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Sasakian space forms and geodesic spheres and tubes

By J. GILLARD (Leuven)

Abstract. We prove that a connected Sasakian manifold of dimension at least
five is a Sasakian space form if and only if its small geodesic spheres (resp. geodesic
tubes) satisfy certain specific conditions of Ricci-semi-symmetric or semi-parallel type.

1. Introduction

The idea to investigate Ricci-semi-symmetry and semi-parallelity con-
ditions on geodesic spheres and tubes originated from [3]. In this article
it is proved that a connected Riemannian manifold of dimension at least
four is a real space form if and only if its small geodesic spheres or tubes
are semi-parallel or semi-symmetric. In two later papers it is also shown
that these conditions can be adapted to characterize complex space forms
[11] and quaternionic space forms [12].

We recall that a hypersurface is semi-parallel if R̃XY ·σ = 0, and that
it is Ricci-semi-symmetric if R̃XY · ρ̃ = 0 for all vectors X, Y tangent to
the hypersurface. Here, R̃, ρ̃ and σ denote the Riemann curvature tensor,
the corresponding Ricci tensor of type (0, 2) and the second fundamental
form of the hypersurface concerned and R̃XY acts as a derivation.

In this paper the Sasakian case is dealt with. As in [11], [12] we have
also here to include some natural restrictions both on the tangent vectors
X, Y as on the points of the spheres or tubes where we consider these
vectors.

First, the vectors X,Y not only have to be horizontal in the Sasakian
sense, that is, orthogonal to the characteristic vector field ξ of the Sasakian
manifold (Mn, g, ϕ, ξ, η), but also orthogonal to ϕγ′, where γ denotes the
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radial geodesic leading to the point at which X, Y are tangent to the sphere
or tube.

Further, we only consider both conditions at special points of the hy-
persurfaces. For geodesic spheres, these are the intersection points with
horizontal geodesic rays and are called ϕ-geodesic points. For geodesic
tubes we distinguish two cases: if the center geodesic ϑ of the tube is
tangent to ξ, we again look at ϕ-geodesic points; if ϑ is a horizontal geo-
desic, we restrict to these points who lie on the geodesic ray with initial
velocity ϕϑ̇.

The author wishes to thank Prof. L. Vanhecke and Dr. E. Boeckx
for their continuous support and useful suggestions.

2. Preliminaries

In this section we collect some basic material concerning Sasakian
manifolds, spheres and tubes. Let (M, g) be an n-dimensional, connected,
smooth Riemannian manifold. Denote by ∇ the Levi Civita connection
and by R and ρ the corresponding Riemann curvature tensor and Ricci
tensor, respectively. We use the sign convention

RXY = ∇[X,Y ] − [∇X ,∇Y ]

for tangent vector fields X,Y on M .
In this paper we always consider Sasakian manifolds. They are char-

acterized by the fact that they admit a unit Killing vector field ξ such that
the Riemann curvature tensor satisfies the condition

(1) RXY ξ = η(X)Y − η(Y )X

for all tangent vectors X,Y on M and where η denotes the metric dual
one-form of ξ, that is, η(X) = g(X, ξ). The vector field ξ is called the
characteristic vector field of the Sasakian manifold. Another important
structure tensor on M is defined by

(2) ϕ = −∇ξ.

This (1,1)-tensor has the properties

ϕ2 = − I + η ⊗ ξ,(3)

ϕξ = 0 = η ◦ ϕ,(4)

(∇Xϕ)Y = g(X, Y )ξ − η(Y )X,(5)

g(ϕX, ϕY ) = g(X, Y )− η(X)η(Y ).(6)
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From (5) it follows by direct computation that

RXY ϕZ = ϕRXY Z + g(ϕY, Z)X − g(ϕX,Z)Y(7)

+ g(Y,Z)ϕX − g(X,Z)ϕY

and with respect to the Ricci tensor we have the following relations:

ρ(X, ξ) = 2` η(X),(8)

ρ(ϕX, ϕY ) = ρ(X,Y )− 2` η(X)η(Y ),(9)

where dim M = 2`+1. For more details about Sasakian geometry we refer
to [1] and [20].

