On ball-filling vector sequences in \mathbb{R}^N

By I. JOÓ (Budapest)

Let $N \geq 2$ be any natural number: $(\lambda_n)_1^{\infty} \subset \mathbf{R}^N$ fills the ball in \mathbf{R}^N with center at 0 and radius $\delta > 0$ if for any $x \in \mathbf{R}^N$, $|x| = \delta$ there exists (ε_n) , $\varepsilon_n = \left\{ \begin{smallmatrix} 0 \\ 1 \end{smallmatrix} \right\}$ such that $x = \sum \varepsilon_n \lambda_n$. In this paper we shall prove the following

Theorem. For any $\varepsilon > 0$ there exists $(\lambda_n) \subset \mathbf{R}^N$, $\sum_{n=1}^{\infty} |\lambda_n| = 1$ such that (λ_n) fills the ball in \mathbf{R}^N with center at 0 and of radius $R_N - \varepsilon$, where

(1)
$$R_N := \frac{1}{\sqrt{\pi}(N-1)} \cdot \frac{\Gamma(N/2)}{\Gamma(\frac{N-1}{2})},$$

but there is no such sequence $(\lambda_n) \subset \mathbf{R}^N$, $\sum |\lambda_n| = 1$, which fills the ball in \mathbf{R}^N with center 0 and of radius R_N .

Remark. In the case N=2 we have $R_2=1/\pi$ and for this case the Theorem was proved in [1] using complex functions. We give a different proof here which works for arbitrary dimension $N \geq 2$.

PROOF of the Theorem. Let us take finitely many vectors in R^N with equal length such that $\sum |\lambda_n| = 1$ and their direction is distributed among all directions "uniformly", going as far as we can. Namely define n^{N-1} points $\lambda_{\underline{j}}$, $\underline{j} = (j_1, \ldots, j_{N-1})$, $0 \leq j_1, \ldots, j_{N-1} \leq n-1$ with length $|\lambda_{\underline{j}}| = \frac{1}{n^{N-1}}$ and with polar coordinates

$$\vartheta_1 = j_1 \frac{\pi}{n}, \dots, \vartheta_{N-2} = j_{N-2} \frac{\pi}{n}, \ \vartheta_{N-1} = j_{N-1} \frac{2\pi}{n}$$

348 I. Joó

i.e. the Cartesian coordinates of λ_j will be

If we take a large number of vectors i.e. n is large, then the distribution of their directions can be made more and more uniform and by taking limit, the points reachable as a subsum of the vectors can be made to be at a maximal distance R_N from the origin, where

(2)
$$R_N = \frac{1}{\omega_N} \int_0^1 x(1-x^2)^{\frac{N-3}{2}} \omega_{N-1} dx$$

and ω_N denotes the surface of the unit ball in \mathbb{R}^N . Indeed, $\omega_{N-1}(1-x^2)^{\frac{N-2}{2}}\frac{dx}{\sqrt{1-x^2}}$ means the surface of the unit ball between the heights x and x+dx; multiplying this by x we obtain the height of the sum of vectors whose direction is in this surface. So the integral R_N denotes the limit of the maximal heights of the subsums of our vectors. It is known [2] that

(3)
$$R_N = \frac{1}{\sqrt{\pi}(N-1)} \cdot \frac{\Gamma(N/2)}{\Gamma(\frac{N-1}{2})}.$$

Now we shall prove that a ball of radius $R_N - \varepsilon$ can be filled. Take the first finitely many λ_n with equal length, with $\sum |\lambda_n| = 1 - \frac{\varepsilon}{R_N}$ and with almost uniform distribution of the directions. If the number of vectors tends to infinity then, as the above computation shows, the subsums give a net which approximates more and more the points of the ball of radius $R_N - \varepsilon$. Take so large a number M of vectors that the subsums $\sum_{1}^{M} \varepsilon_n \lambda_n$ approximate any point of the ball of radius $R_N - \varepsilon$ with an error less than $\varepsilon/2$. Now around any point $\sum_{1}^{M} \varepsilon_n \lambda_n$ take a ball with radius $\varepsilon/2$. Repeating the above argument we can find $\lambda_{M+1}, \ldots, \lambda_{M'}$ such that the net $\sum_{1}^{M'} \varepsilon_n \lambda_n$

approximates with an error less than $\varepsilon/4$ and $\sum_{M+1}^{M'} |\lambda_n| = \frac{\varepsilon}{2R_N}$. In the

following step we can ensure an error $< \varepsilon/8$ furthermore $\sum_{M'+1}^{M''} |\lambda_n| = \frac{\varepsilon}{4R_N}$

etc.. Repeating this process we can construct the sequence (λ_n) filling the whole ball of radius $R_N - \varepsilon$. On the other hand, we prove that an (open) ball of radius R_N cannot be filled. Take the indirect assumption. Given any direction $e \in S^{N-1}$ all points $ce, 0 \le c < R_N$ can be obtained, hence

(4)
$$\sum_{n:\langle e,\lambda_n\rangle>0} \langle e,\lambda_n\rangle \ge R_n \text{ for all } e \in S^{N-1}.$$

