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Solving convolution equations
in S′+ by numerical method

By S. PILIPOVIĆ (Novi Sad) and M. STOJANOVIĆ (Novi Sad)

Abstract. By using expansions of elements from S′+ into Laguerre series we in-
vestigate the convolution equations in this space. We give examples of series expansions
and present a numerical method for solving convolution equations. Also, we consider
the convolution equations in LG′e.

0. Introduction

Convolution equations in S′+ include as special cases a lot of types of
differential and integrodifferential equations. This space is a convolution
algebra and a natural frame for the extension and the use of the Laplace
transformation.

In the first part of the paper we give the structural properties of the
basic spaces and their duals S′+ and LG′e from the point of view of Laguerre
expansions of their elements. Note that the coefficients of f ∈ S′+ ≡ LG′,
respectively of f ∈ LG′e, expanded into Laguerre series f =

∑
anln satisfy∑ |an|2n−2k < ∞ for some k > 0, respectively

∑ |an|2k−2n < ∞ for some
k > 0. By using expansions of elements from S′+(LG′e) into Laguerre series
we investigate the convolution in it and, in the second part of the paper,
the convolution equation f ∗ g = h, where f ∈ S′+(LG′e) and h ∈ S′+(LG′e)
are known. We give examples of series expansions and a numerical method
of finding coefficients in the expansion of g.
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45E10.
Key words and phrases: A′–type spaces, Laguerre expansion, convolution equations,
Laplace transform.
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We prove that if f ∈ LG′e, then the convolution equation is solvable
in LG′e for all h from LG′e iff a0 6= 0, where a0 is the first coefficient in
Laguerre’s expansion of f. Finally, we give some comments on the error
estimate.

1. Basic spaces

The space of smooth rapidly decreasing functions S is defined as the
space of all smooth functions ϕ defined on the real line R (ϕ ∈ C∞(R))
for which all the norms

‖ϕ‖k = sup{(1 + |x|k)|ϕ(i)(x)|; x ∈ R, i = 0, . . . k}, k ∈ N0 ,

are finite. (N is the set of naturals, N0 = N ∪ {0}). Its dual space is the
well-known Schwartz’s space of tempered distributions S′. Let us recall
(see [6], for example) that

S = proj lim
k→∞

(Sk , ‖ ‖k)

where Sk = {ϕ ∈ Ck(R); (1 + |x|)k|ϕ(i)(x)| → 0, |x| → ∞, i = 0, . . . k},
and Ck(R) is the space of functions with continuous derivatives on R of
order ≤ k. In fact, Sk is the completion of S under the norm ‖ ‖k.

We have ([6]) S′ = ind lim
k→∞

S′k (in the topological sense) where S′k is

the dual of Sk, k ∈ N0, endowed with the dual norm ‖ ‖′k. The following
three conditions for a sequence fn from S′ are equivalent (n →∞) :

(i) fn → 0 in the sense of the weak topology;
(ii) fn → 0 in the sense of the strong topology;
(iii) there exists k ∈ N such that fn ∈ S′k, n ∈ N and fn → 0 in the

sense of the norm in S′k.

It is well-known that S′ is an A′–type space, A′–type spaces were
introduced and studied in ([8], Ch. 9). The A′–type spaces whose elements
have unique orthonormal expansions into Laquerre series were studied by
Zemanian [8], Zayed [7], Duran [9] and Pilipović [5]. Let us recall the
basic facts concerning these spaces. Denote by {ln}, n ∈ N0, the Laguerre
orthonormal base of the space L2(R+), (R+ = (0,∞), R+ = [0,∞))
whose elements are defined on R+ by ln(t) = e−t/2Ln(t), where

Ln(t) =
n∑

m=0

(
n

n−m

)
(−t)m

m!
, n ∈ N0 .
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We denote by R a differential operator of the form R = et/2Dte−t

Det/2 (D = d/dt); Rk+1 = R(Rk), k ∈ N0, R0 is the identity operator.
The space LG is defined as the space of all ϕ ∈ C∞(R+) for which

all the norms

|||ϕ|||k = |||Rkϕ|||0 =




∞∫

0

|Rkϕ(t)|2dt




1/2

, k ∈ N,

are finite, and

〈Rkϕ, ln〉 = 〈ϕ,Rkln〉 = (−n)k〈ϕ, ln〉, k ∈ N0, n ∈ N0,

where

〈ϕ, ψ〉 = (ϕ, ψ̄) =

∞∫

0

ϕ(t)ψ(t)dt, ϕ, ψ ∈ L2(R+).

