Arithmetical expressions and asymptotic formulae for generalized totient functions

By PENTTI HAUKKANEN (Tampere, Finland)

1. Introduction

For a positive integer m let μ_m denote the multiplicative function such that for each prime power p^a ($\neq 1$), $\mu_m(p^a) = -1$ if a = m, and = 0 otherwise. The function μ_m is the generalized Möbius function due to KLEE [7]. Clearly $\mu_1 = \mu$, the classical Möbius function. We can also write $\mu_m = \Omega_m(\mu)$, where $\Omega_m(\mu)$ is the mth convolute of μ . The mth convolute $\Omega_m(f)$ of an arithmetical function f is defined by

$$\Omega_m(f)(n) = \begin{cases} f(n^{1/m}) & \text{if } n \text{ is an } m \text{th power }, \\ 0 & \text{otherwise} \end{cases}$$

(see [8], p. 53). For an arithmetical function g and a positive integer s let $\mu_{m,(s)}^g$ denote the arithmetical function defined inductively by $\mu_{m,(1)}^g = \mu_{m,(s)}^g = \mu_{m,(1)}^g \star \mu_{m,(s-1)}^g$ ($s \geq 2$), where \star denotes the Dirichlet convolution. Similarly, let $\rho_{m,(s)}^g$ denote the arithmetical function defined inductively by $\rho_{m,(1)}^g = \mu_m^g g$, $\rho_{m,(s)}^g = \rho_{m,(1)}^g \star \rho_{m,(s-1)}^g$ ($s \geq 2$).

inductively by $\rho_{m,(1)}^g = \mu_m^2 g$, $\rho_{m,(s)}^g = \rho_{m,(1)}^g \star \rho_{m,(s-1)}^g$ ($s \ge 2$). Let f and g be arithmetical functions. Then we define generalized Euler and Dedekind totient functions by

$$\Phi_{m,s}^{f,g} = f \star \mu_{m,(s)}^g,$$

$$\Psi_{m,s}^{f,g} = f \star \rho_{m,(s)}^g.$$

For a real number a let ζ_a denote the arithmetical function given by $\zeta_a(n) = n^a$ for all n. Then we use the brief notations $\Phi_{m,s}^{f,g} = \Phi_{m,s}^{a,g}$, $\Psi_{m,s}^{f,g} = \Psi_{m,s}^{a,g}$ when $f = \zeta_a$.

These functions include as special cases a large number of earlier generalizations of Euler and Dedekind totient functions. Namely, if F = F(x) is a nonconstant polynomial with integer coefficients, $N_F(n)$ the number of solutions (mod n) of $F(x) \equiv 0 \pmod{n}$, t a positive integer and $N_F^t(n) = N_F(n)^t$, then the function $\Phi_{m,s}^{a,g}$ with $a=t,\ g=N_F^t$, s=1 reduces to the generalized Euler totient function $\varphi_{F,t}^{(m)}$ by Chidambaraswamy [1]. We recall that $\varphi_{F,t}^{(m)}(n)$ is defined to be the number of ordered t-tuples of integers $a_1,\ldots,a_t\pmod{n}$ such that $((F(a_1),\ldots,F(a_t)),n)_m=1$, where $(F(a_1),\ldots,F(a_t))$ is the g.c.d. of $F(a_1),\ldots,F(a_t)$ and $((F(a_1),\ldots,F(a_t)),n)_m$ stands for the largest mth power common divisor of $(F(a_1),\ldots,F(a_t))$ and n. With a=m=s=1 and $g\equiv 1$ the function $\Phi_{m,s}^{a,g}$ reduces to the classical Euler totient function. Further special cases of $\Phi_{m,s}^{f,g}$ can be found from the references of [1] and [6].

With $a=t,\ g=N_F^t,\ s=1$, with $a=kt,\ g=N_F^t\left((\cdot)^k\right),\ m=s=1$ and with $a=vt,\ g=N_F^t\left((\cdot)^v\right),\ m=1$ the function $\Psi_{m,s}^{a,g}$ reduces respectively to the generalized Dedekind totient functions $\Psi_{F,t}^{(m)},\ \psi_{F,t}^{(k)}$ and $\psi_{F,t}^{s,v}$ by Chidambaraswamy ([2], [2] and [3]). With $a=k,\ g\equiv 1,\ m=s=1$, with $a=1,\ g\equiv 1,\ s=1$ and with $a=1,\ g\equiv 1,\ m=1$ the function $\Psi_{m,s}^{a,g}$ reduces respectively to the functions ψ_k,Ψ_m and $\psi_{(s)}$ by Suryanarayana ([9], [10] and [10]). If a=m=s=1 and $g\equiv 1$, the function $\Psi_{m,s}^{a,g}$ is the classical Dedekind totient function.