Since ξ is a unit vector Killing field, its integral curves are geodesics,
called ξ-geodesics. Further, this implies that a geodesic which is orthogo-
nal to ξ at one of its points, remains orthogonal to ξ at all of its points.
These geodesics are called ϕ-geodesics or horizontal geodesics, since tan-
gent vectors X on M are called horizontal if η(X) = g(X, ξ) = 0.

Further, we note that Sasakian manifolds can be fibred locally over
Kählerian base spaces, the ξ-geodesics acting as fibers. (See [16] for more
details.) For a sufficiently small neighbourhood U in M , we thus have a
mapping π : U → U/ξ = Ū which induces a Kähler structure (J, ḡ) on Ū
by

(JX)∗ = ϕX∗,(10)

ḡ(X, Y ) = g(X∗, Y ∗),(11)

where X, Y are tangent vectors on Ū and X∗ denotes a horizontal lift of
X ∈ Tq̄ Ū , that is, X∗ ∈ Tq U for some q ∈ U with πq = q̄ and π∗X∗ =
X, η(X∗) = 0. The construction of J and ḡ is independent of the choice
of the point q. We have the following relations:

(∇̄XY )∗ = ∇X∗Y ∗ − η(∇X∗Y ∗)ξ,(12)

(R̄XY Z)∗ = RX∗Y ∗Z
∗+g(ϕX∗, Z∗)ϕY ∗−g(ϕY ∗, Z∗)ϕX∗(13)

+ 2g(ϕX∗, Y ∗)ϕZ∗,

ρ̄(X, Y ) ◦ π = ρ(X∗, Y ∗) + 2g(X∗, Y ∗).(14)

Deriving the last two expressions, we obtain

(∇̄XR̄)Y ZV W ◦ π = (∇X∗R)Y ∗Z∗V ∗W∗ ,(15)

(∇̄X ρ̄)Y Z ◦ π = (∇X∗ρ)Y ∗Z∗ .(16)
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Taking derivatives once again, gives

(∇̄2
Y XR̄)UV WZ ◦ π = (∇2

Y ∗X∗R)U∗V ∗W∗Z∗(17)

+T (U∗,V ∗,W ∗,Z∗)−T (V ∗,U∗,W ∗,Z∗)

+T (W ∗,Z∗,U∗,V ∗)−T (Z∗,W ∗,U∗,V ∗),

(∇̄2
Y X ρ̄)ZW ◦ π = (∇2

Y ∗X∗ρ)Z∗W∗(18)

+ Θ(Z∗,W ∗) + Θ(W ∗, Z∗),

where

T (U∗, V ∗,W ∗, Z∗) = η(∇Y ∗U
∗)(∇X∗R)ξV ∗W∗Z∗

= g(U∗, ϕY ∗)
(
RϕX∗V ∗W∗Z∗

− g(W ∗, ϕX∗)g(Z∗, V ∗)− g(Z∗, ϕX∗)g(W ∗, V ∗)
)
,

Θ(Z∗,W ∗) = η(∇Y ∗Z
∗)(∇X∗ρ)ξW∗

= g(Z∗, ϕY ∗)
(
ρ(ϕX∗,W ∗)− 2`g(ϕX∗,W ∗)

)
.