LG is the space of all ϕ ∈ C∞(R+) for which all the norms

sup{tk|ϕ(j)(t)|; t ∈ [0,∞), j = 0, . . . k}, k ∈ N0,

are finite ([7]) and the dual space LG′ is in fact S′+ — the space of tempered
distributions supported by R+ ([4]).

Let Lk, k ∈ R, (Lek, k ≥ 0) be the space of all the formal series

ϕ =
∞∑

n=0

anln such that |ϕ|k =

(
|a0|2 +

∞∑
n=1

|an|2n2k

)1/2

< ∞ ,


ϕ =

∞∑
n=0

anln such that |ϕ|e,k =

(
|a0|2 +

∞∑
n=1

|an|2k2n

)1/2

< ∞

 .

We know that ([5])
(a) The Lk are B–spaces, k ∈ R;
(b) The inclusion mappings Lk → L`, k > ` are compact;
(c) LG = proj lim

k→∞
Lk; LG′ = S′+ = ind lim

k→∞
L′k

where the L′k, are the duals of Lk, k ∈ R, endowed with the dual norms;

(d) L′k =
{ ∞∑

n=0
bnln;

( ∞∑
n=1

|bn|2n−2k + |b0|2
)1/2

< ∞
}

= L−k, k ∈ R.

Clearly, Lek ↪→ Lk ↪→ L2 for k > 0, where A ↪→ B means that A is a
dense subspace of B and that the inclusion mapping is continuous.
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Lek, k > 0, are B–spaces and the inclusion mappings Lek → Le`,
k > `, are compact.

Let LGe = proj lim
k→∞

Lek. We have LG′e = ind lim
k→∞

Le′k and (k > 0)

Le′k =
{ ∞∑

n=0

bnln;
( ∞∑

n=0

|bn|2k−2n + |b0|2
)1/2

< ∞
}

= Le1/k .

The space LG′e has been introduced in [3], where we studied spaces exp(A′)
in general. From [3] we have

f ∈ LG′e ⇐⇒ f =
∞∑

n=0

kn

n!RnFn for some k > 0 and some sequence Fn

from L2(R+) for which
∞∑

n=0
|||Fn|||0 < ∞ holds.

The weak and the strong convergence in LG′(LG′e) are equivalent and
fn → f in LG′(LG′e), where

fn =
∞∑

m=0

b(n)
m lm, f =

∞∑
m=0

bmlm,

iff for some k > 0
∞∑

m=0

∣∣∣b(n)
m − bm

∣∣∣
2

m−2k → 0,

( ∞∑
m=0

∣∣∣b(n)
m − bm

∣∣∣
2

k−2m → 0

)
, n →∞ .

Note that if we consider fn and f as elements from S′ then fn → f
in LG′ iff fn → f in S′, n →∞.

2. The convolution and the Laplace transformation

These two notions are well-known for the space S′+ which is a convo-
lution algebra and for which we have

(1) L : S′+ → H(R+)

where L is the Laplace transformation defined by

(Lf)(s) = F (s) = 〈f(t), H(t)e−st〉, s ∈ R + iR+ ,

where H ∈ C∞, H = 1 on (−ε,∞), H = 0 on (−∞,−2ε), ε > 0 and
H(R+) is a space of holomorphic functions in R+iR+ which satisfies the
suitable growth conditions; in fact the mapping (1) is a bijection. Note
that this definition does not depend on ε. We shall not repeat all the
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facts concerning the Laplace transformation which is deeply analyzed, for
example, in [6]. In section 3. we shall recall and use some results for the
convolution algebra S′+ from [6].

