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The operator of composition in Slobodeckij spaces

By NELSON J. MERENTES (Caracas)

Introduction

The so-called Riesz class A, = A,(a,b) was introduced by RIESZ in
[5] in the following way:

A function u defined in the not necessarily bounded open interval
(a,b), belongs to the class A, with 1 < p < oo if and only if u is absolutely
continuous in the interval (a,b) and its derivative v’ belongs to the space
L,(a,b). In the same paper, the following characterization of the class A,
was proved: A function u defined in the interval (a, b) belongs to the class
A, if and only if there exists a constant K > 0 such that for any system
{(a;,b;) C (a,b)} of pairwise disjoint bounded intervals we have

(1) Z\u ) — u(a;)|P <K

|b; — a;|P~1

The sum (1) is called a Riesz sum and the constant can be taken equal
to K = ||u/||} (a,p): For a bounded interval (a,b) the class A, coincides
P )

with the Sobolev space W (a,b). In [7] F. SZIGETI, using the above sum,
obtained results on the operator of composition in Sobolev spaces of type
W (a,b) where s satisfies an inequality depending on the imbedding theo-
rems involving these spaces. From these results the existence of a solution
of an ordinary differential equation in a given space was also obtained.
The same author generalized these results to higher dimensional cases (see
[8]). First Riesz sums in isotropic spaces W (€2) were introduced where
0 is a domain in R™ with smooth boundary, 1 < p < oo and s a posi-
tive real number satisfying an inequality depending on certain imbedding
theorems. From the inequality necessary conditions were proved for the
operator of composition to act in the spaces W;(a, b) and, as an applica-
tion, an existence theorem for differential equations was also obtained. In
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[6] J. RIVERO and F. SZIGETI generalized the above results to the case
of the so-called Slobodeckij spaces W; () where €2 is a domain in R"
with smooth boundary, 1 < p < oo and § is a vector in R"™ with compo-
nents satisfying certain inequalities depending on imbedding theorems for
such spaces. More precisely, they proved the following Riesz-inequality in
Slobodeckij spaces W5 (1) :

Theorem. Let 5= (s1,...,5,) € R, 1 < p < oo and let § be a
domain in R™ with smooth boundary. Suppose that for all i = 1,2,...n
we have

n

s 1—2# >1

j=1
J#i
and let u € W;(Q) Then there exist constants K; >0 (i = 1,... ,n) such
that:
a/ for any system {(a;;,b;;) C R};Z':1 of pairwise disjoint bounded
intervals, and
b/ for any system {\% € R"~!} ]I.izl of vectors with the property

O = { VAT AL TN ) = agg or = by b € 0

the estimate

I;

vis (bii) — g xis (@) [P
(2) Z: |U’L,)\ (bJ) u,A (CL])| <K@

|bij — a; [P~ -

j=1
holds where the function w; » is defined by
t— u()\l, e >>\i—1,t> )\i, e 7)\n_l) = uw\(t)

for all
t e Qi7,\ = {T : ()\1,... ,)\i_l,T,/\i,...)\n_l) S Q}

The inequality (2) is the Riesz inequality for the Slobodeckij spaces
Wz‘f (©). Using this inequality the mentioned authors obtained sufficient
conditions for the operator of composition to act in the spaces WE ().

In the present paper we generalize the above results to the case of
Slobodeckij type spaces Wg (Q2) where the vectors § and ' satisfy a cer-
tain vectorial inequality depending on imbedding theorems for the spaces
WE(Q).
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In Section 1 some known results /see [1], [2] / on the imbeddings of
spaces Wg (2) are recalled. In Section 2 the Riesz inequality for the spaces

Wg(Q) is established and sufficient conditions are obtained under which
the operator of composition acts in the spaces Wg(Q) In Section 3 we

deduce from these results the existence theorem for a system of second
order differential equations.

1. Preliminaries on Slobodeckij spaces

In this section we firstly recall some definitions and results concerning
Slobodeckij spaces W3 (€2) where = (p1,... ,pn), §= (s1,...,5,) and Q

denotes a cube 2 = 'H1(aj’ b;) in R™. All results are stated without proofs
j:

which can be found in the standard monographs, e.g. in [2].
For o= (p1,...Pn)s = (q1,-- - qn), we shall write p’> ¢ and p' > 7 if

pi > q; and p; > q; (i = 1,2,...n) respectively. In particular, the notation
1 <p <X (where 1 = (1,...,1) and & = (o0,...,00) ) means that
1<p;, <00, fori=1,2,...n.