A plane section TmM is called a ϕ-section if it is spanned by a basis
of the form {u, ϕu}, where u ∈ TmM is a horizontal unit tangent vec-
tor. The sectional curvature K(u, ϕu) of a ϕ-section is called a ϕ-sectional
curvature. For dim M ≥ 5 it is well-known that if K(u, ϕu) is point-
wise constant, then it is globally constant on the manifold. In that case,
(M, g, ϕ, ξ, η) is a space of constant ϕ-sectional curvature or a Sasakian
space form. These spaces are characterized by their curvature tensor

RXY Z =
c + 3

4

{
g(X, Z)Y − g(Y, Z)X

}
(19)

+
c− 1

4

{
η(Y )η(Z)X − η(X)η(Z)Y

− g(Z, ϕY )ϕX + g(Z, ϕX)ϕY

− 2g(X, ϕY )ϕZ − g(X, Z)η(Y )ξ + g(Y,Z)η(X)ξ
}

,

where c denotes the constant ϕ-sectional curvature.
We will frequently need the following characterization of Sasakian

space forms [17].

Theorem 2.1. A connected Sasakian manifold (Mn, g, ϕ, ξ, η) of di-
mension n ≥ 5 is a Sasakian space form if and only if Ruϕuu is proportional
to ϕu for every horizontal tangent vector u on the manifold.
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This theorem is similar to the following one in Kähler geometry [17].

Theorem 2.2. Let (Mn, g, J) be a connected Kähler manifold of di-
mension n ≥ 4. Then M is a complex space form if and only if RxJxx is
proportional to Jx for any vector x tangent to M .

Another useful characterization, in terms of the base spaces of the
local fibrations π : U → U/ξ = Ū , is given by the following [16]

Theorem 2.3. A connected Sasakian manifold has constant ϕ-section-
al curvature if and only if the holomorphic sectional curvature of each base
manifold (Ū , ḡ, J) is constant.

Now, let m be a point of an arbitrary Riemannian manifold M and let
Gm(r) denote the geodesic sphere centered at m and with radius r < i(m),
the injectivity radius at m. Every geodesic γ parametrized by arc length
and such that γ(0) = m leads to a point p = γ(r) = expm(ru) ∈ Gm(r),
where we put u = γ′(0).

Next, let {F1, . . . , Fn} be an orthonormal frame of parallel vector
fields along γ with F1(0) = u (and hence F1 = γ′). For the points
p = γ(r) = expm(ru) ∈ Gm(r) we have the following expansions of the
curvature tensor R̃, the Ricci tensor ρ̃ and the second fundamental form
σ of Gm(r) with respect to {F1, . . . , Fn}:

R̃abcd(p) =
1
r2

(δacδbd − δadδbc)(20)

+
(
Rabcd−1

3
(Rubudδac + Ruaucδbd−Rubucδad−Ruaudδbc)

)
(m)

+ O(r),

ρ̃ab(p) =
n− 2

r2
δab +

(
ρab − 1

3
ρuuδab − n

3
Ruaub

)
(m)(21)

+ r
(
∇uρab − 1

4
∇uρuuδab − n + 1

4
∇uRuaub

)
(m)

+ r2
(1

2
∇2

uuρab − 1
10
∇2

uuρuuδab − n + 2
10

∇2
uuRuaub

+
1
9
Ruaubρuu − 1

45

n∑

λ,µ=2

R2
uλuµδab

− n + 2
45

n∑

λ=2

RuauλRubuλ

)
(m) + O(r3),

σab(p) =
1
r
δab − r

3
Ruaub(m) + O(r2)(22)
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for a, b, c, d = 2, . . . , n, where Rabcd = g(RFaFb
Fc, Fd) and similarly for

the other tensors. We refer to [5], [14], [18] for more details.
Now we turn to the Sasakian case. A point p ∈ Gm(r) is called a ϕ-

geodesic point if it lies on a ϕ-geodesic ray through m, that is, u = F1(0)
is horizontal. For these points we further specify {F1, . . . , Fn}, taking as
initial conditions F2(0) = ϕu and F3(0) = ξ|m.