Since any f from S′+ is of the form f = DmF, where m ∈ N0 and F is a
continuous function on R bounded by a polynomial with suppF ⊂ [0,∞),
(D is the distributional derivative), the convolution of f, g ∈ S′ is

f ∗ g = Dm+r




x∫

0

F (t)G(x− t)dt


 ,

where f is of the given form and g = DrG, r ∈ N0, while G is a continuous
function with supp G ⊂ [0,∞) and bounded by a polynomial.

Proposition 1. Let fn and gn be sequences from S′+ which converge
in S′ to f and g from S′+. Then

fn ∗ gn → f ∗ g, n →∞, in S′ .

Proof. This assertion follows directly from the topological proper-
ties of S′+. However, we shall give here an elementary proof. As we noted
in the introduction, there exists k ∈ N such that

fn → f, gn → g in S′k.

Observe the sequence fn. Let x > 0. For sufficiently large m the
function

t → H(t)
1
m!

(x− t)m−1
+ is from Sk, where

t → 1
m!

(x− t)m−1
+ =

{
1
m! (x− t)m−1 , −2 ≤ t ≤ x

0 , t > x

and H(t) ∈ C∞, H(t) = 1 for t > − 1
2 , H(t) = 0 for t < −1. We have

〈fn(t), H(t)
1
m!

(x− t)m−1
+ 〉 → 〈f(t), H(t)

1
m!

(x− t)m−1
+ 〉 .

If we put

Fn(x) =

{
〈fn(t), H(t) 1

m! (x− t)m−1
+ 〉 , x > 0

0 , x ≤ 0 ,

F (x) =

{
〈f(t), H(t) 1

m! (x− t)m−1
+ 〉 , x > 0

0 , x ≤ 0 ,
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we have (from the boundedness of the sequence fn in S′k) that for every
n ∈ N, there is C > 0 such that

max
{|F (x)| , |Fn(x)|} ≤
≤ C sup

{∣∣(H(t)
1
m!

(x− t)m−1
+ )(α)

∣∣; −2 ≤ t ≤ x, α = 0, . . . k
}

i.e. for suitable C1 > 0

max
{|F (x)|, |Fn(x)|} ≤ C1x

m−1, x > 0, n ∈ N0.

This implies that Fn, n ∈ N, and F are continuous functions supported
by [0,∞) for which we have

F (m)
n (x) = fn(x), F (m)(x) = f(x), Fn(x) → F (x), x ∈ R

and
Fn(x)

(1 + |x|)m−1
,

F (x)
(1 + |x|)m−1

< C1, x ∈ R.

Similarly, we have for gn, n ∈ N, and g and some m ∈ N0 that

G(m)
n (x) = gn(x), G(m)(x) = g(x),

Gn(x) → G(x),
Gn(x)

(1 + |x|)m−1
,

G(x)
(1 + |x|)m−1

< C̃1, x ∈ R,

where Gn and G have properties as Fn and F.

So from

(fn ∗ gn)(x) =




x∫

0

Fn(t)Gn(x− t)dt




(m+m)

,

(f ∗ g)(x) =




x∫

0

F (t)G(x− t)dt




(m+m)

, x ∈ R .

By using the Lebesgue theorem, we get
x∫

0

Fn(t)Gn(x− t)dt −→
x∫

0

F (t)G(x− t)dt, n →∞, in S′ ,

and this implies the assertion of the theorem.
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Proposition 2. Let f =
∞∑

m=0
bmlm, g =

∞∑
m=0

cmlm be from S′k for

some k ∈ R. Then f ∗ g ∈ S′2k+r, r > 3
2 , and

(2) f ∗ g =
∞∑

m=0

( ∑
p+q=m

bpcq −
∑

p+q=m−1

bpcq

)
lm (As usual,

∑
p+q=−1

= 0).

Proof. Let us put fn =
∞∑

m=0
b
(n)
m lm, gn =

∞∑
m=0

c
(n)
m lm, where

b
(n)
m = bm, c

(n)
m = cm for m ≤ n and b

(n)
m = c

(n)
m = 0 for m > n, n ∈ N.

From Proposition 1. we have

(3)

( ∞∑
m=0

b(n)
m lm

)
∗

( ∞∑
m=0

c(n)
m lm

)
−→ f ∗ g, n →∞ in S′ .