For given p'= (p1,...,pn) with 1 < § < &0, we denote by L) the
space of all functions u defined and measurable on €2 for which the norm

P2 Do Pn—1

bn b2 bl p1
o= / / / |u(x)|p1d:c1) s S I
a as ai

n

[l

is finite. The space Ly(©2) with I < ' < & is a Banach space of functions
with the norm defined above.

We shall use the following notation:

A vector @ = (aq,...,q,) with components o; € Ng, i = 1,....,n
(where Ng = N U {0} ) is said to be a multiindex of dimension n. The

number
n
@ =) o
i=1

is called lenght of the multiindex &@. For a vector § = (s1,...,s,) with

0 < §< 0, we define the number
n
la:§| = —.
S.
i=1 "
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For a function v the generalized derivatives D%u are denoted by

ol%ly,

Dy =—"
(6% (6%
Ox{*...0xp"

Let § = (s1,...,8,) be a multiindex of dimension n and I1<p< .
We shall say that a function u belongs to the Slobodeckij space Wg(ﬂ)
if u € Ly(Q) and it has generalized derivatives D% belonging to L;($)
where | : §] < 1.

The norm in the Slobodeckij space Wg () is defined by

ot Y IID%llze.

|&:3]<1

lullsz = [lu

The space Wg(Q) with this norm is a Banach space. For a vector § with
non-integer components s; (i = 1,2,... ,n), the Slobodeckij space Wg(Q)

is defined by the usual interpolation method (see [3]).
Now we recall imbedding theorems for the Slobodeckij space Wg ().
Let p,q,5 € R’} with I <p<{q< 0 We define the numbers p(p, q, 5)
and p(7, 5) by
- —~ 1 1.1 . “ 1
p(B, 38 =1-) (———)— and p(F5)=1-) —s

= Pi di S i—1 Pi

For all j =1,2,... ,n, we also define the numbers p;(p, 5) by
N |

pi(F,5) =1—=

.S. :
i—1 PiSi
Jj#i

Theorem 1.1. Let p,¢,5 € R and X € R’ be such that Il<p<{i<
o0 and for all j = 1,2,... ,n, the inequality
Aj < 8;0(0, G, )
holds. Then the imbedding

WE(Q) — WH(Q)

p

is a linear, continuous operator and there exists a non-negative constant
C > 0 such that ||lull;5 < Cllullzs for al u € W3(Q) (the constant C

depends on p, {, S, X and Q).
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—

Theorem 1.2. Let p,5 € R} such that 1 <p< & and p(p,§) > 0.
Then the imbedding
W3 (Q) — b(Q)

is a linear, continuous operator and there exists a non-negative constant
C such that .
Hqu(Q) < CH"LLH@; for all u &€ WE(Q)

Here b(Q)) is the space of all bounded functions defined and continuous on
Q and || - [|y(e) is given by

||UHb(Q) = sup |U(90)|~
reN

Theorem 1.3. (One-dimensional version of the theorem on the trace
in W3(Q)). Let i, § € R besuch that I < j'< & and forall j =1,2,...n
the inequality

sip;(P,5) >0

holds. Let u € Wg(Q) and § = (B1,---,8n_1) € R""1. Denote

Q% = {t e (aj,b;): B, Bj—1.t. B, Buo1) € Q}.
Then the one-dimensional trace
t—u(Bry..  Biort, By, s Bur) = u, 5(1) (t € Q9
belongs to the Sobolev space W;f’pj(ﬁ’g)(ﬁjﬁ). In particular, if for all
7 =1,2,... ,n, the inequality
sjpj (P, 8) = 1

holds then the functions u; 7 belong to Sobolev space Wplj (Qj’g ).

—

Theorem 1.4. Let 5§ € R} and I < § < &, such that sip(p,5) > 1
forall j =1,2,...,n.
Then the imbedding
WE(Q) — b ()

is a linear, continuous operator and there exists a constant C > 0 such
that |[ully @) < Cllullzs for all u € W3(Q2) where |[ully @) = sup [u(z)] +
€

w Ou(x)
Sup | =gz |-
]gl € | 92;
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2. Inequality of Riesz

