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Retrieving a topological space from
its lattice of open sets

By ANDREW D. MARTIN (Kentucky) and ALEXANDER ABIAN (lowa)

It can be readily verified that the subsets:
(1) 0, {a,e}, {a,be}, {a,c,e} {a,bc,e} {a,b,c,d,e}

of the set {a,b,c,d, e} define a topology T on that set.

If we view the topology T, given by (1), as a partial order with respects
to the set theoretic inclusion (C), we can represent T by the following
diagram:

{a,b,c,d, e}
{a,b,c,e}
(2) {a,b,e} {a,c,e}

{a,e}

0
~ Asexpected, (T,C) is a partially ordered set (poset, for short) which
is:

(3) a distributive lattice

such that:
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(4) the greatest lower bound (glb) of any two elements of T 1s

their set theoretic intersection

and

(8) the least upper bound (lub) of any two elements of T 1is their

set theoretic union.

It is natural to call any finite partially ordered set which is isomorphic
to a poset of sets satisfying (3), (4), (5) a finite topology poset. We shall
refer to the latter simply as a topology poset when no confusion is likely to
arise.

We may further simplify Diagram (2) by replacing the explicit ap-
pearance of sets in it with capital letters, obtaining, say:

A

B

(6) c D

E

F

We see that, by our above definition, Diagram (6) represents a topol-
ogy poset.

Comparing Diagrams (2) and (6), we notice that by replacing
{a,b,c,d,e} with A and {a,b,c,e} with B, etc., we have lost some infor-
mation. Namely, what sets (explicitly given in terms of their elements)
could A, B,C,..., represent? In this connection the following two ques-
tions naturally arise:

(1) When does a diagram of capital letters represent a topology
poset?

(i1) Given a diagram of capital letters representing a topology poset,
can we retrieve the open sets (by explicitly giving their elements)
that these letters could represent?

Question (i), answered by Theorem 1 below, can also be dealt with
by applying Theorem 3.1 of [4] to the finite case. We give below a direct
and independent proof of Theorem 1.
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Question (ii) is answered in the affirmative by us in Theorems 2 and
3 below.

Theorem 1. A finite poset (P, <) is a topology poset iff (P, <) is a
distributive lattice.

Proor. If (P, <) is a topology poset, by (3) it is a distributive lattice.

To prove the converse, we first recall that an element z of a poset
(P, <) is called join irreducible (2, p.65] iff z is not the minimum of P and
z is not the lub of two elements < z. Now let J(P) be the set of all join
irreducible elements of P. We will define a topology T on the set J(P) and
show that (P, <) is isomorphic to (T, C).

Consider the mapping f from P into the power set P(J(P)) of (J(P)),
where f is given by

(7) f(z)={y|y€ J(P)and y < z}.

We show that T = {f(:z |z € P} is a topology on J(P)
As P is a finite lattice it has a minimum 0 and a maximum 1. Clearly
f(0) =0 and f(1) = J(P). Thus,

(8) 0T and J(P)eT.

To show that T is closed under intersections, let f(z) € T and
f(y) € T. We show

(9) (f(z) N f(y)) = f(glb{z,y}).
By the definition (7) of f we have

z€ (f(z)Nf(y)) iff zeJ(P)and z<z,andz <y
iff z€ J(P) and z <glb{z,y},

the latter because P is a lattice. Hence z € (f(z) N f(y)) iff
z € f(glb{z,y}), which establishes (9).

By a dual argument it is easily shown that

(10) (f(z)U f(y)) = f(lub{z,y})

which shows that T is closed under unions.

From (8), (9), (10), it follows that T is a topology on the set J(P).

We now show that f is an order-isomorphism from (P, <) onto (7, C).

By its definition f is onto. We claim that f is also 1 — 1. To prove
this we first show that z = lub f(z) for every z € P. Assume not, and
since P is finite, let @ € P be minimal with respects to the property that
a # lub f(a), which clearly implies that a cannot itself be join irreducible.
Thus we must have a = lub{b,c} for some b < a and ¢ < a. By the
minimality of a, we have b = lub f(b) and ¢ = lub f(¢). We therefore
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conclude that a = lub (f(b) U f(c)). But then as a is an upper bound of

f(a), and (f(b) U f(¢)) € f(a), we must have a = lub f(a), which is a
contradiction. Hence z = lub f(z) for every z € P, as claimed. It follows
therefore that if z # y then lub f(z) # lub f(y). However, both lubs exist
in P as P is a lattice. Consequently, f(z) # f(y) and fis1 - 1.

We now show that both f and its inverse are order-preserving. If
z < y we have by (7) that f(z) C f(y). On the other hand, if f(z) C f(y),
then as z = lub f(z) and y = lub f(y), we see that < y.

It follows that f is an isomorphism from (P, <) onto the lattice of
open sets (T, C), and therefore (P, <) is a topology poset.

Thus Theorem 1 is proved.

