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On a Stamate-type functional equation

By | MAREK KUCZMA | (Katowice)*

Introduction

Various authors (beginning with I. STAMATE [7]) have considered the
functional equation

zf(y) — yf(z)
z—y

(1) =¢lk(z,9)], <#v,

and/or its diverse particular cases (cf. [2], [3], [7], [8]). Originally equation
(1) was motivated by the mean value formula of POMPEIU [6], but later it
began to live an independent life.

The somewhat similar functional equation, this time motivated by the
classical mean value theorem of the dif?erential calculus,

f(z) - f(y)

(2) —

= pl&(z,y)], z # vy,

and its special cases have been even more extensively studied (cf. [1], [2],
[4] and the references in [1]). The most frequently considered cases of
equations (1) and (2) are those, where £ is the arithmetic mean of z and
Y,

1
3) E(@,9) = 5( +)
i.e. the equations

zf) —vf(2) _ (m)

(4) T #y,

T—-y 2
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and

fe)—fy) _ _(=z+y n
(5) —37—99( 5 ), # v

In fact, SH. HARUKI [4] and J. ACZEL [1] have considered the slightly
more general equation than (5) (with three unknown functions)

() f(z) —g(y) v(m), Rl

T—-y 2

Moreover, in [1] equation (6) is treated (and solved) on an arbitrary com-

mutative field of characteristic different from 2.
In the present paper we deal with the analogous generalization of

equation (4)

) zf(y) ~vo(z) _ (-’f-‘_-l-y) o il

z-y 2

on subsets of commutative fields of characteristic different from 2. Similar
results can also be obtained for equation (6). They are stated without

proofs at the end of the paper.

Introducing an additional unknown function ¢ into equation (5) does
not present new interesting problems; it is easily shown that equations (5)
and (6) are equivalent (cf. [1], [4]). The same is also true for equations
(4) and (7) provided that the domain of the equation is not too small. We
will prove this for equations (1) and (8):

zf(y) — yg(z)

sy

(8) =plf(z,y)], z#y,

under the assumption that the function £ is symmetric:

(9) ‘S(J:! y) =‘£(y!x)'

In the sequel a field stands always for a commutative field. For every
prime number p, the symbol Z, denotes the field of integers modulo p.

1. For an arbitrary set U and an arbitrary function £ : U x U — U
we write

(10) VIUfl:={teU |t=¢(z,y), z,yeU, z#y}.

Theorem 1. Let F be a field of characteristic different from 2, let
U C F be a set such that U\{0} contains at least three elements and let
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£:U xU - U be a symmetric function. If functions f,g : U — F and
¢ : VU, €] — F satisfy equation (8) for all z,y € U, = # y, then

(11) f(z)=g(z), ze€l.
PROOF. Relations (8) and (9) imply that
zf(y) — yg(z) = zg(y) —yf(z), =z,y€U, z#y,

whence

(12) f(z) ;9(3) = 9(y) ;f(y)’ z,y € U\{0}, = #y.

Fix a y € U\{0} and put

_ 93 - )
(13) = =
Thus we have by (12)
(14) f(z) =g(z) +cx, zeU\{0,7}

There exist u,v € U\{0,7}, u # v. Putting in (12) z = u and y = v we
obtain in view of (14) ¢ = —c, whence ¢ = 0 since the characteristic of F
is different from 2. Thus relations (13) and (14) imply (11) for z € U\{0}.
If 0 € U, then we put in (8) first z =y, y = 0, and then z =0, y = y. By

(9)
£(0) = ¢[€(¥,0)] = ¢[£(0,9)] = 9(0),
which completes the proof.

Remark 1. If U\{0} contains less than three elements relation (11)
need not hold. For instance, let U = {0,1,—1}. The functions f,g,¢ :
U — U given by

f(1)=1, 9(1) =0, ¢(1) =0,
f(0) =0, 9(0) =0, ¢(0) = 0,
f(-1)=0, 9(-1) = -1, ¢(—-1) =0,

satisfy equation (8) (with an arbitrary £ : UxU — U)forallz,y € U, = #
y, but f # g; cf. also Theorem 3 below.