When (M, g, ϕ, ξ, η) is a Sasakian space form, the second fundamental
form σ is known explicitly at these ϕ-geodesic points (see [2], [4]):

(23) σ = α g + β η ⊗ η + δ ν ⊗ ν + ε1 η ⊗ ν + ε2 ν ⊗ η,

where g denotes the induced metric, ν is the (0, 1)-tensor on the sphere
defined by ν(X) = g(X, ϕγ′(r)) and α, β, δ, ε1, ε2 depend only on the ra-
dius r.

Now, we consider geodesic tubes, that is, tubes about a geodesic. We
refer to [10], [13], [15], [18], [19] for more details. Let ϑ : [a, b] → M be
a smooth embedded geodesic and let Pϑ(r) denote the tube of radius r
about ϑ, where we suppose r to be smaller than the distance from ϑ to its
nearest focal point. In that case, Pϑ(r) is a hypersurface of M . Let ϑ be
parametrized by arc length and denote by {e1, e2, . . . , en} an orthonormal
basis of Tϑ(a)M such that e1 = ϑ̇(a). Further, let E1, . . . , En be the vector
fields along ϑ obtained by parallel translation of e1, . . . , en. Then E1 = ϑ̇
and {E1, . . . , En} is a parallel orthonormal frame field along the geodesic
ϑ. Next, let p ∈ Pϑ(r) and denote by γ the geodesic through p which cuts
ϑ orthogonally at m = ϑ(t). We parametrize γ by arc length r such that
γ(0) = m and take (E2, . . . , En) such that E2(t) = γ′(0) = u. Finally, let
{F1, . . . , Fn} be the orthonormal frame field along γ obtained by parallel
translation of {E1(t), . . . , En(t)} along γ.

For the hypersurface Pϑ(r) one then has the following expansions with
respect to this parallel frame field {F1, . . . , Fn} [10], [19]:

R̃1abc(p) =
(
R1abc − 1

2
R1ubuδac +

1
2
R1ucuδab

)
(m) + O(r),(24)

R̃abcd(p) =
1
r2

(δacδbd − δadδbc) + Rabcd(m)(25)

− 1
3

(
Rbuduδac−Rbucuδad+Raucuδbd−Rauduδbc

)
(m)

+ r
(
∇uRabcd − 1

4
∇uRbuduδac +

1
4
∇uRauduδbc

− 1
4
∇uRaucuδbd +

1
4
∇uRbucuδad

)
(m) + O(r2),
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ρ̃11(p) = O(r0),(26)

ρ̃1a(p) = ρ1a(m)− n− 1
2

R1uau(m) + O(r),(27)

ρ̃ab(p) =
n− 3

r2
δab(28)

+
(
ρab−n− 1

3
Raubu−1

3
ρuuδab−2

3
R1u1uδab

)
(m)

+ r
(
∇uρab − n

4
∇uRaubu − 1

4
∇uρuuδab − 1

4
∇uR1u1uδab

)
(m)

+ r2
(1

2
∇2

uuρab − n + 1
10

∇2
uuRaubu +

1
9
ρuuRaubu

+
2
9
R1u1uRaubu − n + 1

20
R1uauR1ubu − n + 1

45

n∑

λ=3

RauλuRbuλu

− 1
10
∇2

uuρuuδab − 1
15
∇2

uuR1u1uδab − 1
3
R2

1u1uδab

− 2
15

n∑

λ=3

R2
1uλuδab− 1

45

n∑

λ,µ=3

R2
λuµuδab

)
(m)+O(r3),

σ11(p) = O(r),(29)

σ1a(p) = −r

2
R1uau(m) + O(r2),(30)

σab(p) =
1
r
δab − r

3
Raubu + O(r2)(31)

for a, b, c, d ∈ {3, 4, . . . , n}.
In the sequel we will use two kinds of geodesic tubes, depending on

the direction of the center geodesic ϑ.
First, suppose that the geodesic ϑ is horizontal. Then the tube Pϑ(r)

