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On an application of the Zincenko method to the
approximation of implicit functions

By IOANNIS K. ARGYROS (Lawton)

Abstract. Abstract We use the Zincenko iteration to approximate implicit func-
tions in Banach spaces. The nonlinear equations involved contain a nondifferentiable
term. Our hypotheses are more general than ZABREJKO-NGUEN’s [10], in this case.

I. Introduction

Let E,A be Banach spaces and denote by U(xg, R) the closed ball
with center zg € E and of radius R in E. We will use the same symbol for

the norm || || in both spaces. Suppose that the nonlinear operators F'(x, \)
and G(z,A) with values in F defined for x € U(zg, R) and A € U(\g, S)
are such that F is Frechet differentiable there, F'(zg, \g) ™! exists and

(1) | F'(wo, ho) " (F' (%, A) = F'(y, \) IS Ka(rys) [z —y ||
(2) | F' (20, Xo) " (F (20, A) — F' (w0, X)) |I< Ka(s) | A= Ao |,
3) I F'(wo, ho) H(Glz, A) — Gy, N) II< Ks(r,s) o —y ||,

for all z,y € U(xo,r) C U(xo,R) and X\ € U(Ng,s) C U(Ao,s). Here
K1, K5, and K3 denote non—decreasing functions on the intervals
[0, R] x [0,5],[0, R] and [0, R] x [0, S] respectively.

We use the Zincenko interation [11]
(4) Znt1 (V) = 20 (X) = F' (22 (N), )T HE (20 (X), A) + G(za(A), X)), 2 0
to approximate a solution x*(\) of the equation

(5) F(z,\) 4+ G(z,\) =0.
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By xg we mean zo(\). That is zo depends on the A used in (4).

Our assumptions (1)—(3) generalize the ones made by ZABREJKO—
NcueN [10], YAMAMOTO [9] and POTRA-PTAK (in [6] (for G = 0)).
Moreover, several authors have treated the case when G = 0 provided that
K, and K> are constants (or not)[1], [2], [4], [5], [6].

We provide sufficient conditions for the convergence of iteration (4)
to a locally unique solution z*(\) of equation (5) as well as several error
bounds on the distances || p+1(A) — z,(N) || and || z,(A) — 2*(A) ||

We need to define the functions

as = K(s) || F'(z0, M) ™" (F(w0,A) + Glwo,A)) |, (s =0if A= Ao),

= /OT Ki(t,s)dt, K / Ko (t k(s) = (1 — Ka(s))™

provided that

Ki(S) <1, u(r) = as + K(s) / “wa(t)dt .

9 / UKty )t xa(r) = galr) + (1),

and the iteration

yn—i-l()‘) = ynO‘) - F/(3707 )‘O)_I(F(yn()‘)v )‘) + G(yn()‘)v )‘))7
Yo = xg, m > 0.

I1. Convergence results

We can now formulate the following result:

Theorem 1. Suppose that the function x(r) has a unique zero p* =
pk in [0, R], and xs(R) < 0. Then
(a) equation (5) has a unique solution z*(\) € U(xg, R) with z*(\) €

U(x(% p*)a

(b) the following estimates are true
(7> H yn+1(>‘) - yn()‘) HS Un+1 — Un
and

(8) lyn(X) =2 (N) [[< p" —on
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where the scalar sequence {v,, },n > 0 is monotonically increasing
and convergent to p* with

Unt1 = ds(vn), n >0, vg=0

(9> ds(r) =7+ Xs (T)

PRrooOF. It is simple calculus to show that the sequence {v,, }, n > 01is
monotonically increasing and convergent to p* (see also, [10, v. 675]). We
will show using induction on n that the estimate (7) is true, from which
(8) will follow immediately.

From (6) for n = 0 we get

1 () =vo [I=]l F' (20, Ao) ™ (F(z0, ) +G(20, A)) [I< as = ds(0) = vi—vo.

That is, the estimate (7) is true for n = 0. Let us assume that (7) is true
for n < k. Then by (6), (1), (3), [10, p. 674] and the induction hypothesis
we get

Fype1 () =y ) 1| < 1 yr(N) = yr-1(A) = F" (20, 2o) ™ (F(yu(X), A)—
= Fyp-1(A\), ) | + 1 F' (0, 20) T (G (y(A), A) = Glyr—1(N), N)) ||

= /0 I F (o, Xo) ™ (F'((1 = t)yr—1(A) + tyr(N)) — F' (w0, X)) ||

NyrN) = g1 Wlldt + [|F (20, Ao) ~HG(yr(V), A) = Glye—1(A), )] <

1 Vi
< / ws((1 — t)vg—1 + tvg) (v — ve—1)dt + / Ks5(t,s)dt <
0 Vk—1

< K(s) [/ wy(£)dt + / Ks(t, s)dt] _

=ds(v) — ds(Vk—1) = Vg1 — Vg

That is, the estimate (7) is true for n = k. Hence the sequence {y,(\)} is
a Cauchy sequence in a Banach spacee and as such it converges to some
x*(N) € U(xg,p*) C U(xg, R). By letting n — oo in (6) we deduce that
x*(\) is a solution of equation (5). We will show that x*(\) is the unique
solution of equation (5) in U(zg, R), by considering the sequences

(10) Znt1(A) = 20 (N) = F' (20, 20) T (F (20 (), A) + G20 (V) N),
2o € U(l‘o,R),TL >0
and

(11) W1 = ds(wy), n >0, wy=R.
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It is enough to show
(12) [ yn(A) = 2n(A) | € wp —vp, n>0.