The purpose of this paper is to give arithmetical expressions for the functions $\Phi_{m,s}^{f,g}$ and $\Psi_{m,s}^{f,g}$ and asymptotic formulae for the summatory functions of the functions $\Phi_{m,s}^{a,g}$ and $\Psi_{m,s}^{a,g}$. The section of arithmetical expressions is motivated by papers of Chidambaraswamy ([2],[3]), Hanuman-Thachari [5] and Suryanarayana [10], who gave arithmetical expressions for the functions $\Psi_{F,t}^{(m)}$, $\psi_{F,t}^{(k)}$, $\psi_{F,t}^{u,v}$, Ψ_m , ψ_k and $\psi_{(s)}$, and the section of asymptotic formulae is motivated by a paper of Chidambaraswamy and Sitaramachandrarao [4], who gave asymptotic formulae for the summatory functions of the functions $\varphi_{F,t}^{(m)}$, $\Psi_{F,t}^{(m)}$, $\psi_{F,t}^{(k)}$ and $\psi_{F,t}^{u,v}$.

2. Arithmetical expressions

In this section we shall give arithmetical expressions for the functions $\Phi_{m,s}^{f,g}$ and $\Psi_{m,s}^{f,g}$. These expressions contain as special cases the arithmetical expressions given for $\Psi_{F,t}^{(m)}$ and $\psi_{F,t}^{(k)}$ in [2], for $\psi_{F,t}^{s,v}$ in [3], for Ψ_m in [5] and [10], for ψ_k in [10] and for $\psi_{(s)}$ in [10]. We wish to point out that several authors consider expressions of the type of Theorem 7 as the definition of

generalized Dedekind totient functions.

The following notations will be needed here. Let $\omega(n)$ denote the number of distinct prime factors of n. Then the arithmetical functions θ and $\theta_{(s)}$ are defined by $\theta(n) = 2^{\omega(n)}$ for all n and $\theta_{(s)} = \theta \star \cdots \star \theta$ (s factors). Further, the arithmetical functions θ_m and $\theta_{m,(s)}$ are defined by $\theta_m(n) = \theta(n_m)$, where $n_m = \prod p^a$, the product being over $p^a \parallel n$ (i.e. $p^a \mid n, (p^a, n/p^a) = 1$) for which $a \geq m$, and $\theta_{m,(s)} = \theta_m \star \cdots \star \theta_m$ (s factors). The arithmetical function $\rho_{(s)}$ is defined to be the multiplicative function given by $\rho_{(s)}(p^a) = {s \choose a}$ for all prime powers p^a ([10], p. 109).

Theorem 1.

$$\Phi_{m,s}^{f,\mu_mg}=\Psi_{m,s}^{f,g},$$

$$\Psi_{m,s}^{f,\mu_mg} = \Phi_{m,s}^{f,g}.$$

Theorem 2. If $1 \le i \le s-1$, then

$$\Phi_{m,s}^{f,g} = \Phi_{m,s-i}^{f,g} \star \mu_{m,(i)}^g,$$

$$\Psi_{m,s}^{f,g} = \Psi_{m,s-i}^{f,g} \star \rho_{m,(i)}^g$$
.

Theorems 1 and 2 are direct consequences of the definitions.

Theorem 3. If g is completely multiplicative, then

$$\Psi_{m,s}^{f,g} = \Phi_{m,s}^{f,g} \star [\Omega_m(\theta_{(s)})]g.$$

PROOF. By the properties of the *m*th convolute (see [8], p. 53) and the formula $\mu^2 = \mu \star \theta$, we have

$$\Psi_{m,1}^{f,g} = f \star \mu_m^2 g = f \star [\Omega_m(\mu)^2] g = f \star [\Omega_m(\mu^2)] g = f \star [\Omega_m(\mu \star \theta)] g$$
$$= f \star [\Omega_m(\mu)] g \star [\Omega_m(\theta)] g = \Phi_{m,1}^{f,g} \star [\Omega_m(\theta)] g.$$

Now, applying induction on s we obtain the theorem. We omit the details.