is called a horizontal tube and a point p = expm(ru) on Pϑ(r) is called
a ϕ-special point if u = ϕ ϑ̇|m, that is, these points are determined by
the initial condition F2(0) = ϕF1(0). Remark that the geodesic ray γ
connecting m with p is horizontal. As a supplementary initial condition
for the choice of the frame {F1, . . . , Fn} we take F3(0) = ξ|m. For Sasakian
space forms, one may use the technique of Jacobi vector fields to compute
explicit expressions for the second fundamental form of horizontal geodesic
tubes at ϕ-special points (see [6]). This results in a formula for σ of the
same form as (23).
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Second, consider geodesic tubes for which the center geodesic ϑ is a ξ-
geodesic. They will be called ξ-geodesic tubes. Analogously as for spheres,
a point p = expm(ru) on Pϑ(r) is called a ϕ-geodesic point if the geodesic
ray connecting m and p is a ϕ-geodesic, that is, u = F2(0) is a horizontal
vector. Because ϑ is a ξ-geodesic, F1(0) = ξ|m. Further, it is possible
to choose F3(0) = ϕu. For Sasakian space forms the second fundamental
form of ξ-geodesic tubes at ϕ-geodesic points is again given by a formula
of the same form as (23) (see [9]).

By a straightforward computation involving (19), (23) and the Gauss
equation, it follows that both for geodesic spheres and tubes the Ricci
curvature tensor ρ̃ too is expressed by a formula similar to (23), but with
other radial functions α, β, δ, ε1, ε2.

Finally, a horizontal tangent vector X to a geodesic sphere or tube
will be called strictly horizontal (with respect to the sphere or tube) if
g(X,ϕγ′) = ν(X) = 0, with the same meaning of γ as before. Using (2)
and (5), it is easy to see that the parallel translates of ξ and ϕγ′ along γ are
again linear combinations of ξ and ϕγ′. Therefore the strictly horizontal
tangent vectors at γ(r) are spanned by {F4, . . . , Fn}.

3. Geodesic spheres

In the next two sections we prove our characterization theorems for
Sasakian space forms. First we consider geodesic spheres.

Theorem 3.1. Let (Mn, g, ϕ, ξ, η), n ≥ 5, be a Sasakian space form.
Then for all small geodesic spheres in M we have

R̃XY · σ = 0 = R̃XY · ρ̃
for all strictly horizontal tangent vectors X, Y at ϕ-geodesic points of these
spheres.

Proof. From (23) it is easy to see that

−(R̃XY · σ)(W,W ) = 2η(R̃XY W )
(
βη(W ) + ε1ν(W )

)

+ 2ν(R̃XY W )
(
ε2η(W ) + δν(W )

)
.

Using (1), (23) and the Gauss equation, we obtain by direct computation
that η(R̃XY W ) = −R̃XY ξW = 0 for strictly horizontal tangent vectors
to Gm(r). By means of (19), (23) and the Gauss equation it can also be
checked easily that ν(R̃XY W ) = g(R̃XY W,ϕγ′(r)) = 0. This proves the
first equality since R̃XY · σ is symmetric.
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Because the Ricci curvature tensor ρ̃ has the same form as the second
fundamental form σ, it follows in the same way that R̃XY ·ρ̃ = 0 for strictly
horizontal vectors X, Y at ϕ-geodesic points. ¤

Next, we prove the converse.

Theorem 3.2. Let (Mn, g, ϕ, ξ, η), n ≥ 5, be a Sasakian manifold
such that all its small geodesic spheres satisfy one of the conditions

R̃XY · σ = 0 or R̃XY · ρ̃ = 0

for all strictly horizontal tangent vectors X, Y at ϕ-geodesic points to these
spheres. Then, (M, g, ϕ, ξ, η) is a Sasakian space form.