It is simple calculus to show that the scalar sequence given by (11) is
monotonically convergent to p*. Hence, if for zy we choose the second
solution y*(A) € U(xg,r) of equation (5) then by (12)

[27(A) = y™(N) |< wn — vp.

That is, z*(\) = y* ().

For n =0, (12) becomes || y — 2o || < R — 0 = R. Hence, (12) is true
for n = 0. Let us assume that (12) holds for n < k then by (6), (10) as
before we get

F g1 (A) = 2501 ) | < [ 21(0) = (X)) = F' (o, Ao) ™ (F(2(N), A)—
= Fye(N), A) || + 1] F' (0, 20) THG (2(A), A) = G(yi(N), V) <

= /0 | F'(z0, o) " (F'((1 = t)yr(A) + tzi(A)) — F'(z0, Ao)) || -

Wi

1
) — V) [ dt+ [ Kt s)dt < / wa(1 = E)vy, + twy)

Uk
Wi

(wy, — v)dt + K3(t,s)dt < K(s) ka we(t)dt +

Uk Uk
W

+ Ks(t, S)dt} = ds(wg) — ds (V) = Wrt1 — V1.

Vi
That completes the proof of the theorem.
We can now formulate the main result:

Theorem 2. Suppose that the hypotheses of Theorem 1 are true.
Then
(a) the sequence {p,},n > 0 given by

~—

_ XS(T
@i (r

Pr+1 = pn+us(pn), n >0, po=0 with us(r) =

~—

is monotonically increasing and converges to p*.

(b) The iterates generated by (4) are well defined for all n > 0 and
remain in U(xg, p*).

(c) Moreover the following estimates are true

(13) | Znt1(A) = 20(A) | < pp1 = pn s n 20
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and

(14) [ 2n(A) —2"(N) | < p" = pn, n20.

PrOOF. Part (a) can be shown exactly as in Proposition 3 in [10, p.
677]. We will only show (13), since (14) will follow then from it immedi-
ately. For n =0 we get || x1(\) —z¢ || < as = p1 — po. That is, (13) is true
for n = 0. Let us assume that (13) is true for n < k. By the induction
hypothesis

| (A —fffo||<Z|ll‘g —

- Pj— 1 = Pk

||M»

the Banach lemma on invertible operators, (2) and the estimate
I F (0, h0) ™ (F (21(N), A) = F' (0, M) || <

< K(s)ws(pr) < K(sywy(p) = ph(p*) +1 <1,

it follows that F’(x, \) is invertible for all A € U (Ao, S), = € U(zo, R) and
1 F (2 (M), ) F (w0, o) [|<
< T+ F/ (w0, ) 7H(E (@, 4) = F' (w0, M) 7 [ -

K(s)
i (pr)
Then by (4), (1)—(3), (15) and the induction hypothesis we get

Il k1 (N) = 2(N) I=1 F (26 (A), ) THEF (2 (A), A) + Glax(A), V) =

= | F'(2x (), \) " (F@r(N), A) = Fzp-1(A), A) = F'(z-1(A), ) (@r(X) ~
— 21 (A) + G2 (V), A) — Glzr-1(A), V) [I<

’ ” F/(an)‘>_1F/(x07)‘0) HS -

< F'(zx(A), ) F (w0, M) | V I F' (o, Ao) ™" (F/((1 = hax-1(N) +
)

T tar(V) = F'(anaa ) [ - | 2() — 2imn (V) | de+

+ || F' (20, Xo) T (G (@ (V), X)) = Gap—1 (M) [] <
= - ;:é;,z) /0 (ws((1 = t)pr—1 + tpr) — ws(pr—1))(px — pr—1)dt—
1

. (s(pr) — ¥s(pr—1)) <
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<_ Ps(pr) — 0s(Pr—1) — Os(Pr—1)(Pk — pr—1) + Ys(Ph—1) — Vs(Pr-1) _

@4 (pk)

= Pk+1 — Pk-
Hence (13) is true for n = k. That completes the proof of the theorem.

We will now derive some a posteriori error bounds for iteration (4).
Let 75 = Tn =[] 2 (X) — 0 ||,

In,s(T) = qn(r) = Ki(rp +1,5), fos(r) = fu(r) = Ks(r, +1,5)
for r € [0, R — r,,] and set
n,s = Ap =|| Tnp1(A) = 2 (A) [, bn,s = by = K(s)(1 — K(S)wé‘(rn))_l-

Without loss of generality we assume than a,, > 0.
Then exactly as in Theorem 2 in [9, p. 989] we can show

Theorem 3. Suppose that the hypotheses of Theorem 1 are satisfied.
Then
(a) the equation

= a, +b, / (= )u() + fault))dt

has a unique positive zero py, , = py, in the interval [0, R — 1,,],
n > 0 and pj = p*.
(b) The following estimates are true:
| 2n(X) =2 (A) | < o,
< (p* = pn)an/App, n >0,
< (/)* - pn)an—l/Apn—la n > ]-7
S p* - pn7 n 2 07

(16)

where Ap, = pn+1 — Pn.-

That is, our bound (16) is sharper then Miel-type bounds [3], [7] and
more general than the corresponding one in [9, p. 989].
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