer, let Ay denote the set of all real sequences (A,) for

which |A,| > [An41| > 0 for all n € N and

Z |An| < 400.
n=1

Define the real numbers L=, L* and L by

- _ > |/\n|—/\n + = I/\n|+)‘ﬂ + —
L _Z—g—, L =ZT i) e Ny, Foe
n=1 n=1
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A sequence (\,) € Ay is called an interval-filling sequence of order N if
for all z € [-NL~, NL*] there exists a sequence (a,) : N — {0,1,...,N}

such that
00
r = Z anl\n-

n=1

It is clear that every  which has the above representation is located
in [-NL-,NL*].

If A\, > Oforalln € N and N = 1 then we have the concept of interval-
filling sequence introduced in [1]. In this particular case the following
characterization theorem is proved in [1], [2] and [3] and in the case N =1
it is proved by Z. BOROS (unpublished).

Theorem 1. Suppose that (A,,) € Ay. Then (),) is an interval-filling
sequence of order N if and only if

(2.1) Mal N Y M| forallneN.
k=n+1

PROOF. Suppose that (A,) satisfies condition (2.1) and y € [0, NL].
First we prove that there exists a sequence (en(y)) : N — {0,1,...,N}
such that

(2.2) y= ) en(y)|Anl.
n=1

Define the numbers ¢,(y) inductively in the following way:

e k=1 if (k—1)|\1| <y < k|\| and k € {1,2,...,N}
WY N N2y

If n >1 and &(y),...,6n-1(y) have been defined then let
n—1
sn(y) =) _ex(y)|M| and
k=]

0 if y < sn(y) + |An]

k=1 if sn(y)+(k = 1)[An|Sy<sa(y)+k|Aa]
and k€{2,3,...,N}

N ifsa(y)+NPal <y.
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In what follows we show that

(2.3) y>sp(y) forallneN

with the convention s;(y) = 0. Clearly, (2.3) holds if n = 1. Suppose that
n>1andy > sp-1(y). Since y — 8a(y) = y — 3n-1(y) — €n-1(¥)|An-1|
and €,-1(y) = k implies that y — s,—1(y) = k|An-1| if k € {0,1,...,N
we have (2.3) by induction. Obviously, the limit

s(y) = lim sn(y)
exists and because of (2.3) we get

(2.4) y > 8(y) 2 sa(y) foralln € N.

Consider the set A = {n € N : y < sa(y) + N|An|}. If A = 0 then
en(y) = N for all n € N thus by (2.4) NL > y > s(y) = NL, that is
(2.2) holds in this case. If A is an infinite set then y < s.(y) + N|An|
for infinitely many n € N therefore y < s(y). This and (2.4) imply (2.2).
The remaining case is impossible: if m is the greatest element of A then
em(y) £ N —1 and e,(y) = N for all n > m. Then it follows from (2.4),
according to the definition of ¢,,(y), that

sm(¥) + (Em(y) + DAm| > ¥ > 5(y) = sm(y) + em@)Am| + N Y il

k=m

which contradicts (2.1). Thus (2.2) is proved.
Finally, let € [-NL~,NL*] and y = z + NL~ in (2.2). Define the

numbers
(2¢n(y) — N)sgnda + N
2

for all n € N. Then &,(z) € {0,1,...,N} and by (2.2) we obtain

i Exnl(Z)An
n=1

Ealz] =

(2en(y) = N)Anl + NAn
; i

M

]
Il
—_

M

IS P
en()al = N Y el =2
n=1

Il
—

—NL =z,

Il
< 3

that is (A, ) is an interval-filling sequence of order N.
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Conversely, suppose that (A,) is an interval-filling sequence of order
N and there exists m € N such that

Pl >N ) [Al.
k=m+1

If|Am|>z>N )  |A\| then —NL™ <z-NL™ <NL*,

k=m+1

therefore there exists a sequence (a,): N — {0,1,..., N} such that

oC oo
z-=-NL™ = Za"’\"’ that is z = an|an|, where
n=1 n=1
2a, — N )sgnA, + N
. ’;5“ SIS (1 e
for all n € N. Since z < |A,,| we have that b, =--- = b,, = 0 thus
= ) WlMISN Y |

k=m+1 k=m+1

which is a contradiction.