Proof. In terms of the notations introduced in Section 2, the first
condition yields that (R̃ab · σ)cd = 0 for a, b ≥ 4 and c, d ≥ 2. We use (20)
and (22) to calculate the power series expansion of the left-hand side of
this condition. Then the coefficient of r−1 yields

(32) −δacRudub + δbcRudua − δadRucub + δbdRucua = 0

at the arbitrarily chosen center point m of the small geodesic sphere. We
can take a = d 6= b and c = 2 (that is, c represents F2(0) = ϕu). Then
a 6= c, b 6= c because a, b ≥ 4 and we get Ruϕuub = 0 for b ≥ 4, that is, b
represents a vector orthogonal to {ξ, u, ϕu} and since we are working with
ϕ-geodesic points, u is an (arbitrary) horizontal vector at m.

But the horizontality of u implies immediately, using (1), that
Ruϕuuξ = 0, while for b = u the relation holds trivially. So, we obtain
that Ruϕuux = 0 for every horizontal vector u and all x orthogonal to ϕu.
Then the result follows in view of Proposition 2.1.

Treating the second condition in a similar way, the coefficients of
r−2, r−1, r0 in the series expansion of (R̃ab · ρ̃)cd = 0 yield:

ρxϕu =
n

3
Rxuϕuu,(33)

(∇uρ)xϕu =
n + 1

4
(∇uR)xuϕuu,(34)

0 =
1
2
(∇2

uuρ)xϕu − n + 2
10

(∇2
uuR)xuϕuu(35)

+
1
9
Rxuϕuuρuu − n + 2

45

n∑
s=2

RxusuRϕuusu,

where n = dim M = 2` + 1, u horizontal and x orthogonal to {ξ, u, ϕu}.
These conditions are exactly those needed in the proof of [8, Theorem 15]
to show that M is a Sasakian space form. ¤
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4. Geodesic tubes

Now, we turn to the two kinds of geodesic tubes. With the termino-
logy introduced in Section 2, we have the following theorem for horizontal
geodesic tubes:

Theorem 4.1. Let (Mn, g, ϕ, ξ, η), n ≥ 5, be a Sasakian manifold. A
necessary and sufficient condition for M to be a Sasakian space form is
that all its small ϕ-geodesic tubes satisfy one of the conditions

R̃XY · σ = 0 = R̃XY · ρ̃
for all strictly horizontal tangent vectors X, Y at ϕ-special points of these
tubes.

Proof. In Section 2 we noticed that for Sasakian space forms the
second fundamental form as well as the Ricci tensor of ϕ-geodesic tubes
at ϕ-special points have the same form as (23). Therefore, the necessity
of the conditions follows by completely analogous computations as in the
proof of Theorem 3.1.

Conversely, the first condition implies that (R̃ab · σ)1c = 0 for a, b ≥
4 and c ≥ 3, in terms of the reference field {F1, . . . , Fn} introduced in
Section 2. We expand this into power series by means of (24), (25), (29)–
(31) and then the coefficient of r−1 yields R1cab = 0. Put x = F1(0) = σ̇|m
(which is an arbitrary horizontal vector) and recall that F2(0) = ϕF1(0) =
ϕx and F3(0) = ξ|m. Take b = c = v, which must be orthogonal to
{ξ, x, ϕx}. But then ϕv is also orthogonal to {ξ, x, ϕx} and we can choose
a = ϕv. Hence, Rxvϕvv = 0 for all (unit) horizontal vectors x, v for which
v is orthogonal to {x, ϕx}. In the same way as in the proof of Theorem 3.2
the result follows by means of Proposition 2.1.

