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Arithmetical expressions and asymptotic formulae for
generalized totient functions

By PENTTI HAUKKANEN (Tampere, Finland)

1. Introduction

For a positive integer m let u,, denote the multiplicative function
such that for each prime power p® (# 1), um(p®) = =1 if a = m, and
= 0 otherwise. The function pu,, is the generalized Mébius function due
to KLEE [7]. Clearly u; = u, the classical Mobius function. We can also
write g, = Qn(u), where Q,,(u) is the mth convolute of u. The mth
convolute 2,,(f) of an arithmetical function f is defined by

otherwise

Um(f)(n) = { il ok

(see [8], p. 53). For an arithmetical function g and a positive integer s
let p? (s) denote the arithmetical function defined inductively by an,(l )y =

S B ;.af“’(_,) = ,u,gn‘(l) *pfn‘(,_l} (s > 2), where x denotes the Dirichlet
convolution. Similarly, let pfn () denote the arithmetical function defined
: 2 g =t o g Loy 9

inductively by p}. 1) = B9, Pp (5) = Pons1) * Prn(a—1) (8 2 2).

Let f and g be arithmetical functions. Then we define generalized
Euler and Dedekind totient functions by

(thr;?s — f * pf‘n,(s)’

kIl{r;?’ = f*ani(,)-

For a real number a let (, denote the arithmetical function given by
Ca(n) = n® for all n. Then we use the brief notations @{,;f_, - ey ‘I’ﬁ;?‘, =

U239 when f = (,.

m,s
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These functions include as special cases a large number of earlier gen-
eralizations of Euler and Dedekind totient functions. Namely, if F' = F(z)
is a nonconstant polynomial with integer coefficients, Nz(n) the number of
solutions (mod n) of F(z) = 0 (mod n), t a positive mteger and Ng(n) =
Np(n)', then the function 39, witha =t, g = Ni, s =1 reduces to

the generalized Euler totient function :p ) by CHIDAMBARASWAMY [1].

We recall that tp(m)(n) is defined to be the number of ordered t-tuples of
integers ay,...,a; (mod n) such that ((F(al) ,F(a)),n),, =1, where
(F(ay),.. F(at)) is the g.c.d. of F(a,;),. F(at) and ((F(ay),.. F(at)),
n) st.ands for the largest mth power common divisor of (F(ay), ..., F(a))
and n. Witha=m=s =1 and g = 1 the function $39, reduces to the

classical Euler totient function. Further special cases of @{n?_, can be found
from the references of [1] and [6].

Witha=1t, g = Nt, s =1, witha = kt, g = NL((1)*), m =
s = 1 and with a = vt, ¢ = Np((-)*), m = 1 the function V39, reduces

respectively to the generalized Dedekind totient functions lIl[ : 1,!)“‘]
Yg ¢ by CHIDAMBARASWAMY ([2], [2] and [3]). With a = &, g =1, m=
s=1witha=1,g=1, s=1landwitha=1, g=1, m =1 the
function Y79, reduces respectively to the functions ¢k, ¥, and () by
SURYANARAYANA ([9], [10] and [10]). If a = m = s = 1 and g = 1, the
function U39, is the classical Dedekind totient function.

The purpose of this paper is to give arithmetical expressions for the
functions ®/;9, and lI’f'-" and asymptotic formulae for the summatory func-
tions of the functlons @“'9 and W9,. The section of arithmetical expres-
sions is motivated by papers of CHIDAMBARASWAMY ([2],(3]), HANUMAN-

THACHARI [5] and SURYANARAYANA [10], who gave arithmetical expres-

sions for the functions 'Ilf,;:), g:, ¢Ft y ¥m, Y& and ¥,), and the section

of asymptotic formulae is motivated by a paper of CHIDAMBARASWAMY
and SITARAMACHANDRARAO (4], who gave asymptotic formulae for the
(m) gim) (B d ‘4’;:’

summatory functions of the functions ¢, , Y5, ¥p,
L) L] ]