Since lp ∗ lq = lp+q − lp+q+1 (see [2, p.191 (31)]), we have that the left side
of (3) converges to

∞∑
m=0

( ∑
p+q=m

b(n)
p c(n)

q −
∑

p+q=m−1

b(n)
p c(n)

q

)
lm in S′, n →∞ .

Since |bm|, |cm| ≤ Cmk, m ∈ N0, for some C, we have that for suitable C1∣∣∣∣∣
∑

p+q=m

bpcq

∣∣∣∣∣ ≤ C1m
2k+1, m ∈ N .

So, we have that f ∗ g is of the form (2) and it belongs to S′2k+r, r > 3
2 .

We define the convolution of f and g from LG′e by (2). We have

Proposition 3. LG′e is a convolution algebra. Moreover, if

f =
∞∑

m=0

bmlm, g =
∞∑

m=0

cmlm are from Le′k ,

then f ∗ g ∈ Le′s for any s > k.

Proof. Since |bm|, |cm| ≤ Ckm, m ∈ N0, we have, for any k1 > k
and C1 which depends on k and k1,∣∣∣∣∣

∑
p+q=m

bpcq

∣∣∣∣∣ ≤ C2(m + 1)km ≤ C1k
m
1 .
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This implies the assertion.

For the Laplace transform of an f =
∞∑

m=0
bmlm ∈ L′k we have

(Lf)(s) =
∞∑

n=0

bn
(s− 1/2)n

(s + 1/2)n+1
, s ∈ R+iR+ .

Now, by using the ordinary multiplication of series and (2) we get at once
the well-known formula

L(f ∗ g)(s) = (Lf)(s)(Lg)(s), s ∈ R + iR+ .

In the sequel of this part we shall give several explicite expansions for
elements from S′+.

Let us first remark that the derivative of an f ∈ S′+, considered in
this paper as an element from (LG)′ is the same as the derivative of f
considered as an element from S′. From [2. p. 189 (15), p. 192 (38)] we
have

l′n = −
n−1∑
n=0

lm − 1
2
ln,

( −1∑
0

= 0

)
, n ∈ N0 ,

which leads to the following assertion:

(5) if f =
∞∑

n=0

bnln ∈ S′+, then f ′ =
∞∑

n=0

(
n−1∑
m=0

bm +
1
2
bn

)
ln .

Examples.

1◦ Since
∞∫
0

ln(t)dt = 2(−1)n, n ∈ N0, ([2, p. 191 (32)]), for Heaviside’s

function we have

(6) H(x) = 2
∞∑

n=0

(−1)nln(x) .

This is an element from S′r, r > 1/2.

2◦ For s ∈ C, Re s > 0, we have

(7) H(x)e−sx =
∞∑

n=0

(s− 1/2)n

(s + 1/2)n+1
ln(x) .

Note,
∣∣∣∣
s− 1/2
s + 1/2

∣∣∣∣ = t < 1 so we get that x → H(x)e−sx ∈ Sk for every

k ∈ R.
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3◦ Let a ≥ 0. Since 〈δ(x− a), ϕ(x)〉 = ϕ(a), we get at once

(8) δ(x− a) =
∞∑

n=0

ln(a)ln(x) .

Because ln(0) = 1, n ∈ N0, we have

(9) δ(x) =
∞∑

n=0

ln(x) .

Since for n ∈ N0, |ln(x)| ≤ 1, x ≥ 0, ([2, p. 205, (3)]), we have δ(x− a) ∈
S′r, r > 1/2.

Note that (9) can be derived from (6) because H ′(x) = δ(x).
From (9) and (5) we have

δ′(x) =
∞∑

n=0

(
n +

1
2

)
ln(x) ,

δ′′(x) =
∞∑

n=0

(
(n− 1)n

2
+ n +

1
4

)
ln(x) .

4◦ Let a > 0. The mapping from S(R+) to S(R+) defined by

ϕ(t) → ψ(t) = ϕ(a + t), t ≥ 0 ,

is continuous. So for given f(t) ∈ S′+ the distribution f(t − a) ∈ S′+ is
defined by

〈f(t− a), ϕ(t)〉 = 〈f(t), ϕ(t + a)〉 .
Clearly, supp f(t− a) ⊂ [a,∞) and

(10) (f(t) ∗ δ(t− a))(x) = f(x− a) .

