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On the difference of integer-valued additive functions

By I. Z. RUZSA (Budapest) and R. TIJDEMAN (Leiden)

1. Introduction

A classical theorem of ERDOS [4] asserts that if a real-valued additive
function satisfies f(n + 1) — f(n) — 0, then it must be of the form f(n) =
clog n. Many generalizations and analogs have been found since then. An
important one is the following (still unpublished) result of E. WIRSING: if
a multiplicative function satisfies |g(n)| = 1, g(n +1) — g(n) — 0, then it
must be of the form g(n) = n’® with some real constant c.

DAROCzY and KATAI [3] found the following common generalization
of these results: if G is a locally compact, compactly generated abelian
group (written additively) and a G-valued additive arithmetical function
f satisfies f(n + 1) — f(n) — 0, then f is the restriction to the set of

integers of a continuous homomorphism from the multiplicative group of
positive real numbers to G.

DARrRGCZY and KATAl's proof is based on an application of WIRS-
ING’s theorem to the functions g(n) = x(f(n)), where x runs over the
(continuous) characters of G. This approach cannot handle groups that
are not separated by their characters. AJTAI, HAVAS and KoMLOs [1]
have shown that there are commutative groups with a Hausdorff topology
that do not admit any nontrivial continuous character. This leaves the
question of existence of nontrivial group-valued additive functions with
f(n+1)— f(n) — 0 open. We show that such functions do indeed exist,
even for the simplest G, the additive group of integers.

Theorem 1. There is an inte:fer—valued completely additive function
f, not identically 0, and a Hausdorff topology T on the set of integers
which makes it a topological group with the operation of addition, such

that
f(n+1)—f(n)—»0inT.

First author supported by Hungarian National Foundation for Scientific Research, Grant
No. 1811.



354 I. Z. Ruzsa and R. Tijdeman

Before starting the proof we show why our function does not fall within
the frames of a suitable extensmn of DAROCZY and KATAI's theorem.

Let G be a topological group. It seems reasonable to call a G—valued
additive function reguﬁlzr 1? it can be extended to a continuous homo-
morphism from the multiplicative group of rational numbers to G. (The
existence of an extension to the group of positive reals depends on com-
pleteness properties of G.) We show that our function does not possess

such an extension.

1.1. Statement. Let G be the group of integers with an arbitrary
Hausdorff group topology. There is no nontrivial continuous homomor-
phism from Q*, the multiplicative group of positive rational numbers with
the usual topology, to G.

PROOF. Suppose that there is such a homomorphism ¢. Take a prime
p such that ¢(p) # 0, and two other primes ¢ and r. Write ¢(p) = a,
@(q) = b, ¢(r) = ¢; we know a # 0. Define m = pb¢~?, n = p°r~°. Here
m contains ¢ but not r while n contains r but not ¢ (they may and may
not contain p), thus they are different from 1 and not powers of a common
base, therefore (logm)/(logn) is irrational. This implies that the numbers
m"n", u,v integers, are dense in Q. Since ¢ vanishes on this dense set, it
must be 1dent1cally zero. O

An even stronger requirement would be that the function cannot be
extended to an algebraical homomorphism, in other words, that it is not
completely additive. This is, however, impossible.

1.2. Statement. An additive function with values in an arbitrary
commutative topological group that satisfies f(n+ 1) — f(n) — 0 must be
completely additive.

PROOF. To prove complete additivity it is sufficient to show
f(p**Y) = f(p*) + f(p) for every prime p and positive integer k. Now
observe that the equality

fOMH =)= f(p) = (fF(P* n+1)— f(p*n)) = (F(p* ' n+p)— f(p*+'n))

holds for every n coprime to p, and the right side tends to 0 as n — oo.
O

2. Proof of the Theorem

2.1. Definition. A Hausdorff topology on the set of integers is called
an arithmetical topology, if it turns the set of integers with the operation
of addition into a topological group.

2.2. Definition. We call a sequence a, of integers nullpotent, if there
is an arithmetical topology in which a,, — 0.
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With this terminology, we need to construct a nonzero completely
additive function for which the sequence f(n +1)— f(n) is nullpotent. We
prove slightly more.

Theorem 2. There is a positive-valued function F(n) such that the
sequence f(n+1)— f(n) is nullpotent for every completely additive function
f which satisfies

(2.1) |f(q)| > F(q)tgggtlf(p)l

for all but finitely many primes q.

We quote the following arithmetical description of nullpotency from
Ruzsa [5].

2.3. Lemma. A sequence a, is nullpotent if and only if for every
integer u # 0 and positive integer k the equation

(2.2) u=€1an, +€2an, + -+ €xan,, e€n,==%1

has only finitely many primitive solutions. Here a solution of (2.2) is called
primitive, if none of the 2 — 1 nonempty subsums is 0.