2. Arithmetical expressions

In this section we shall give arithmetical expressions for the functions
o/ 9, and V28 9, These expressions contain as special cases the arithmetical
expressions given for \Il(m] and 1,05;{‘: in [2] for ¢ in (3], for ¥r, in [5] and
[10], for & in [10] and for Y(s) 1n [10]. We wish to point out that several
authors consider expressions of the type of Theorem 7 as the definition of
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generalized Dedekind totient functions.
The following notations will be needed here. Let w(n) denote the
number of distinct prime factors of n. Then the arithmetical functions

6 and 6, are defined by 6(n) = 2¢(") for all n and Oy =0x---x0 (s
factors). Further, the arithmetical functions 8, and 8,, (,) are defined by
Om(n) = 6(nn,), where n,, = IIp*, the product being over p* || n (i.e.
p* | n, (p*, n/p*) = 1) for which @ 2 m, and 0, (5) = O * -+ % O (s
factors). The arithmetical function p(,) is defined to be the multiplicative
function given by p(,)(p*) = (?) for all prime powers p* ([10], p. 109).

Theorem 1.
Q'{{l“mf =yl

m,s)
viirs = o,
Theorem 2. If 1 <:1<s -1, then

q,ﬁ;lg’ =3 ant

m,s—i * Fm (i)

Ol = w9 . p?

m,s—i * P (i)
Theorems 1 and 2 are direct consequences of the definitions.

Theorem 3. If g is completely multiplicative, then
‘I’!r;?a = (b;rfr;?s * [Qm(g(s) )]g

PROOF. By the properties of the mth convolute (see (8], p. 53) and
the formula u? = u * 6, we have

Ol = faplg=f*[Qm(p))g = f*[Qn(u?))g = f % [Qn(u*6)]g
= f % [Qm(u))g * [Qm(8)]g = BL% * [ (6)]9.

Now, applying induction on s we obtain the theorem. We omit the details.

Theorem 4. If g is completely multiplicative, then
Vi, = &f'0 %0, (9.

PROOF. Considering prime powers it can be verified that u?, = ux6,.
Thus

UIG = fxpng = f*pg*Omg = ){ % 0m,1)9.

Further, applying induction on s gives the theorem. We omit the details.
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Theorem 5. If g is completely multiplicative, then
19, = f+[Qm(p(s))ls-
ProoF. We have
UL, = [ [Qum(p? > % p?)]g.
By multiplicativity and considering prime powers it can be verified that
Pk = P(s)-

We thus arrive at our result.
Theorem 6. If f and g are completely multiplicative, then

vl (n™) = 97" (n),
20 ,(n"‘)—@ "9 ().
ProoF. By Theorem 5

vl (p*™) = Ef( po "“‘) psy)(P)9(p'™)

=0
=Y ™" oy (@)a™ (7).
=0

which proves the first equation. The second equation follows in a similar
way applying the formula

@{;f’, = fx[QUm(p*x---*p)lg.

Theorem 7. If f and g are completely multiplicative functions and

f(n) # 0 for all n, then

1o f(d) P
ma(n) = .,52,. Fid 5y 9O (4,6)),

where xm(8) = 1 if § is an mth power, and = 0 otherwise.

Theorem 8. If f is multiplicative and g is completely multiplicative,

then
'I’f‘ (meg)*‘l’f‘

Theorems 7 and 8 can be proved by considering the function values
on prime powers. We omit the details.
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Theorem 9. If f is completely multiplicative, f(n) # 0 for all n and
g is multiplicative, then

1% (n) = f(n) [] 11 - 9(™)/f™)),

p™|n
1o (n) = f(n) [T 1 +9G™)/F(2™)).
p™n
PROOF. We have
f(»*) if p™ ¢ p%,

£p*) = f(p*=")o(p™) ifp™ |p".

We thus obtain the first equation. The second equation can be verified by
a similar argument.

(f *umg)(p*) = {

3. Asymptotic formulae

In this section we shall give asymptotic formulae for the summatory

functions of the functions ®7;%, and ¥3:9,. We shall combine and generalize
the formulae given by CHIDAMBARASWAMY and SITARAMACHANDRARAO
(4], who studied the functions :,o_(f'::), \I‘fr'::), l,b?j and 1/;;";’ !