From (6) and (10) we have

H(x− a) =
{ 1, x ≥ a

0, x < a
=

∞∑
n=0




n−1∑

j=0

4(−1)n−j lj(a) + 2ln(a)


 ln(x).

5◦ Since for s ∈ C, Re s > 0,

∞∫

0

e−sttmLn(t)dt = (−1)m dm

dsm

[(
1− 1

s

)n 1
s

]
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(see [2, p. 191 (32) or 1.p.9]), we have
∞∫

0

e−sttmLn(t)dt =
m!

sm+1

n∑

k=0

(−1)k

(
n

k

)(
m + k

m

)
1
sk

, m, n ∈ N0 ,

and by taking s = 1/2 we have for m ∈ N,
(11)

xm
+ =

{
xm, x ≥ 0
0, x < 0

= 2m+1m!
∞∑

n=0

(
n∑

k=0

(−1)k

(
n

k

)(
m + k

m

)
2k

)
ln(x) .

3. The convolution equations in S′+. The numerical approach

The problem which we investigate is the following:

(12) f ∗ g = h ,

where f and h are given elements from S′+ and g is unknown. If g exists,
then by using the generalized Laplace transformation we get

g = L−1(Lh/Lf)

where L−1 is the inverse mapping for L from H(R+) into S′+ (see §2.).
This method of finding the solution is not of practical use from the

numerical point of view, but from the theoretical one the use of the Laplace
transformation gives the best known results for the existence of the solution
([6]). Let us recall from ([6] Ch2. §13) two conditions on f which imply
the solvability of (12) for any given h ∈ S′+.

(A) If f = P (δ) =
n∑

k=0

akδ(k) and if P (−iz) 6= 0 in R + iR+ , then for

any h ∈ S′+ there exists g ∈ S′+ such that

P (δ) ∗ g = h .

(B) If F (z) = (Lf)(z), and z ∈ R + iR+ has non-negative imaginary
part, then for any h ∈ S′+ (12) is solvable in S′+ .

Clearly, equation (12) is solvable for any h iff there exists G ∈ S′+
such that

(13) f ∗G = δ (G is the fundamental solution).

If G exists, then the solution of (12) is

g = G ∗ h.
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Let f =
∞∑

n=0
anln, G =

∞∑
n=0

xnln, then from (9) and (2) we get that (13)

is equivalent to the following system of equations:

a0x0 = 1

a1x0 + a0x1 − a0x0 = 1(14)
a2x0 + a1x1 + a0x2 − a1x0 − a0x1 = 1

...

or

a0x0 = 1

a1x0 + a0x1 = 2(15)
a2x0 + a1x1 + a0x2 = 3
...

If a0 6= 0 this system is solvable and it gives an explicit method of
finding G (and thus of g) if we know that G exists in S′+; for example in
cases (A) or (B).

We shall present this method on a Volterra type equation. Denote by
W (R+) the space of all holomorphic functions of the form

f(z) = λ +
∫

R+

ϕ(t)eiztdt, z ∈ R + iR+, λ ∈ C, ϕ(t) ∈ L1(R+) .

W (R+) is Wiener’s algebra, a subalgebra of the algebra of holomorphic
functions H(R+) ([6, Ch.II, §13, Ch.I. §4]).

Its elements are the Laplace transforms of distributions of the form
λδ + ϕ(t), ϕ ∈ L1(R+).

Denote by V+ the space of these distributions.
If f(z) 6= 0 in (R + iR+) ∪ Ṙ (where Ṙ is the completion of the real

line), then there exists G ∈ V+ so that

(λδ + ϕ) ∗G = δ .

In other words if
∫

R+

ϕ(t)eizt 6= −λ, z ∈ (R + iR+)∪ Ṙ, then there exists

a solution g ∈ V+ of the integral equation

λg(t) +

∞∫

0

ϕ(t)g(x− t)dt = h(t), t ≥ 0 ,
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for all h ∈ V+.
We can solve numerically this equation by using the following algo-

rithm.
Let f = λδ+f1, f1 ∈ L1(R+), then f ∗G = δ, i.e. λδ∗G+G∗f1 = δ,

λG + G ∗ f1 = δ . From (2) we obtain
∞∑

n=0

λxnln +
∞∑

n=0

∑
p+q=n

xpaq −
∑

p+q=n−1

xpaq =
∞∑

n=0

ln .

