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On some arithmetical properties
of Stirling numbers

By Á. PINTÉR (Debrecen)

1. Introduction and the theorem

Let {an}∞n=0 be a sequence of integers, b a non-zero rational integer
and p1, . . . , ps (s ≥ 0) distinct prime numbers. Many numbertheoretical
problems can be reduced to equations of the forms

an = bym in integers n ≥ 0, m ≥ 2, y(1)

and

an = bpz1
1 · . . . · pzs

s in integers n, z1, . . . , zs ≥ 0 .(2)

Of particular importance are the cases when, in (1) or (2), an is a polyno-
mial in n with rational integer coefficients or a linear recurrence sequence.
In these cases, several effective finiteness results have been established for
the solutions of (1) and (2); for references see [2], [15] and [13]. These
results have been obtained by means of Baker’s theory of linear forms in
logarithms and its p–adic analogue.

In connection with equation (1), Erdős [5] has shown that the equa-
tion

(3)
(

n + a

a

)
= ym in integers a > 1, m > 1, n ≥ 1, y > 1

has no solutions provided that a ≥ 4. For a=m=2, there are infinitely
many solutions in n, y. The only other known solution is a = 3, m = 2,
n = 47, y = 140 and it is likely that there are no more. In this direction,
see the results in [9], [6] and [16]. By the result of Tijdeman [16], there
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are effectively computable upper bounds for the solutions of (3) with a =
2, m ≥ 3 and a = 3, m ≥ 2.

In this paper, we consider equations (1) and (2) in the case when
the an are Stirling numbers of certain special type. We denote by Sn

k the
number of partitions of a set of n elements into k non-empty subsets. These
numbers Sn

k are called Stirling–numbers of second kind. For properties
of Stirling–numbers, see e.g. [10]. By combining some effective results
of Baker [1], Schinzel and Tijdeman [11] and others on superelliptic
equations with some well-known arithmetical properties of the numbers
Sn

k , we shall prove the theorem below. We denote by S the set of non-zero
integers which are not divisible by primes different from p1, . . . , ps.

Theorem. Let a ≥ 1 be an integer. If Sn
n−a ∈ S for some n > a then

n < C1. Further, if Sn
n−a ∈ Nm for some n > a, m ≥ 3 then n < C2.

Here C1 and C2 are effectively computable positive numbers such that C1

depends only on a and S, and C2 only on a.

In other words, for given a ≥ 1, there are only finitely many integers
n > a with Sn

n−a ∈ S or Sn
n−a ∈ Nm, m ≥ 3, and all these n can be

effectively determined. Since Sn
n−1 =

(
n
2

)
, the second assertion of our

Theorem implies Tijdeman’s result [16] mentioned above. Finally, we
note that the assumption m ≥ 3 is necessary in the second assertion of
the Theorem. Indeed, the equations x2− 2y2 = 1 and x2− 2y2 = −1 have
infinitely many positive integer solutions, and if (x, y) is a solution then
Sx2

x2−1 = (xy)2 and S2y2

2y2−1 = (xy)2, respectively.

2. Proof of the Theorem

To prove our Theorem, we shall need several lemmas. Denote by S̃n
k

the number of partitions of a set of n elements into k subsets having more
than 1 element.

Lemma 1. Let a, n be positive integers such that n > a ≥ 1. Then

we have

(4) Sn
n−a =

(
n

a + 1

)
S̃a+1

1 +
(

n

a + 2

)
S̃a+2

2 + · · ·+
(

n

2a

)
S̃2a

a .
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Proof. See e.g. [10]

In what follows, let f(x) be a polynomial with rational integer co-
efficients, and let b be a non-zero rational integer. By the height of a
polynomial in Z[x] we mean the maximum absolute value of its coeffi-
cients.

Lemma 2. Suppose that f(x) has at least two distinct roots. If
f(x) ∈ bS for some x ∈ Z then |x| ≤ C3, where C3 is an effectively
computable number depending only on b, S and the degree and height of
f.

Proof. This follows from a combination of the results of [8] and [14].
For more explicit and more general versions, see [12], [13] and [7] and the
references given there.

Lemma 3. Suppose that f(x) has at least two distinct roots and that
m ≥ 0, moreover x and y with |y| > 1 are rational integers satisfying

(5) f(x) = bym .

Then m ≤ C4, where C4 is an effectively computable number depending
only on b and the degree and height of f.

Proof. This is a theorem of Schinzel and Tijdeman [11]. For
more explicit and more general versions, see [4], [13] and the references
mentioned there.

Lemma 4. Let m ≥ 3 be an integer, and suppose that f(x) has at
least two distinct simple roots. If x, y ∈ Z satisfy (5) then max(|x|, |y|) ≤
C5 with some effectively computable number C5 which depends only on
b,m and the degree and height of f.

Proof. This result is due Baker [1] who gave C5 in an explicit form.
For generalizations, see [3] and [13]. We note that Lemmas 2,3 and 4 were
proved by means of the theory of linear forms in logarithms and its p–adic
analogue.

Proof of the Theorem. For fixed a ≥ 1, we consider Sn
n−a as

a polynomial in n. By Lemma 1, it is a polynomial of degree 2a ≥ 2
with rational coefficients. Hence, putting fa(n) = (2a)!Sn

n−a , fa(n) is
a polynomial in n with degree 2a and with rational integer coefficients.
Further, it follows from (4) that fa(n) can be written in the form

(6) fa(n) = n(n− 1) . . . (n− a)g(n)



94 Á. Pintér

where g(n) is a polynomial of degree a−1 with rational integer coefficients,
and by (4), the height of fa can be bounded above by an explicit expression
of a. Then (6) implies that at least two of the roots 0, 1, . . . , a of fa(n) are
simple.

First suppose that Sn
n−a ∈ S for some positive integer n > a. Then

fa(n) ∈ bS for b = (2a)! .

By Lemma 2, we get n < C6 where C6 is effectively computable and it
depends only on a and S.

Next suppose that Sn
n−a ∈ Nm for some integer m ≥ 3. Then we get

fa(n) = bym for b = (2a)! and for some y ∈ Z .

In what follows, C7, C8 and C9 will denote effectively computable numbers
depending only on a. In view of n > a, Sn

n−a 6= 0 and hence y 6= 0. If now
|y| = 1 then, by Lemma 2, n < C7. Further, if |y| > 1, then, by Lemma 3,
it follows again that m < C8. Finally, by Lemma 4, we get n < C9.
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