In the present section we generalize the result for Slobodeckij spaces

Wg(Q) where § < p'< o0 and s;p;(p,§) > 1foralli=1,2,... ,n

Theorem 2.1. Let 5= (s1,...,5,) € R}, andp = (p1,... ,pn) € R}
be such that 1 < § < & and s;p;(p,5) > 1 for all i = 1,2,... ,n. Ifu
belongs to the Slobodeckij spaces Wg (), then there exist constants K; > 0
with the following properties: For any system {(ai;,b;;) C (a;, b;)}j=1
of nonoverlapping bounded intervals, and for any system ﬁ” R !

j = 1,2,...,n... such that the points (BY,...,0; |,t,3/ ...,ﬁij_l)
with t = b;; or t = a;; belong to Q, the jnequality
’uz ﬁzg uz /31] (aw)
2.2 < K;
22) 2. |bw =

holds. The constants K; can be chosen as

where C;(Q2) only depends on the domain Q2 and €; = (0, ... i, 0...,0).

PrOOF. For all i = 1,2,...,n, we define the vectors 5%, p* and the

cube € by:
§ = (81,--- 3 8i—15Sit1y - -+ 7Sn)»ﬁi = (P1,-++ s Pi-1,Dit15- -+ >Pn)
and Qf = 1(aj, ;).
J#z

Let 3 = (B1,...,0n—1) € R™ 1 be such that (By,...,0Bi_1,t,
Biy.oyPn_1) € Q for all t € (a;,b;). Since for all i = 1,2,... ,n the
inequality
holds, from theorem (1.3) we have that the functions u, 5 belong to the
isotropic Sobolev spaces Wz}i(ai, b;). Hence

(2.3) u; 3(bij) = u,; glaig) = [ (u; 5(r))dr
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Since equality (2.3) holds, by Holder’s inequality the following esti-
mate can be obtained:

1—L
s, (big) — wi, (@i o500 < |bij — aig] 727

||UZ,<7_)/ ;;75% deT
ai 5
Hence
) b;
s, (big) — wi-(aij) |5 55 o
7,5 i
Z b —anp 1 S/H(Ui,O(T)) 15 & i dT
7j=1 J J J

For all © = 1,2, ... ,n the inequality

b;
[ o

holds, therefore for allt =1,2,... ,n

s.0:07 < [0iul|55-2,0

[wi,-(bij) — wi,.(aij)
>

pi
] *’L’Q'L
pi—lp = < [|9;

RN
pvs_ei7Q

= |bij — aij
Now, since for all i = 1,2,...,n the inequality p(p*,5") > 0 holds, the
imbedding W;(QZ) — () is a linear, continuous operator and there

exist non-negative constants C; such that
[u; gis (bij) — wi gii (ai) [P0 < CF g, (bij) — u.(aiz)

for all systems {3% € R""1}. Hence for all i = 1,2,... ,n the following
inequality holds

pi
P50

|us gii (bi) — u; ﬁw (au)! : o N (big) = wi(ai) 13 o o
5 < Cpl P, ) <
Z |bw <O

|bij — aig[Pi=t B

j=1
C’pzﬂﬁ w2 FE.0

Taking K; = C¥*

c%u

Now we shall prove a general theorem on the composition of functions
belonging to Slobodeckij spaces ng (). This theorem generalizes an ear-
lier result by J. RIVERO and F. SzIGETI [6]. The following theorem is a
consequence of Riesz’ classical result [5] and the above theorem.

P 3
57—z, o the theorem is proved.
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Sn);

(pla"' 7pn) (f: ((Jh--- 7qn)

Theorem 2.2. Let §= (sq,... p=
< & and for all © = 1,2,... ,n the

and r € Ry be such that 1< ﬁ@
following conditions

(2.4) sipi(p,5) > 1 and <1 — l) (1 — l) g1

Dbi qi T

hold. Let u € Wg(ﬂ) and g; (i =1,2,...,n) be functions belonging to the
isotropic Sobolev spaces qui(c, d) which are monotonic functions. If the
composition uwo (gy, ... ,gn) can be formed then it belongs to the isotropic
Sobolev space W} (c,d). Moreover, there exists a nonnegative constant K
such that

7;)
lwo (g1, gn)llwpea) < K (1 +Z ngle @ d)) [ll g5

PROOF. Recall that the function uo(g; ... ,gy), belongs to the space
Wl(ec,d) if and only if the function uo(gy ... , g,) satisfies the inequality of
Riesz. To see this, consider a system {(c;,d;) C (¢,d)} of nonoverlapping
bounded intervals, and for alli =1,2,... ;nand j=1,2,... ,n, let