Let us apply the procedure indicated by the proof of Theorem 1 to re-
trieve a space corresponding to the distributive lattice which is represented
by Diagram (6), and which we denote by (L, <). To this end we observe
that the join irreducible elements of L are A,C, D, E, and therefore

(11) J(L) = {A,C, D, E}

From (7) it follows that the open sets of a topology on J(L) are given by

f(F)=0, f(E)={E},..., f(A)={A,C,D,E}, ie. by:
(12) 0, {E}), {D,E)}, {C,E}, {C,D,E}, {A,C,D,E)

As expected in view of Theorem 1, we see that the lattice of the open
sets in (12) is isomorphic to (L, <), given by Diagram (6).

Remark 1. We observe that the lattices of the open sets of the topolo-
gies given by (1) and (12) are both isomorphic to (6), and hence to each
other. However, the topologies (1) and (12) are not homeomorphic. First
of all, the spaces {a, b, c,d,e} and {A, C, D, E'} have different cardinalities.
Secondly, the topology (12) is Tp, while (1) is not.

Since our method of retrieval applied to Diagram (6) yielded the T
topology given by (12), we may suspect that our method (based on (7)) will
always yield a unique (up to homeomorphism) 7, topology when applied
:;30 a given finite distributive lattice. This is indéed the case, as is shown

y:

Theorem 2. A finite poset (P, <) is isomorphic to the lattice of open
sets of a unique (up to homeomorphism) T, topological space iff P is a
distributive lattice.

PROOF. If P is isomorphic to the lattice of open sets of some topo-
logical space, then P is a topology poset, and hence by (3) we see that P

is a distributive lattice. A A ) :
To prove the converse, in view of Theorem 1, it remains to show that

(J(P),T) is a Ty topological space. To this end let x and y be distinct
elements of J(P). Since z is join irreducible, z € f(z). Similarly, y € f(y).
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If z < y then by (7) we see that y € f(z), and if y < z then = & f(y).
Otherwise z € f(y), and y € f(z), as z and y are not comparable.

Hence in every case T has an open set containing one of z and y
but not the other. Therefore T is a Ty topology on the set J(P). The
uniqueness of T follows from Theorem 2.1 of [4] and Corollary 5.1 of [1].

Thus, Theorem 2 is proved.

Remark 2. If (P, <) is a finite distributive lattice then P cannot be
isomorphic to the lattice of the open sets of any infinite (or sufficiently large
finite) Tj topological space. This follows from Theorem 2, since J(P) C P
and hence J(P) is finite. The same can be shown independently by a
combinatorial argument.

Remark 3. The lattice of open sets of any topological space is a dis-
tributive lattice. However, the example given in Remark 1, together with
Theorem 2, lead us to cocnlude that if a finite topological space is not Ty,
this fact cannot be detected from a diagram of capital letters (such as (6))
representing its lattice of open sets.

Remark 3 may lead us to wonder, if a finite topological space is not
only Ty but T} as well. Can this fact be detected from a diagram of capital
letters representing its lattice of open sets? The answer is yes, as follows
from Theorem 3 below (as every discrete topological space 1s T}).

We first recall that an element = of a poset P is called an atom iff
is a nonminimum minimal element of P. We further recall that a lattice
(P, <) is called atomic iff the only join irreducible elements of P are atoms.

Theorem 3. A finite poset (P, <) is isomorphic to the lattice of open
sets of a unique (up to homeomorphism) discrete topological space iff P is
a distributive atomic lattice.

ProoF. If (P, <) is isomorphic to the lattice of open sets (T,C) of
the discrete topological space (X, T'), then (X, T') is T, and hence by The-
orem 2 it follows that P is a distributive lattice. Since (X,T) is discrete,
the only join irreducible elements of the lattice (7,C) are the singleton
subsets of X. Hence (T, C) is atomic, and so is (P, <) by the assumed
isomorphism.

Conversely, let (P, <) be a finite distributive atomic lattice. From
the proof of Theorem 2, we have that T = {f(z) | * € P} defines a Tj
topology on J(P), where f is given by (7). As P is atomic, the elements
of J(P) are precisely the atoms of P. Hence f(z) = {z} is open for every
x € P, and therefore (X, T) is a discrete topological space. Finally, from
the proof of Theorem 2 it follows that (P, <) is isomorphic to (T, C), and
that (X,T) is unique up to homeomorphism.

Thus, Theorem 3 is proved.



16 Andrew D. Martin and Alexander Abian : Retrieving a topological space ...

References

[1] C. AuLL and W. THRON, Separation Axioms between Ty and T, Indagationes
Mathematicae 24 (1962), 26-37.

[2] R. BALBEs and P. DWINGER, Distributive Lattices, University of Missouri Press,
Columbia, Missoury, 1974,

[3] D. DRAKE and W. THRON, On the Representation of an Abstarct Lattice as the
Family of Closed Sets of a Topological Space, Transactions of the American Math-
emalical Society 120 (1965), 57-71.

(1] W. J. THRON, Lattice-Equivalence of Topological Space, Duke Mathematical Jour-
nal 29 (1962), 671-679.

ALEXANDER ABIAN
DEPARTMENT OF MATHEMATICS
IOWA STATE UNIVERSITY

AMES, IOWA 50011

ANDREW D. MARTIN
DEPARTMENT OF MATHEMATICS
MOREHEAD STATE UNIVERSITY
MOREAHEAD, KENTUCKY 40as1

(Received March 2, 1989)