Theorem 4. If g is completely multiplicative, then

$$\Psi_{m,s}^{f,g} = \Phi_{1,s}^{f,g} \star \theta_{m,(s)} g.$$

PROOF. Considering prime powers it can be verified that $\mu_m^2 = \mu \star \theta_m$. Thus

$$\Psi_{m,1}^{f,g} = f \star \mu_m^2 g = f \star \mu g \star \theta_m g = \Phi_{1,1}^{f,g} \star \theta_{m,(1)} g.$$

Further, applying induction on s gives the theorem. We omit the details.

Theorem 5. If g is completely multiplicative, then

$$\Psi_{m,s}^{f,g} = f \star [\Omega_m(\rho_{(s)})]g.$$

PROOF. We have

$$\Psi_{m,s}^{f,g} = f \star [\Omega_m(\mu^2 \star \cdots \star \mu^2)]g.$$

By multiplicativity and considering prime powers it can be verified that

$$\mu^2 \star \cdots \star \mu^2 = \rho_{(s)}.$$

We thus arrive at our result.

Theorem 6. If f and g are completely multiplicative, then

$$\Psi_{m,s}^{f,g}(n^m) = \Psi_{1,s}^{f^m,g^m}(n),$$

$$\Phi_{m,s}^{f,g}(n^m) = \Phi_{1,s}^{f^m,g^m}(n).$$

PROOF. By Theorem 5

$$\begin{split} \Psi^{f,g}_{m,s}(p^{am}) &= \sum_{i=0}^{a} f\left(p^{(a-i)m}\right) \rho_{(s)}(p^{i}) g(p^{im}) \\ &= \sum_{i=0}^{a} f^{m}(p^{a-i}) \rho_{(s)}(p^{i}) g^{m}(p^{i}), \end{split}$$

which proves the first equation. The second equation follows in a similar way applying the formula

$$\Phi_{m,s}^{f,g} = f \star [\Omega_m(\mu \star \cdots \star \mu)]g.$$

Theorem 7. If f and g are completely multiplicative functions and $f(n) \neq 0$ for all n, then

$$\Psi_{m,1}^{f,g}(n) = \sum_{d \in \mathbb{Z}} \frac{f(d)}{f((d,\delta))} \chi_m(\delta) g(\delta) \Phi_{m,1}^{f,g}((d,\delta)),$$

where $\chi_m(\delta) = 1$ if δ is an mth power, and = 0 otherwise.

Theorem 8. If f is multiplicative and g is completely multiplicative, then

$$\Psi_{m,1}^{f,g} = (\theta \chi_m g) \star \Phi_{m,1}^{f,g}.$$

Theorems 7 and 8 can be proved by considering the function values on prime powers. We omit the details.

Theorem 9. If f is completely multiplicative, $f(n) \neq 0$ for all n and g is multiplicative, then

$$\Phi_{m,1}^{f,g}(n) = f(n) \prod_{p^m|n} [1 - g(p^m)/f(p^m)],$$

$$\Psi_{m,1}^{f,g}(n) = f(n) \prod_{p^m|n} [1 + g(p^m)/f(p^m)].$$

PROOF. We have

$$(f \star \mu_m g)(p^a) = \begin{cases} f(p^a) & \text{if } p^m \nmid p^a, \\ f(p^a) - f(p^{a-m})g(p^m) & \text{if } p^m \mid p^a. \end{cases}$$

We thus obtain the first equation. The second equation can be verified by a similar argument.

3. Asymptotic formulae

In this section we shall give asymptotic formulae for the summatory functions of the functions $\Phi_{m,s}^{a,g}$ and $\Psi_{m,s}^{a,g}$. We shall combine and generalize the formulae given by Chidambaraswamy and Sitaramachandrarao [4], who studied the functions $\varphi_{f,t}^{(m)}$, $\Psi_{f,t}^{(m)}$, $\psi_{f,t}^{(k)}$ and $\psi_{f,t}^{u,v}$.