Theorem 2. Let 3 be a real algebraic element over Q and {a,N'}
a canonical number system in Z[3]. Then every real number v has the
representation (1.2).

PROOF. Let a be a real algebraic number over Q of degree n and
{a,N'} a canonical number system in Z[3]. Define the sequence (A, ) by
An = a™ ", for all n € N. Because of Lemma 2 the maximum element of
the set A" is |ag| — 1. First we shall show that the sequence (\,) is an
interval-filling sequence of order |ag| — 1. Lemma 3 implies that a < —1,
thus

[An] > [An41] >0 for all n € N and Z|A,—| < +00.
i=1

From Theorem 1 we get that the sequence (A, ) is an interval-filling se-
quence of order |ag| — 1 if and only if

(3.1) [Anl < (Jag| =1) ) |Ai holds for all n € N.

i=n+l
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From (3.1) it follows immediately by the definition of (A, ) that

1 = 1 lag| — 1 |
: < = - = — '
(3.2) o < (laol 1)i=§l = e
that is
(3.3) la| < |ao|

is the necessary and sufficient condition for (A,) to be an interval-filling

sequence of order |ag| — 1. But |a{*| > 1 holds for each conjugate o' of
a by Lemma 4, consequently

(3.4) lag| > |a“)||a(2]|...|a(")| > |al.

This means that for any canonical number system {a, N} under the con-
ditions of our theorem, the sequence (), ) defined above forms an interval-
filling sequence of order |ag| — 1.

Now let 4 € R. The length of the interval [—(|ag|—1)L~, (|ag|—1)L¥]
is not less then 1 therefore there exists 79 € Z C Z[f] such that

(3.5) ¥ = € [=(lao| = 1)L~ (lao| — 1)L¥].

Since {a, N'} is a canonical number system in Z[3] and (A,) is an interval-
filling sequence of order |ag| — 1, 99 and v — vy can be written as

(3.6) Yo =ameM +---+aja+ay, a;€N,i=0,1,....M
and

37 Y—v=aaal'+---ta_ma ™ +...,
aGEN,i==1....,—m,... .

Because of (3.6) and (3.7) the proof is complete.

Remarks. 1 The Theorem 2 in [8] is a special case of our theorem.
2 It can be seen from the proof that, in general, a real number v has
more than one representation in the form (1.2).

Combining Theorem 2 with Lemmas 5 and 6 we obtain the following
Theorem.
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Theorem 3. Let  be an algebraic integer over Q of degree at most
3 and {a,N'} be a canonical number system in Z[3). Then every real or
complex number can be written in the form (1.2) according to a being real
or a nonreal complex number.

PROOF. If a is real then Theorem 2 gives the desired result. If a is
a nonreal number of degree 2, then Lemma 5 implies the statement since
all conjugates of a have the same absolute value. Finally, if « is of degree
3 and « is not real then our theorem is proved by using Lemma 6.

We note that Theorems 2 in [6], [7] and [8] are particular cases of

Theorem 3.
The following theorem is similar to Theorem 5 in [10] for the real case,

moreover we can give all possible sets of digits, too.

Theorem 4. Suppose that a € R, 1 < |a|]. Choose N € N such
that N > |a| — 1 and let N = {0,1,...,N}. Then every real number v
or non-negative real number v has the representation (1.2) according to
a<0ora>0.

PROOF. Let k be an odd natural number and /\E,H = qkt1-n
n=1,2,.

Then (I,\L”D is a strictly decreasing sequence and

AP = (Ja] — 1) z IA“‘]|<N Z |)\m| for all n € N.

j=n+1 j=n+1

Now, by Theorem 1, (A(,,k)) is an interval-filling sequence of order N. Fur-
thermore

k k 00 k k
L—__ZI’\( )l_A{) e ak-{-] +_Z|A{N)I+AL) B ﬂk+l
k - a?2 -1’ a = e 11
if a < 0 and
Rl e s
S ST ‘

Therefore v € [-NL, NL}]if k is large enough and the proof is complete.
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