This is equivalent to the system of equations:

λx0 + x0a0 = 1
λx1 + x0a1 + x1a0 − x0a0 = 2
λx2 + x0a2 + x1a1 + x2a0 − x0a1 − x1a0 = 3
...

or in a shortened notation

x0(a0 + λ) = 1

x0(a1 + λ) + x1(a0 + λ) = 2

x0(a2 + λ) + x1(a1 + λ) + x2(a0 + λ) = 3
...

The coefficients of G are

xn =
1

(a0 + λ)

[
(n + 1)−

n−1∑

i=0

xi(an−i + λ)
]
, n ∈ N0,

( −1∑
0

= 0

)
.

The solution of Volterra’s equation for any h from V+ is

g = G ∗ h .

From (2) we get

g =
∞∑

n=0

xnln ∗
∞∑

n=0

bnln =
∞∑

n=0

( ∑
p+q=n

xpbq −
∑

p+q=n−1

xpbq

)
ln .

Denote the coefficients of the last series by cn. Then the coefficients of the
solution g are

cn =
1

(a0 + λ)

( ∑
p+q=n

−
∑

p+q=n−1

)
(n + 1)bq+
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+
1

(a0 + λ)

∑
p+q=n

n−1∑

i=0

xibq(an−i + λ)−

−
∑

p+q=n−1

n−2∑

i=0

xibq(an−i + λ), n ∈ N0 .

4. Properties of the solution

Concerning the convolution equation (12) the question is: which con-
ditions on f ∈ S′+ imply the existence of G in S′+?

From (15) we get at once that the necessary condition is a0 6= 0.

The problem of finding general conditions on f is not simple. This
will be shown by the following

Examples.
6◦. Let f(x) = 1

1− q exp((q + 1)/(2(q − 1))x), x ≥ 0, where |q| < 1.

From [2] we have

f(x) =
∞∑

n=0

qnln(x), x ≥ 0,

where the series converges uniformly to f on R+ as well as in Lp(R+) for
any p ≥ 1. For G we have

G =
∞∑

n=0

[(n + 1)− nq]ln

in the sense of convergence in S′. More precisely G ∈ Sk, k < −2.

Moreover, if h =
∞∑

n=0
bnln then the solution of (15) is

g =
∞∑

n=0

(
(1− q)

n∑
p=0

bp + bn

)
ln .

So if h has “nice classical” properties this does not hold for the solu-
tion.

7◦. We shall show in this example that if f has very fast coefficients
the solution can be quite simple and it belongs to the same space as h.



30 S. Pilipović and M. Stojanović

From (15) we get

a0x0 = 1

(a1 − a0)x0 + a0x1 = 1

(a2 − a1)x0 + (a1 − a0)x1 + a0x2 = 1

(a3 − a2)x0 + (a2 − a1)x1 + (a1 − a0)x2 + a0x3 = 1
...

This is equivalent to

(16)

a0x0 = 1

(a1 − 2a0)x0 + a0x1 = 0

(a2 − 2a1 + a0)x0 + (a1 − 2a0)x1 + a0x2 = 0

(a3 − 2a2 + a1)x0 + (a2 − 2a1 + a0)x1 + (a1 − 2a0)x2 + a0x3 = 0
...

Denote the coefficients of (16) by

α0 = a0, α1 = a1 − 2a0, α2 = a2 − 2a1 + a0, α3 = a3 − 2a2 + a1, . . .

Assuming

α0 = a0, α1 = a0q, α2 = a0q
2, α3 = a0q

3 . . . ,

the fundamental solution of (16) is

G = (1/a0)e−t/2(1− q(1− t)) .

If h =
∞∑

n=0
bnln then the solution of (16) is

g = 1/a0

∞∑
m=0

[(bm − bm−1)− q(bm−1 − bm−2)]lm, b−1, b−2 = 0 .