Throughout this section let g be a given arithmetical function such

that there are positive integers b and C such that

(1)
$$|g(n^m)| \le C^{\omega(n)} n^b$$
 for all n with $\gamma(n) = n$,

where $\gamma(n)$ is the product of distinct prime factors of n. This condition is satisfied for $g = N_F^t((\cdot)^e)$, where e is any positive integer. For that function b = t(me - 1) and $C = (\max\{h, u\})^t$, where h is the degree of F and u is the largest prime divisor common to the coefficients of F. With these types of g's we obtain the special cases given in [4].

Lemma 1 ([4], Lemma 2.2). For every positive integer k,

$$\sum_{n \le x} k^{\omega(n)} = O(x(\log x)^{k-1}).$$

Lemma 2.

$$\sum_{n < x} |\rho_{m,(s)}^g(n)| = O(x^{\frac{b+1}{m}} (\log x)^{Cs-1}).$$

PROOF. If s = 1, we have

$$\begin{split} \sum_{n \leq x} |\rho_{m,(s)}^g(n)| &= \sum_{n \leq x} |\mu_m^2(n)g(n)| = \sum_{n \leq x^{1/m}} |\mu^2(n)g(n^m)| \\ &\leq \sum_{n < x^{1/m}} \mu^2(n)C^{\omega(n)}n^b \leq x^{b/m} \sum_{n < x^{1/m}} C^{\omega(n)} = O(x^{\frac{b+1}{m}}(\log x)^{C-1}). \end{split}$$

Assume Lemma 2 holds for s-1 ($s \geq 2$). Then

$$\begin{split} \sum_{n \leq x} |\rho_{m,(s)}^g(n)| &\leq \sum_{d \delta \leq x} |\rho_{m,(1)}^g(d) \rho_{m,(s-1)}^g(\delta)| \\ &= \sum_{d \leq x} |\rho_{m,(1)}^g(d)| \sum_{\delta \leq x/d} |\rho_{m,(s-1)}^g(\delta)| \\ &= O(\sum_{d \leq x} |\rho_{m,(1)}^g(d)| (x/d)^{\frac{b+1}{m}} (\log(x/d))^{C(s-1)-1}) \\ &= O(x^{\frac{b+1}{m}} (\log x)^{C(s-1)-1} \sum_{d \leq x} |\rho_{m,(1)}^g(d)| d^{-\frac{b+1}{m}}). \end{split}$$

By partial summation and this lemma with s = 1,

$$\sum_{d \le x} |\rho_{m,(1)}^g(d)| d^{-\frac{b+1}{m}} = O((\log x)^C).$$

We thus arrive at our result.

Lemma 3. For $a \neq 0$,

$$\sum_{n \le x} |\rho^g_{m,(s)}(n)| n^{-a} = \begin{cases} O(1) & \text{if } b - ma < -1, \\ O((\log x)^{Cs}) & \text{if } b - ma = -1, \\ O(x^{\frac{b+1}{m} - a} (\log x)^{Cs - 1}) & \text{if } b - ma > -1. \end{cases}$$

Lemma 4. If b - ma < m - 1, then

$$\sum_{n > r} |\rho_{m,(s)}^g(n)| n^{-a-1} = O(x^{\frac{b+1}{m} - a - 1} (\log x)^{Cs - 1}).$$

Lemma 5.

$$\sum_{n \le x} |\rho_{m,(s)}^g(n)| \log n = O\left(x^{\frac{b+1}{m}} (\log x)^{Cs}\right).$$

Lemmata 3, 4 and 5 follow by partial summation and Lemma 2.

Remark. It is easily seen that $\rho_{m,(s)}^{\mu_m g} = \mu_{m,(s)}^g$, $\mu_{m,(s)}^{\mu_m g} = \rho_{m,(s)}^g$. It is also easily seen that the function g satisfies (1) if, and only if, the function $\mu_m g$ satisfies (1). Replacing the function g by the function $\mu_m g$ shows that Lemmata 2–5 hold for the function $\mu_m g$ as well.