We prove yet a simple but useful lemma.
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Lemma 1. Let F be a field and suppose that sets W C U C F and a
function € : U x U — U fulfil the condition

(i) For every z € U there exists a y € W\{0} such that y # = and
§(z,y) € W.

If functions f : U - Fandyp : V - F aswellas fop : U - F and
wo : V. — F, where V = V[U,{] is given by (10), satisfy equation (1) for
allz,y € U, z #y, and

(15) f(z) = fo(z), (t) = po(t)

forz € W, te VNW, then (15) holds for allz € U, t € V.

PROOF. Take an arbitrary z € U and let y € W\{0,z} be the point
whose existence is guaranteed by condition (i). Thus t = §(z,y) e VN W,
whence it follows by (1) and (15)

f(z) = ilrf(y) (2 - y)olt)] = i[zfo(y) — (2 - y)oo(t)] = fo(z).

This gives the first equality in (15) for arbitrary z € U. Now, according
to (10), for every t € V there exist z,y € U, = # y, such that t = §(z,y).
Hence we have by (1) in view of the relation (already proved) f = fo

o(t) = plé(z,y)] = (z —y) [z f(y) — yf(2)]
= (z —y) 'z fo(y) — vfo(z)] = wolé(z, y)] = wo(t).

Thus we have obtained also the second equality in (15) for all ¢t € V.

Remark 2. Condition (i) is evidently fulfilled in many important spe-
cial cases; cf. [2].

2. Theorem 1 suggests that instead of equation (7) we can consider
equation (4). The latter is dealt with in the following lemma.

Lemma 2. Let F be a field of characteristic different from 2 and let
U C F be a set fulfilling the condition

(ii) %(U+U):= {wEF|w=%(u+v), s, v eV} =T, 0T,

U\{0} # 0; moreover, for every z € U there exists ay € $U\{0} such that
y# ¢ and z + y € U\{0}.

If functions f : U — F and ¢ : V — F, where V = V[U,{] is given by
(10) with (3), satisfy equation (4) for all z,y € U, = # y, then there exist
a, 3 € F such that

(16) f(z)=az+B, z€U, o(t)=48, teV.
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Conversely, for every a, 3 € F functions (16) actually satisfy equation (4)
(z,y €U, z#y).

PROOF. The last assertion is readily checked, so assume that func-
tions f and ¢ satisfy equation (4). Take arbitrary t € ;U\{0} and put in
(4) ¢ = 2t, y = 0. (2t # 0 since F is not of characteristic 2). We obtain
f(0) = ¢(t), i.e., with B := f(0),

(17) o(t) =B, te U\{0}

Fix a § € ;U\{0} = 3(U\{0}) # 0. For z € {U, = # -7, we have
Lz +79) € (iU +1U)\{0} c 1U\{0}, whence by (4) and (17)

(18)  f@)-Tf@)= (-1 €3V, 17, 2T
With

(19) a:=(f(y) - B)/v,
relation (18) yields

(20) fl)=az+p, z€U, 247, z#-F.

In fact, according to (19), formula (20) is valid also for z = y. If =y €
3U C 3(U +U) = U, then by (ii) there exists a z € 3U\{0} such that
z # -y and z — § € U\{0}. By (20) f(z) = az + B, whence we obtain
according to (17) on setting z = 2z, y = -y in (4) f(-y) = —ay + S. Thus
(20) holds also for z = —¥ so that

(21) f(z) = az + B, z € U

S

Further, if 0 € V| then there exists a u € U such that also —u € U. Setting
in (4) z = ju € 3U, y = —ju € ;U we get by (21) ¢(0) = B. Together
with (17) this implies that

(22) o(t)=B, tevn (%U) .

Relations (21) and (22) imply now (16) by virtue of Lemma 1.
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Remark 3. The condition }(U 4+ U) = U (a sort of convexity; observe
that it is equivalent to 2(U + U) C U, since U C (U + U) is always true)
guarantees that function (3) maps U x U into U and is quite natural when
we consider equation (4) or (7). On the other hand, the condition 0 € U is
restrictive. It would be interesting to extend Lemma 2 to the case where
0 ¢ U. For F = R (the reals) and U = I (a proper real interval) this has

been done in [2], but in general the problem remains open.