Take the integral of the left side; since for fixed n

$$\int_{\langle e, \lambda_n \rangle > 0} \langle e, \lambda_n \rangle dS^{N-1} = |\lambda_n| \, \omega_N R_N$$

we get

$$\int\limits_{S^{N-1}} \sum_{n:\langle e,\lambda_n\rangle>0} \langle e,\lambda_n\rangle dS^{N-1} = \omega_N R_N \sum |\lambda_n| = \omega_N R_N$$

which means by (4) that

(5)
$$\sum_{n:\langle e, \lambda_n \rangle > 0} \langle e, \lambda_n \rangle = R_N.$$

Consider again the expansion of the elements ce where $c \to R_N - 0$ and $e \in S^{N-1}$. If we assume that $\langle e, \lambda_n \rangle \neq 0$ for all n then (5) implies

(6)
$$\sum_{n:\langle e,\lambda_n\rangle>0} \lambda_n = R_N e.$$

Let now $e' \perp e$, $e' \in S^{N-1}$ and $\delta > 0$. Excluding countably many δ 's we can also ensure that

(7)
$$\sum_{n:\langle e+\delta e',\lambda_n\rangle>0} \lambda_n = R_N \frac{e+\delta e'}{\sqrt{1+\delta^2}}.$$

350 I. Joó

We multiply here by $\sqrt{1+\delta^2}$ and extract it from (6) to obtain

$$R_N \delta e' = - \sum_{n: \langle e, \lambda_n \rangle > 0} \lambda_n + \sqrt{1 + \delta^2} \sum_{n: \langle e + \delta e', \lambda_n \rangle > 0} \lambda_n.$$

Taking the scalar product by e' we get

(8)
$$R_N \delta = -\sum_{\substack{n:\langle e, \lambda_n \rangle > 0, \\ \langle e + \delta e', \lambda_n \rangle \le 0}} \langle \lambda_n, e' \rangle + \sum_{\substack{n:\langle e, \lambda_n \rangle \le 0, \\ \langle e + \delta e', \lambda_n \rangle > 0}} \langle \lambda_n, e' \rangle + (\sqrt{1 + \delta^2} - 1) \sum_{n:\langle e + \delta e', \lambda_n \rangle > 0} \langle \lambda_n, e' \rangle.$$

Here the summands of the first resp. second sum on the right are negative resp. positive, and the third member has order $O(\delta^2)$. Consequently we obtain the following statement:

Let
$$e, e' \in S^{N-1}$$
, $e \perp e'$, $\delta > 0$ and suppose that $\langle e, \lambda_n \rangle \neq 0$,
 $\langle e + \delta e', \lambda_n \rangle \neq 0$ for all n . Then $\langle e, \lambda_n \rangle < 0$, $\langle e + \delta e', \lambda_n \rangle > 0$ implies $0 < \langle e', \lambda_n \rangle < R_N \delta + O(\delta^2)$.

Now let $0 < \varepsilon < 1$ be arbitrary and take $e \in S^{N-1}$ satisfying $-\varepsilon |\lambda_1| < \langle e, \lambda_1 \rangle < 0$, $\langle e, \lambda_n \rangle \neq 0$ for every n. Then choose $e' \in S^{N-1}$, $e' \perp e$ such that

$$\langle e', \lambda_1 \rangle > \sqrt{1 - \varepsilon^2} \, |\lambda_1|.$$

Finally take $\delta > 0$ with the conditions $\frac{\varepsilon}{\sqrt{1-\varepsilon^2}} < \delta < \frac{2\varepsilon}{\sqrt{1-\varepsilon^2}}$, $\langle e + \delta e', \lambda_n \rangle \neq 0$ for every n. Since $\langle e, \lambda_1 \rangle < 0$ and $\langle e + \delta e', \lambda_1 \rangle >$ $> (\delta \sqrt{1-\varepsilon^2} - \varepsilon) \quad |\lambda_1| > 0$, we have by (\star) that

$$\sqrt{1-\varepsilon^2}|\lambda_1| < \langle e', \lambda_1 \rangle < R_N \delta + O(\delta^2)$$

and then

$$|\lambda_1| < \frac{R_N \delta + O(\delta^2)}{\sqrt{1 - \varepsilon^2}} = O\left(\frac{\varepsilon}{\sqrt{1 - \varepsilon^2}}\right).$$

Since $\varepsilon > 0$ can be arbitrarily small, this would imply $|\lambda_1| = 0$. The contradiction proves that a ball of radius R_N cannot indeed be filled by subsums $\sum \varepsilon_n \lambda_n$ as asserted.

References

- I. Joó, On the growth of the eigenfunctions of the Schrödinger operator II, Annales Univ. Sci. Budapest. Sect. Math. 31 (1988), 75-85.
- [2] E. T. WHITTAKER and G. N. WATSON, A course of modern analysis, Cambridge Univ. Press (1927).

I. JOÓ MATHEMATICAL INSTITUTE OF THE HUNGARIAN ACADEMY OF SCIENCES H-1053 BUDAPEST, REÁLTANODA U. 13-15 HUNGARY

(Received September 25, 1989)