Theorem 10. Let b - ma < m - 1. a) If $a \ge 0$, then

$$\sum_{n \le x} \Psi_{m,s}^{a,g}(n) = \alpha x^{a+1} + \begin{cases} O(x^a) & \text{if } b - ma < -1, \\ O(x^a (\log x)^{Cs}) & \text{if } b - ma = -1, \\ O(x^{\frac{b+1}{m}} (\log x)^{Cs-1}) & \text{if } b - ma > -1, \end{cases}$$

where

$$\alpha = \frac{1}{a+1} \sum_{n=1}^{\infty} \rho_{m,(s)}^{g}(n) n^{-a-1}.$$

b) If a < 0, $a \neq -1$, then

$$\sum_{n \le x} \Psi_{m,s}^{a,g}(n) = \alpha x^{a+1} + O(x^{\frac{b+1}{m}} (\log x)^{Cs-1}).$$

c)
$$\sum_{n < x} \Psi_{m,s}^{-1,g}(n) = O(x^{\frac{b+1}{m}} (\log x)^{Cs}).$$

Remark. Theorem 10 holds if the function $\Psi_{m,s}^{a,g}$ is replaced by the function $\Phi_{m,s}^{a,g}$. Then the function $\rho_{m,(s)}^{g}$ should be replaced by the function $\mu_{m,(s)}^{g}$. This can be verified replacing the function g by the function $\mu_{m}g$.

PROOF. If $a \geq 0$, then

$$\begin{split} \sum_{n \leq x} \Psi_{m,s}^{a,g}(n) &= \sum_{d \leq x} \delta^a \rho_{m,(s)}^g(d) = \sum_{d \leq x} \rho_{m,(s)}^g(d) \sum_{\delta \leq x/d} \delta^a \\ &= \sum_{d \leq x} \rho_{m,(s)}^g(d) \left\{ \frac{1}{a+1} (x/d)^{a+1} + O((x/d)^a) \right\} \\ &= \frac{1}{a+1} x^{a+1} \sum_{d=1}^{\infty} \rho_{m,(s)}^g(d) d^{-a-1} \\ &+ O(x^{a+1} \sum_{d > x} |\rho_{m,(s)}^g(d)| d^{-a-1}) \\ &+ O(x^a \sum_{d \leq x} |\rho_{m,(s)}^g(d)| d^{-a}). \end{split}$$

Applying Lemmata 3 and 4 we arrive at our result. The series in the definition of α converges absolutely by Lemma 4.

In the cases a < 0 $(a \neq -1)$ and a = -1 the proof goes through in a similar way to that in the case $a \ge 0$ applying the formulae

$$\sum_{n \le x} n^a = \frac{1}{a+1} x^{a+1} + \zeta(-a) + O(x^a), \quad a < 0 \ (a \ne -1),$$

$$\sum_{n \le x} n^{-1} = \log x + \gamma + O(x^{-1}),$$

where γ is the Euler constant, and Lemmata 2–5.

Acknowledgement. The author is grateful to the referee for useful suggestions on the presentation of this paper.

References

- [1] J. Chidambaraswamy, Totients with respect to a polynomial, Indian J. Pure Appl. Math. 5 (1974), 601-608.
- J. CHIDAMBARASWAMY, Generalized Dedekind ψ-functions with respect to a polynomial I, Indian J. Math. 18 (1976), 23-34.
- J. CHIDAMBARASWAMY, Generalized Dedekind ψ-functions with respect to a polynomial II, Pacific J. Math. 65 (1976), 19-27.
- [4] J. CHIDAMBARASWAMY and R. SITARAMACHANDRARAO, On the error terms of $\sum_{n \leq x} \varphi_{f,t}^{(k)}(n) \text{ and } \sum_{n \leq x} \psi_{f,t}^{u,v}(n), Publ. Math. Debrecen 32 (1985), 139-144.$ [5] J. HANUMANTHACHARI, A generalisation of Dedekind's ψ -function, Math. Stu-
- dent 40 A (1972), 1-4.
- [6] P. HAUKKANEN, Some generalized totient functions, Math. Student 56 (1988),
- [7] V. L. KLEE, A generalization of Euler's function, Amer. Math. Monthly 55 (1948), 358 - 359.
- [8] P. J. McCarthy, Introduction to arithmetical functions, Springer, 1986.
- [9] D. SURYANARAYANA, A generalization of Dedekind's ψ-function, Math. Student 37 (1969), 81-86.
- [10] D. SURYANARAYANA, Extensions of Dedekind's ψ-function, Math. Scand. 26 (1970), 107-118.

PENTTI HAUKKANEN DEPARTMENT OF MATHEMATICAL SCIENCES UNIVERSITY OF TAMPERE P.O. BOX 607, SF-33101 TAMPERE FINLAND

(Received October 6, 1989)