For the second condition, using (24)–(28) to compute the coefficient
of r−2 in the series expansion of (R̃ab · ρ̃)1c = 0 yields

(n− 3)R1cab + δac(ρ1b −R1ubu)− δbc(ρ1a −R1uau) = 0

for a, b ≥ 4 and c ≥ 3. With the same choice of a, b, c as above, we
obtain (n − 3)Rxvϕvv − (ρxϕv − Rxuϕvu) = 0, where u = F2(0) = ϕx.
But, Rxϕxϕvϕx = Rxϕxvx = −Rvxϕxx, using (7), (3) and the orthogonality
properties of the vectors involved. So we obtain

(36) ρxϕv = (n− 3)Rxvϕvv −Rvxϕxx

again for all unit horizontal vectors x, v with v orthogonal to {x, ϕx}.
Using (4), (9) to obtain ρvϕv = 0 for horizontal v, we see that (36) holds
trivially for x = v. Therefore we may suppose that x, v are unit horizontal
vectors with v orthogonal to ϕx. Since this condition is symmetric in
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x and v, we can interchange them in the previous equality. But from
(4) and (9) we see that ρxϕv = −ρvϕx and so we obtain the relation
(n − 4){Rxvϕvv + Rvxϕxx} = 0. Since n = dim M 6= 4 it follows that
Rxvϕvv = −Rvxϕxx. Substituting this into (36) gives ρxϕv = (n−2)Rxvϕvv

for any horizontal vector x and any unit vector v orthogonal to {ξ, ϕx}.
We will now describe an adaptation to the Sasakian case of the method

of polarization used in [7, pp. 198]. Suppose

(37) ρxϕv = k Rxvϕvv,

for some real constant k and the same choice of vectors x, v as just above.
Replacing v in (37) by v/‖v‖ gives a homogenous expression which

also holds for non-unit tangent vectors v. Putting v = αy + βz into this
expression with y, z orthogonal to {ξ, ϕx}, yields, by using the coefficient
of αβ2:

ρ(x, ϕy)g(z, z) + 2ρ(x, ϕz)g(y, z) = k{Ryϕzzx + Rzϕyzx + Rzϕzyx}.
We want to sum this for z ranging over an orthonormal base to obtain Ricci
curvatures in the right-hand side. To do so, we first have to reposition z
in the third term, using the first Bianchi identity, and to change ϕz into z
by means of (7) and (9). In this way we obtain

ρ(x, ϕy)g(z, z)−2ρ(ϕx, z)g(y, z) = k{3Rxzϕyz−Rϕxzyz+3g(x, z)g(ϕy, z)}.
Now we take an orthonormal basis {e1, . . . , en} such that en−1 = ϕx
and en = ξ. Then ei, i = 1, . . . , n − 2, are orthogonal to {ξ, ϕx} and
we can replace z by ei . Summing for i = 1, . . . , n − 2 and simplifying,
results in (n− 4k)ρxϕy = 3kRyxϕxx for (unit) horizontal vectors x, y with
y orthogonal to ϕx. In this expression we interchange x and y. Then
we use that ρyϕx = −ρxϕy and combine the obtained equation with the
original expression (37) (in which we identify v with y) to get k(4k −
(n + 3))Rxyϕyy = 0. This holds trivially for x = ξ and because 0 6= k =
n− 2 6= (n + 3)/4, the result follows by Proposition 2.1. ¤

When we apply the same ideas to ξ-geodesic tubes, we have the fol-
lowing

Theorem 4.2. Let (Mn, g, ϕ, ξ, η), n ≥ 5, be a Sasakian manifold. A
necessary and sufficient condition for M to be a Sasakian space form is
that all its small ξ-geodesic tubes satisfy one of the conditions

R̃XY · σ = 0 = R̃XY · ρ̃
for all strictly horizontal tangent vectors X, Y at ϕ-geodesic points of these
tubes.

Proof. The necessity of these conditions follows by direct computa-
tions as explained in the proofs of Theorem 3.1 or 4.1. Conversely, for the
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first condition, we compute the coefficient of r−1 in the series expansion
of (R̃ab ·σ)cd = 0. Because of the similarity of (25), (31) to (20), (22) with
respect to the first order terms, this gives the same formula as (32), in
which we also take a = d 6= b, but c = 3 in order to make it represent ϕu
with respect to the reference field {F1, . . . , Fn} introduced for ξ-geodesic
tubes in Section 2.