Lemma 3. Let F be a field of characteristic different from 2. If a set
U C F fulfils condition (ii), then U contains at least five elements.

PROOF. By (ii) 0 € U and there exists an z # 0 belonging to U.
Hence }z = 1(2+40) € }(U+U) = U, and we have 0 # 1z # z. Similarly,

12=12(324+0) € 3(U+U)="U and 0 # 1z # Jz. We distinguish two
cases.

' i:c = z. Then the characteristic of F is 3 and we have %:.': = —Z.

According to (ii) there must be in JU = }(U+0) C 2(U+U)=Uay #0
such that y # —z = Jz and y —z # 0, i.e,, y # z. Also 1y = 1(y +0)
belongs to U and is different from 0, z,y and %a:. Consequently the points
0,z,y, %x, %y are distinct from each other and belong to U.

II. 3z # z. Then we consider 3z = } (12 4+0) € J(U+U)=U. K

%.r # z, then the points 0, z, %3:, ix, ;-x are distinct from each other and

belong to U. If, on the other hand, %x = z, then the characteristic of F
is 7 so that 3z # 0 and we have 3z = ; (32 + z) € U. Consequently the

points 0, z, %3:, ir, %:c are distinct from each other and belong to U.
Remark 4. As may be seen from the example of U = F = Zj5 (cf., in
particular, Lemma 4 below), a set U fulfilling (ii) need not contain more

than five elements.

Lemmas 2 and 3 together with Theorem 1 immediately imply the
following result on equation (7).

Theorem 2. Let F be a field of characteristic different from 2, and
let U C F be a set fulfilling condition (ii). If functions f,g : U — F and
¢:V = F, where V = V|[U,¢§| is given by (10) with (3), satisfy equation
(7) for all z,y € U, x # y, then there exist a, 3 € F such that

(23) fx)=g(z)=az+B, z€U, ¢(t)=p, teV.

Conversely, for every a, 8 € F functions (23) actually satisfy equation (7)
(z,y € U, = #y).

We prove yet
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Lemma 4. Let F be a field of characteristic different from 2. The set
U = F fulfils condition (ii) if and only if F is not isomorphic to Zj.

Proor. If U = F fulfils condition (ii), then F cannot be isomorphic to
Z; as results from Lemma 3. Conversely, assume that F is not isomorphic
to Z3. Evidently

%(F+F)= F, 0€F, F\{0} #0.

Similarly, F = F.

Take an z € F. If ¢ = 0, then for every y € ;F\{0} we have y # z and
z +y € F\{0}. If z # 0, then observe that we cannot have F = {0,z, —z}
and clearly this y has all the properties specified in (ii).

Remark 5. Lemmas 2 and 4 show that Proposition 1 in [2] is valid
also for a large class of fields of characteristic 3; in fact, for all such fields
that are not isomorphic to Zj.

In view of Lemma 4 our Theorem 2 yields the general solution of
equation (7) on commutative fields of characteristic different from 2 which
are not isomorphic to Z3. The case of fields isomorphic to Z3 will be dealt
with presently.

Observe that if a field F has a subfield isomorphic to Zj, then the
characteristic of F is 3, and conversely, every field of characteristic 3 has
a unique subfield isomorphic to Z3. If U is a field isomorphic to Z3 and
§:U x U — U is given by (3), then (cf. (10)) V[U,€] = U.

We will use the characteristic function X, (z) defined as 1 for z = u
and 0 otherwise.

Theorem 3. Let F be a field of characteristic 3 and let U C F be
the subfield of F isomorphic to Z3. If functions f,g,¢ : U — F satisfy

equation (7) for all z,y € U, x # y, then there exist a,3,7,¢ € F such
that

f(z) = [a + X_u(I)C]I + B8 = (v = B)X-u(z),
(24) 9(z) = [a+ Xu(z)c]z + B — (v — B)X-u(z), z€U,

p(z) = B+ (v — B)Ao(z),
where u is an arbitrarily fixed element of U\{0}. Conversely, for every
a, 3,7, c € F functions (24) actually satisfy equation (7) (z,y € U, z # y).