If h ∈ Lk it follows that g ∈ Lk, k ∈ R; moreover if h ∈ Lek then
g ∈ Lek, k > 0.

Observe the convolution equation (12) in LG′e when f =
∞∑

n=0
anln ∈

LG′e is fixed.
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Proposition 4. The convolution equation (12) is solvable in LG′e for
any h ∈ LG′e iff a0 6= 0.

Proof. Clearly, a0 must be different from zero. Let h =
∞∑

n=0
cnln ∈

LG′e. If g =
∞∑

n=0
bnln, then the coefficients bn must satisfy the system

∑
p+q=n

apbq −
∑

p+q=n−1

apbq = cn, n ∈ N0,

i.e.
∑

p+q=n
apbq = c̃n, where c̃n =

n∑
i=0

ci, n ∈ N0. This system is solvable

since a0 6= 0.

Note that
∞∑

n=0
c̃nln also belongs to LG′e. We have to prove that a0 6= 0

implies that for some k > 0 and C > 0

(17) |bn| < Ckn, n ∈ N0 .

Observe the functions a(t) =
∞∑

n=0
antn, c(t) =

∞∑
n=0

c̃ntn which are analytic

in the interval
(
− 1

r , 1
r

)
, where we choose r > 0 such that for some C > 0

|an|, |c̃n| ≤ Crn, n ∈ N0 .

Put b(t) =
∞∑

n=0
bntn. We have formally a(t) · b(t) = c(t).

Since a0 6= 0, we get that 1/a(t) is an analytic function in some
neighbourhood of zero and so (1/a(t))c(t) = b(t) is analytic in some neigh-
bourhood of zero. This implies that for some k > 0 and C > 0 (17) holds.

This proposition implies that the natural frame for convulution equa-
tions of elements supported by [0,∞) is LG′e.

The preceding proof also suggests a method of finding the fundamental
solution for the convolution equation. Namely, for given f ∈ S′+ we have
to solve the equation a(t)x(t) = d(t), in some interval (−ε, ε), where a(t) =
∞∑

n=0
antn, d(t) =

∞∑
n=0

(n + 1)tn and x(t) =
∞∑

n=0
xntn .

According to (15) the coefficients of x(t) are the coefficients of the
fundamental solution.
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Proposition 5. Let f ∈ S′+ be as above and a0 6= 0. The convolution

equation (12) is solvable in S′+ iff the analytic function 1/a(t), t ∈ (−ε, ε),
has the coefficients yn, n ∈ N0, such that |yn| < Cnk, n ∈ N0, for some

C > 0 and k > 0.

5. Error estimate

At the end we shall give some remarks concerning the error estimate

for the approximate solution of (12), gN =
N∑

n=0
cnln, where g =

∞∑
n=0

cnln is

the exact solution. Let GN =
N∑

n=0
xnln and hN =

N∑
n=0

bnln. We have

gN = GN ∗ h = G ∗ hN = GN ∗ hN .

This implies that for finding the approximate solution gN we need
the approximations for h and G. Also, for f ∈ LG′e and a0 6= 0 we have
GN → G in LG′e, N →∞, and so, gN → g in LG′e, N →∞.

If we have more informations on G and h then we can give the
estimations for g → gN . For example, let h ∈ Lp(R+), hN → h in
Lp, G ∈ Lq(R+), GN → G in Lq, where p and q are real numbers such
that

p ≥ 1, q ≥ 1,
1
p

+
1
q
≥ 1 .

Let 1
r = 1

p + 1
q − 1. Then g ∈ Lr(R+) and




∞∫

0

|gN (t)− g(t)|rdt




1/r

≤

≤



∞∫

0

|G(t)|qdt




1/q

·
(∫

|hN (t)− h(t)|pdt

)1/p

,

and



∞∫

0

|gN (t)− g(t)|rdt




1/r

≤
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≤



∞∫

0

|h(t)|pdt




1/p

·



∞∫

0

|G(t)−GN (t)|qdt




1/q

.

Note, if 1
p + 1

q = 1, then r = ∞ and the left hand side of these inequalities
becomes sup

{|gN (t)− g(t)|, t ∈ (0,∞)
}

.
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