For the second condition we calculate the coefficients of r−2, r−1 and
r0 in the series expansion of (R̃ · ρ̃ab)cd = 0. Making the same choice as
above for a, b, c, d and denoting x = b, we get

ρxϕu =
n− 1

3
Rxuϕuu,(38)

(∇uρ)xϕu =
n

4
(∇uR)xuϕuu,(39)

0 =
1
2
(∇2

uuρ)xϕu−n + 1
10

(∇2
uuR)xuϕuu+

1
9
ρuuRxuϕuu(40)

− n + 1
20

RξuϕuuRξuxu − n + 1
45

n∑
s=3

RsuϕuuRsuxu

for all horizontal unit vectors u, x with x orthogonal to {u, ϕu}. Applying
to (38) the method explained in the proof of Theorem 4.1 yields the result
if k = (n−1)/3 6= (n+3)/4, that is, if n 6= 13. To deal with this dimension
we reduce the problem to Kähler geometry. For this purpose we use the
local fibration π which projects the ξ-geodesic tube Pϑ(r) to a geodesic
sphere Ḡm̄(r) of Ū where m̄ = πϑ. Projecting the conditions (38)–(40)
using (13)–(18) yields

ρ̄yJv =
N

3
R̄yvJvv,(41)

(∇̄vρ̄)yJv =
N + 1

4
(∇̄vR̄)yvJvv,(42)

0 =
1
2
(∇̄2

vvρ̄)yJv−N + 2
10

(∇̄2
vvR̄)yvJvv+

1
9
ρ̄vvR̄yvJvv(43)

− N + 2
45

R̄vR̄vJvv vy +
1
6
R̄yvJvv,

where N = n − 1 = 12 and v, y ∈ Tm̄Ū are defined by v = π∗u, y = π∗x,
which can be viewed as arbitrary unit vectors with y orthogonal to {v, Jv}.
But (41), (42) correspond to formulae (34), (37) respectively in the proof
of Theorem 12 in [7, pp. 198]. Following the method used in this proof,
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we get from these two formulae that (Ū , ḡ, J) is locally symmetric. So,
when (Ū , ḡ, J) is locally irreducible, then it is an Einstein space and hence
the result follows from (41) and Proposition 2.2 and 2.3. Otherwise it is
locally a product Ū1 × . . .× Ūk of Kählerian Einstein spaces. Considering
the projections of (41) on the factors, we see by the same argument that
they also have constant holomorpic sectional curvatures, say c1, . . . , ck re-
spectively. We will prove that (Ū , ḡ, J) is a complex space form by showing
that c1 = . . . = ck = 0.

In order to do so, we will first focus on the factors Ū1, Ū2. Take unit
vectors ui in Ūi, i = 1, 2, and put v = (cosα)u1 + (sin α)u2. For this unit
vector v, the projections of (41) on the first two factors yield the condition
(see also [7, p. 200])

(44) c1{3(N1 + 2)− 4N cos2 α} = c2{3(N2 + 2)− 4N sin2 α},
where N1 = dim Ū1, N2 = dim Ū2. From this it follows by taking different
possible values of α that c1 + c2 = 0. If k ≥ 3, we have in the same
way that c1 + c3 = 0 = c2 + c3 and then immediately c1 = c2 = c3 = 0.
Proceeding further for the other factors gives the result.

If k = 2, we will need (43) to obtain that c1 = c2 = 0. Since (Ū , ḡ, J)
is locally symmetric, ∇̄R̄ = 0 = ∇̄ρ̄, and from (43) we get

(45) 10ρ̄vvR̄vJvv + 15R̄vJvv − 24R̄vR̄vJvvv = βJv.

Decomposing v as above and projecting on the first factor yields

(46) c1 cos2 α(10ρ̄vv + 15− 24c1 cos2 α) = β.

Doing the same for the second factor and combining this together with
c2 = −c1 gives an equation from which we can conclude that c1 = c2 = 0
by taking different possible values of α. ¤
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