B9 = (g1(d)), ..., 9i-1(ds), gis1,(¢;), - - gnlcs)) € RPH,
bij = 9i(dj), aij = gi(c;)

and m; =r(1— ql) Hence, as the functions g; (i = 1,2,... ,n) are mono-
tonic, using equality (2.4) and Hoélder’s inequality we have that

> 50 (91, 90)(d3) — o (g1, g (eI _

d; — ;|71 =

ROl SE L
i d — 0; . pi—l
= \wiFnten  19d) —aile)

my

\9i(d;) — gi(cj)|% )
|dj — c;|a—t '

Jj=1

Since for all i =1,2,...,n the inequality

Sip(ﬁv g) Z 1
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holds, from theorem (2.1) and the criterion of Riesz, it follows that

> 00 (91, 90)(d5) — wo(gn, - g (e)l” _

d; — ;|71 =

r r )
(ZK ||8u|| p,5—€;,82 |gZ||L (cd))

Hence u o (g1,... ,gn) belongs to the space W}!(c,d). Moreover, the in-
equality

1
o1 n r(l—2L) "
Hu o (gla s 7.gn)||Lr(C,d) <nr K(Q) <Z ”671U| g,§_€i79|’g;‘|Lqi (c}:é)

1=1

holds.
From the above inequality, using the Sobolev imbedding theorem
(1.1), the estimate

.
p,s

77)
||U © (917 s 79“)”er(c’d) <K <1 + Z ”g'LHWl 1(7:: d)) ”U

1=1

is obtained.

The preceding theorem has a direct generalization:

Theorem 2.3. Let §=(s1,...,8,), P=(P1,--- sPn), (= (q1,--- ,qn),
A= (A1,...,\y) and 7 € Ry be such that 1 < p < § < & and suppose

that, for allv = 1,2,... ,n, the following conditions are satisfied

(2.5) szp(p,)<)\—l>21—1 and 1<>\¢<1+l.

q; r q;
Let u € Wg(Q) and the g; (i = 1,2,... ,n) be functions belonging to the
isotropic Sobolev spaces Wq’\ii(c, d) and being monotonic. If the composi-
tion uo(gi, ... ,gn) can be formed, then it belongs to the isotropic Sobolev
space Wl(c,d) and there exists a non-negative constant K such that

)
||UO (91> o ’gn)Her(c,d) < K (1 + Z ||g’t|| z( d)>

where 0 <1— J5 = (1= (i — )P <1foralli=1,2,... ,n.
P; i
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PROOF. Let S, p, ¢, Xandr € R be such that conditions (2.5) hold.

For all i = 1,2, ... ,n we define the numbers ¢!, p{ and s by
1 1 1 1 1
l— =)= h— = (1= =) = (1= =)\ — =)
( q?) i ( p?) (1= ")\ Qi)
and

3? = siplﬁ,po,g) where po == (p]a s 7p97,)

— —

 Let 5 p°, q® be defined by s0 = (s9,...,5°), p0 = (p%,...,p°) and
¢ = (a1, q)-

Then the following imbeddings hold:

(2.6) Wi(Q) — W;Q(Q), W (e, d) = W(e.d)

Moreover, s_é, p_(), q_é and r € R4 satisfy the conditions of theorem (2.2).
Indeed it is obvious that the equality

1 1 1
)
D; q; r

holds for all ¢ = 1,2,... ,n. Now we see that for all i = 1,2,... ,n the
inequality

—

Sgpi<p07 80) > 1

holds, or equivalently

n 0

: 1

1+Z%§S?+_O forall i=1,2,....n.
j:1pj8j p;

We clearly have

Z” 1 1 1 1 1 1
=1 Pisi gi r i 4 r

foralli=1,2,... ,n. So

forall +=1,2,... ,n.
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Hence, for all : = 1, 2, , 1,
(1 1)1 1

S I P

i) st

=1 Pi% 4
- 1 s
:1+Z 020:1+Z 040
Pjs; j:lpjsj

Therefore theorem (2.2) and the imbedding (2.6) imply that there

1— L
(=) N
W p?s

A.
qiz (c,d)

) lu

exists K > 0 such that
luo(ar...glws, <K (1 + 3l
1=

. 7p2n7p2n+1)7

where (1 — %) = (1 %)()\z - %)_1 foralli=1,2,...,n.
b;
y S2n5 S2n+1)7 ﬁ: (p17

-y A2n, Aopy1) and r € Ry such that

Corollary 2.3. Let §= (sq,
7= (q1;-- 1 q2n+1) A= (A1, ..
1
Pont1 =71, Aopp1 = 1+ and  S2,11 < 8; <)\i - —)
d2n+1 4q;
foralli=1,2,...,2n
Suppose that
2n 1 1
si|1— o (/\i——)21 forall i=1,2,...,2n
=1 Pisi qi
and
2n 1
Son+1 1— — Z 1.
I PiS;
Ifu € WE(Q) and the g; (i = 1,2,...,2n) are monotonic functions
belonging to the isotropic Sobolev spaces Wq’\ii(c, d), then the function
,92n, I) belongs to Wl(c,d) and there exists K > 0 and 0 <