PRrooF. Fix a u € U\{0}. Thus U = {0,u,—u}. As in the proof
of Theorem 1 we arrive at relation (12). Moreover, setting in (7) first
r =u, y =0 and then z =0, y = u we obtain

(25) f(0) = ¢(0).
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Write
(26) & o M.
The only possible values of z,y in (12) are ¢ = u, y = —u and z =
—u, y = u. In both cases we obtain f(u) — g(u) = f(—u) — g(—u), which
together with (26) implies

(27) 9(u) = f(u) +cu, g(-u)= f(-u)—c(-u).
Relations (25) and (27) can jointly be written as
(28) 9(z) = f(z) + [Xu(z) — X-u(2)]ez, z€U.

We insert (28) into (7) arriving thus at the equation

29) 2f() - uf(@) = (e =v)o (L) +iu(o) - As(eleaw, 7 £

Putting in (29) all possible values of z,y € U, z # y, we obtain six rela-
tions, of which only three are independent:

(30)  (u)=f(0), p(—u)=f(0), f(u)+ f(~u)=—¢(0)— cu,

while the remaining three are a consequence of (30). With

B . [f(u) €= f(O)]/'u, B:= f(U)s g & ‘P(O)
relations (28) and (30) yield (24). The final statement is the matter of a
straightforward verification.

Remark 6. For ¢ = 0 and y = 8 formula (24) reduces to (23).

3. If F is a field of characteristic 2, then function (3) and hence also
equations (4) and (7) make no sense. However, if the characteristic of F
is different from 2, equation (7) considered on F (or on a subfield) can
equivalently be written in the form

zf(y) — yg(z)
=g
which is meaningful also for fields of characteristic 2. In the present section
we are going to deal with equation (31) on fields of characteristic 2.
First observe that if U is a field of characteristic2and § : U xU — U
is the sum

(31) =¥(z+y), z#y,

(32) {(z,y) =z +y,
then (cf. (10))
(33) VU, £ = U\{0}.

In fact, if z + y = 0, then z = —y = y, which means that 0 ¢ V[U,£]. On
the other hand, for every ¢t # 0 in U we have t =t 4+ 0 € V|[U,£]. Hence
(33) follows.

Now we prove a theorem on equation (31).
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Theorem 4. Let F be a field of characteristic 2 and let U C F be
a subfield of F not isomorphic to Z,. If functions f,g : U — F and ¢ :

(U\{0}) — F satisfy equation (31) for all z,y € U, = # y, then there exist
a, 3 € F such that

(34) f(I) s g(.’L’) =ar + 61 T € Uv %b(t) — ﬁs t € U\{O}

Conversely, for every a, f € F functions (34) actually satisfy equation (31)
(z,y €U, z#y).

PROOF. The last assertion is clear, so assume that f, g, ¢ satisfy equa-
tion (31) (z,y € U, = # y). For every t € U\{0} we obtain from (31) on
settingz =t, y=0

(35) Y(t) = f(0)=:8, teU\{0}.

Since U is not isomorphic to Z;, the set U\ {0} contains at least three
elements. Fix a § € U\{0} and write
(36) s SIS e S S
y y
We set in (31) first y = § and next z = ¥ (in the latter case we write then
z in place of y) to get

(37) f@)=aiz+B, g(z) =z +h, z€U, s #£7.

Further, there are in U\{0} points u # v such that u # y # v. We put
now in (31) # = u, y = v and we obtain according to (35) and (37) (cf.
also (33)) (a; — az)uv = 0. Hence

(38) a; = a =: a.

Relations (35), (37), (36) and (38) yield (34).

Remark 7. Theorem 4 shows, in particular, that in the case where
U is a subfield of F and £ : U x U — U is given by (32) Theorem 1 is
true also when the characteristic of F is 2. There is also a perfect analogy
between Theorems 2 and 4, which shows that Proposition 1 in [2] is valid
also when F is a field of characteristic 2 not isomorphic to Z, except that
then relation ¥(t) = B need not hold for t = 0 (¢ in [2; Proposition 1]
corresponds to our ).

If U = {0,u} is isomorphic to Z,, then the only information we can
derive from equation (31) on U is that f(0) = ¢(0) = ¥(u). The remaining
three values f(u), g(u), ¥(0) may be quite arbitrary. In fact, the functions
f, g and ¥ need not even be defined at the respective points; cf. also, in
particular, relation (33).
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4. In this section we present (mostly without proofs) some results on
the functional equations (2), (5), (6),

(39) 1z - j(y — oty =,
and
(40) M09 _yary),  2#v,

analogous to those obtained in previous sections for equations (1), (4), (7),
(8) and (31).