Substituting a, = f(n + 1) — f(n) into (2.2), we obtain the equation

(2.3) u= Y ei(f(ni+1)— f(ni)).

If we extend f to rational numbers naturally by putting f(a/b) =
= f(a) — f(b), then (2.3) can be rewritten as

e4)  w=s@. @=T[(%2) =II(ZEe).

where

n; it s =1
2. s T 1 1
(&5) e { n;+1 ife;=-1.

For the proof the following lemma on prime factors of such products Q is
fundamental.

2.4. Lemma. Let my < mj < .-+ < my be positive integers, by, . .., by
integers such that |b;| < A and m; +b; >0 (1 =1,...,k). Write

fes2)

=1
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Assume that all prime factors in the numerator and denominator of () are
< P and that

(2.6) f[(mi:b‘);u e O

i=j ;
Then we have my < G(k, P, A), an effectively computable number depend-
ing only on k, P and A.

This lemma, which will be proved in the next section, finishes our
preparation to the proof of the theorem.

PROOF OF THEOREM 2. We put F(q) = 4¢G(q,q,1) with the func-
tion G of Lemma 2.4. We have to prove that (2.3) has only finitely many
primitive solutions. Let go be such a number that (2.1) holds for ¢ > ¢,
and also that f(p) is not identically 0 for p < ¢o, in which case (2.1) also
means |f(q)| > F(q) (¢ > o).

Without restricting the generality we may assume that the m; given
by (2.5) are increasing. Consider a primitive solution and let ¢ be the
largest prime that occurs in the numerator or denominator of the number
Q given in (2.4). From Lemma 2.4 we infer my < G(k,gq,1); condition
(2.6) follows from the primitivity of (2.3) (in fact, we needed only the k
interval-subsums).

Let K = max(k, |u|,qo). Assume first ¢ > K. We have obviously

@7 I£@) 2 |f(g)| - rmax|f(p)] > [£(@)l(1 - r/F(g)),

where r is the total number of primes, counted with multiplicity, that occur
in any of the numbers n; or n;+1. Since k < ¢, we have n; < G(q,q, 1), thus
the number of prime factors in any of these numbers is at most G(g,q¢,1)
and we have r < 2kG(q,¢,1) < F(q)/2. Hence (2.7) yields

lul = [F(Q) 2 |f(9)I/2 2 F(q)/2> g > |u],

a contradiction.
Thus we have ¢ < K, and from Lemma 2.4 we infer my < G(k, K, 1),

a finite number of choices. a

3. Proof of Lemma 2.4

We use the following result of BAKER [2] in the form given by SHOREY
et al. [6], p. 66 (we specialized the formulation to integers).
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38.1. Lemma. Let a,,...,a, be positive integers, £ > 2, a; < A; > 4
foré=1,.... L Put

¢ -1
Q=HlogA.-, Q= HlogA,-.
i=1

=]
Let by,...,b be integers with |b;| < B > 4. Then either a:" 5 .ag‘ =1or

(3.1) logladt...abt —1| > —£°'Qlog Q' log B

with an absolute constant c.

PROOF OF LEMMA 2.4. We use Vinogradov’s symbol <« where the
implicit constant may depend on k, A and P.

Write Q in the form Q = p}' ... p!s with distinct primes p,,...,p, and
integers ¢;. We have

|t:] < 2klog(my + A) < logm;
for all 2. The lemma above yields
log |Q — 1| > — log log m,
while a direct computation gives |Q — 1| € 1/m;. Combining the two we

obtain
logm; < loglogmy.

Now we prove the inequalities
(3.2) logm; < (loglogmy)’

by induction on j. Suppose it holds for 1,...,7 — 1. On one hand we have

.+ b; m; b; +b 1
(3.3) ‘msf JmJ+lT|' s N k_1|<__.
m; LUSES| mig my
On the other hand
j—1
mj+bj mjy1 +bj4 mk+bk_1|= QJI_I Tt
m; mMj+1 T my o ™ + b;

To this t_axpreséion we apply our Lemma with £ = s + 1,
ey (m;/(m; +b;)), be = 1. By the induction hypothesis we have

ae = ]1i=1

log A¢ < jlog(m;—1 + |bj-1]) < (loglogmx)’ ™",
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hence

mj-{-b)' m_,‘.|.1+b_,'+1 mg + by
m; mMj+1 mi

log -1 >

> —(loglogmi) ! loglog my.

On combining this inequality with (3.3) we obtain (3.2) for j.
Finally, the case j = k of (3.2) means

log m; < (loglog m;,)" .
which implies m; < 1. O
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