Throughout this section let g be a given arithmetical function such
that there are positive integers b and C such that

(1) lg(n™)| < C“™n® for all n with v(n) = n,

where v(n) is the product of distinct prime factors of n. This condition
is satisfied for ¢ = NE((-)¢), where e is any positive integer. For that
function b = t(me — 1) and C = (max{h,u})!, where h is the degree of F
and u is the largest prime divisor common to the coefficients of F. With
these types of g’s we obtain the special cases given in [4].

Lemma 1 ([4], Lemma 2.2). For every positive integer k,
> ) = O(z(log x)* ).
n<z

Lemma 2.
Z IPi,‘(,)(nN = O(:z:b_n*-'l‘(log I)Ca-—l).

n<z
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PROOF. If s = 1, we have

Y 1ol =D k() = D |#*(n)g(n™)|

n<z n<z n<gl/m

< Y wme™nt<am 3 0 = 0@ (logz)°T).

nszl{m ns:lfm

Assume Lemma 2 holds for s — 1 (s > 2). Then
Z: |Pf,,,(,)(")| - Z |an‘(1)(d)me(,_1)(‘s)|

n<s dé<z
= St @ X 1o oo ()
d<z §<z/d
i O(Z: Ipfn,(1)(d)l(xfd)%k(log(:z:/d))c(a—l)—l)
d<z
b1 PR Sk
— O(x hic (log:c)c( 1)-1 Z Ipfn,(l)(d)ld + ).

d<z
By partial summation and this lemma with s =1,
3168, o) (Dld= = = O((log 2)°).
d<z

We thus arrive at our result.
Lemma 3. For a # 0,

o(1) Sttt
> 162, ()~ = { O((logz)°*) B
g O(z**~%(logz)°*~1)  ifb—ma > —1.

Lemma 4. If b—ma < m —1, then

¥ 18 o)™t =0 % Y (log 7))
n>r
Lemma 5.
> 168, o(n)l logn = O(z " (log 2)°*).

n<r

Lemmata 3, 4 and 5 follow by partial summation and Lemma 2.
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Remark. 1t is easily seen that p) ") = py (., Mo = Poy (- TE s

also easily seen that the function g satisfies (1) if, and only if, the function

mg satisfies (1). Replacing the function g by the function pu,, g shows that
Lemmata 2-5 hold for the function u? (s) 88 well.

Theorem 10. Let b— ma <m — 1.
a) Ifa >0, then

O(z®) if b—ma < -1,
S 0, (n) = az**! + { O(z*(logz)®*)  ifb—ma=-1,
n<r O(z % (logz)®*~')  if b—ma > —1,

where

1 «— S0
shatres L0
b) Ifa <0, a # —1, then
3 W2, (n) = az®*! 4 O(z " (log 2)C* ).

n<z

E ey | = O(z = (log z)°*).

n<r

Remark. Theorem 10 holds if the function W79, is replaced by the
function ®%;9,. Then the function p? s should be replaced by the function

ny ()" This can be verified replacing the function g by the function pmg.
PRrROOF. If a > 0, then

2 V()= 3 80 (D =D p (@ D &

n<r dé<z d<r §<z/d
=D P a(d) {a _T_ =(z/d)**" + O((:z:/d)“)}
d<r

1 oo
e +1 g —a-—1
" a+ 13:':t ‘,Z__:lpm'(')(d)d ;

+0(=*** 3 |ok, 1y (@ld*)

d>zr

+0(z* Y |68, (o) (DId™).

d<z
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Applying Lemmata 3 and 4 we arrive at our result. The series in the
definition of a converges absolutely by Lemma 4.

In the cases a < 0 (a # —1) and @ = —1 the proof goes through in a
similar way to that in the case a > 0 applying the formulae

Yont = L e () 406", a<0(at-D),

n<zr i 1
Z n~! =logz+v+0(z7!),
n<zr

where « i1s the Euler constant, and Lemmata 2-5.
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