Theorem 5. Let F be a field of characteristic different from 2, let
U C F be a set containing at least three elements and let £ : U x U — U
be a symmetric function. If functions f,g : U — F and ¢ : V[U,{] — F
satisfy equation (39) for all z,y € U, z # y, then relation (11) holds.

THE PROOF of Theorem 5 is quite similar to that of Theorem 1; cf.
also [1].

Lemma 5. Let F be a field and suppose that sets W C U C F and a
function £ : U x U — U fulfil the condition

(111) For every x € U there exists a y € W such that y # = and
{(z,y) € W.
If functions f : U —- Fand g : V — F as well as f, : U — F and
o : V — F, where V = VU, €], satisfy equation (2) for allz,y € U, = # y,
and relation (15) holds for x € W, t € V. N W, then (15) holds for all
zeU teV.

THE PROOF of Lemma 5 does not differ from that of Lemma 1.

Lemma 6. Let F be a field of characteristic different from 2 and let
U C F be a set fulfilling the condition

1
(iv) §(U+U)=U, U =2ug—U for an ug € U, U\{uo} # 0.
If functions f: U — F and ¢ : V — F, where V = VU, €] is given by
(10) with (3), satisfy equation (5) for all z,y € U, = # y, then there exist
a,3,v € F such that

(41) f(z)=az’ +PBz+7, z€U, ¢(t)=2at+8, teV.
Conversely, for every a, 3,4 € F functions (41) actually satisfy equation

(5) (z,y €U, = #y).

THE PROOF of Lemma 6 is similar to that of Theorem 5 in [2], where
the special case F = R, U = I (a proper real interval) was considered.
For the case where U = F see [1].
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The condition U = 2uy — U means that U is symmetric with respect
to up. (Then necessarily ug € U, for with an z € U\{uo} we have y :=
2ug—z € U and uo = 3(z +y) € 1(U +U) = U). This condition is
very restrictive, but sometimes we can get rid of it applying an extension
procedure. E.g., let U C F be a set fulfilling 3(U +U) = U and containing
more than one point, say, u,v € U, u # v. Then also ug := }(u +v) € U
and without loss of generality we may assume (cf. [2]) that up = 0 so that
v = —u. Put Uy :=U N(=-U), V :=V[Up,£] and

Ue = UN[I), V= VIt =t Bialy

where £ denotes function (3). Observe that Uj is symmetric around zero

and we have U,, C Up41, n=0,1,2... . Assume that, moreover,
(42) U=|]U,.
n=0
Then also
(43) V=V[U,f= ] Va
n=0

Assume further that
(44) Vﬂ:UnnI/n+1, ﬂ=0,1,2,....

Let functions f : U — F and ¢ : V — F satisfy equation (5) for all
z,y € U, z # y. By Lemma 6 there exist a, 3,y € F such that (41) holds
for x € Uy, t € Vp. For every x € Un41 there exists a y € U,\{z} such
that %(:r +y) € U,. (If  # 0, then we may take y = 0, and if z = 0, then
any y € Up,\{0} will do). Using Lemma 5 and relation (44) we show by
induction that (41) holds for x € Up, t € V,, n = 0,1,2,... . In view of
(42) and (43) we obtain hence (41) in full generality.

The procedure just described works for instance when F is a subfield
of C (the field of complex numbers) endowed with the topology inherited
from the natural topology of the complex plane, and U C F is a non-
empty open set such that 3(U 4+ U) = U. When U is not open, but has a
non-empty interior, we obtain relation (41) for z,t € intU and then we
show it valid for all z € U, t € V[U,£] (£ is given by (3)) using Lemma 5.
Note that we have intU C V[U,£].

Condition (iv) implies that U contains at least three elements: ug, = €
U\{uo} and 2up — z. (The example of U = F = Z; shows that U need not
contain anything more). Thus the following theorem is a consequence of
Lemma 6 and Theorem 5.
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Theorem 8. Let F be a field of characteristic different from 2, and
let U C F be a set fulfilling condition (iv). If functions f,g : U — F and
£:V = F, where V = V[U,¢£] is given by (10) with (3), satisfy equation
(6) for all z,y € U, = # y, then there exist a, 3,7 € F such that

(45) f(z)=g(z)=az?®+Pz+v, z€U, (t)=2at+p, teV.

Conversely, for every a, 3,y € F functions (45) actually satisfy equation
(6) (z,yeU, z#y).

When F is a field of characteristic different from 2 equation (40) on
F (which is then equivalent to (6)) has been completely solved in [1]. The
.general solution of (40) (z,y € F, z # y) is then

(46) f(z) = g(z) = az® + Br + 7, ¥(t) =at + B, z,t € F.

The same conclusion can be derived also from our Theorem 6 above, be-
cause if U is a field of characteristic different from 2, then evidently U
fulfils condition (iv). Consequently there is no analogue of Theorem 3 for
equation (6).

On the other hand, in the case where the characteristic of F is 2
equation (40) can be reduced to the classical functional equation of Cauchy

(47) Az +y) = A(z) + A(y).

(Functions satisfying (47) are called additive). Namely, we have the fol-
lowing result.

Theorem 7. Let F be a field of characteristic 2 and let U C F be
a subfield of F. If functions f,g : U — F and ¢ : (U\{0}) — F satisfy
equation (40) for all z,y € U, = # y, then there exist constants ¢,d € F
and an additive function A : U — F such that

f(z) = A(z)+¢c, g(z)=A(z)+d, z €U,

48
= Y(t) = [A(t) +d—c]/t, teU\{0}.

Conversely, for every ¢,d € F and every additive function A : U — F
functions (48) actually satisfy equation (40) (z,y € U, = # y).

PROOF. Assume that functions f,g : U — F and ¢ : (U\{0}) = F
satisfy equation (40) for all z,y € U, z # y. Since the characteristic of F
is 2, we can always replace the sign — by + and vice versa.

We fix a y € U and obtain from (40) for z # y, due to the symmetry
of function (32),

(49) 9(z) = f(z) = 9(¥) — f(¥) =: co,
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that is,
(50) g(z) = f(z) + co, zeU.

Formula (50), originally obtained only for z € U\{¥y}, is valid also for
z =y in view of the definition (49) of ¢o.

Relation (50) inserted into (40) yields the equation (we replace every
=kt

Co

fz)+f(y) _
“ewy  TYRTWRCLY

We put ¢ := f(0) and
(52) A(z):=flz)—c, z€U, §(t):=9(t)+cot™, t € U\{0},
so that

(51) ; z# .

(53) A(0) =0.

Now, on account of (52) equation (51) goes over into

(54) Az)+A(y) =@ +y)d(z+y), z#v,
which with y = 0 yields in view of (53)

(55) A(z) = z9(z), z #0.

From (54) and (55) we obtain (47) for z # y. For ¢ = y relation (47) is
also true because of (53). Consequently the function A is additive.
Relation (48) (where d := c+¢g) results now from (52), (50) and (55).

The converse is trivial.

The general solution of equation (47) in fields of characteristic 2 can
be obtained by the standard procedure described in [5; pp. 75-85]. Let F,
and F3 be fields of a characteristic p # 0. F; and F; may be considered
as linear spaces over the field Z, and it is easy to check that the additive
functions A4 : F; — F, are, in fact, linear transforms (homomorphisms)
from the linear space F, into the linear space F,. Let B C F; be a Hamel-
like basis of the linear space F over Z,. Then every function 4¢ : B — F,
can be uniquely extended onto F,; to a solution A : F; — F, of equation
(47); and all the additive functions A : F; — F, can be obtained in this
way.

Theorem 7 implies, in particular, that an analogue of Theorem 4 is
not true for equation (40). When the characteristic of F is 2 functions
(46) (t # 0) do not yield the general solution of (40) on F, even if F is not
isomorphic to Z,. In any case the relation f = g need not hold. Moreover,
there exist fields of characteristic 2 with infinitely many elements. For
such a field U = F every Hamel-like basis of F over Z, also is infinite
and consequently functions (48) may depend on an infinite number of
parameters.
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