O (Gis -
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o; < 1 such that

- —

2n
||uo (gla' o 79277,7[ HWl(c d) <K (1 + Z ||gl alaz ‘ )
=1 Z(Cd)

3. Applications to differential equations

In this section, using the above corollary, the Rellich-Kondrashov the-
orem and Schauder’s fixed-point theorem, we deduce an existence theorem
for a system of second order differential equations. First we recall some
notations and preliminary results.

For each p=1,2,... ,n, consider the vectors s?=(s{,... 55,55, 1),

PP = (pll)’ e 7pgn’pgn+1)’ @ = (qf’ e 7q§n7q§n+1)? A= ()‘/1)> x )\2n7
Aopi1)s and a number r € R+ such that

1
q2n+1
b/ 5y < (,\” q—1p> (p=1,2,....,n,i=1,2,...,2n)
2n 1 !
o/ (13 A ) (M- #) 210=120 =12 20
i=1DPi 5 ! J
2n
1
d/ Son41 (1_2 PSP>>1 (:021,2, ,TL)
i=1DPi 5
e/ 1< qlp—AerQ (p=1,2,...,n,i=1,2,...,n)
i
For each p = 1,2,... ,n, consider a function u, € Wpff (©) and let
Ti,...,%p, L1,...,T, be monotonic functions such p” that for all i =
1,2,...,n we have

x; € W [0 1], ;€ W, "*’[0 1].

’n+1

Suppose in addition that for all ¢ € [0, 1] we have
(1), n(t), 1 (0), (1), 1) € O

Then, by the above corollary, we obtain that for each p =1,2,...
the composition w,(x1(t),...,z,(t), 1(t),...,&n(t),t) belongs to Wl[O ]
Now consider the following initial value problem:
Z,(t) = up(x1(t), ... ,xn(t), 21(L),. .. xn( ),t) forall ¢t € [0,1] and z,(0) =
v, and ,(0) =1, forall p=1,2,... ,n



The operator of composition in Slobodeckij spaces 109
This system is equivalent to the following system of integrodifferential
equations

(3.2)

x,(t) = Vp+npt+t/t Up(21(7), ... xn (1), 21(T), ..., &n(T), T)dT+
-1—/0 TUp(21(7), ..., 2n(7),21(7), ... ,&n(7),T)dT (p=1,2,... ,n)

Since ,(t) = up(x1(t),... ,zn(t),&(t),... ,on(t),t) belongs to the
space W' [0, 1], the function x, belongs to the space W3[0, 1].

For each p = 1,2,... ,n define the set D, and the function F), as
follows:

D, = {(x ) € W01 o x W0, 1] sy, @i, s
1 n

are monotonic and

(@1(8), - (), &, (1), . in(t), 1) €Q (€0, 1])}.
Fy(zq,...,20)(t) = v, + npt+
+t/t Up(21(T)y oo X (T), 21(T), ..., Tp(T), T)dT+

—|—/0 TUp(21(7), ..., 2n (1), 1(7), ... ,&n(7), T)dT = ,(1).

Then for each p = 1,2,... ,n the function F, maps the set D, into
the space W2[0, 1], moreover, there exist constants K,~o and 0 < o < 1
such that

(383) IEp(@1.. a)lwson < K, [ 1+ |l syl e 50
=1

of
AP

W 4 0,1]
a;

Since ¢?, M and r satisfy condition e/, that is
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is a linear and continuous operator. Therefore there exist constants K/
such that

4 i P
(3.4) il ot

7

< K7 |lzillwspo,

By (3.3) and (3.4) we obtain the existence of constants K > 0 and
0 < af < 1 such that

(35 IEp(@r. .. w)llwso < K (1 + 3 il 1]> ol
i=1 '
For all £ > 0 the following imbeddings are valid
W3=¢0,1] <5 W2[0,1] and W2[0,1] 2 W3=¢[0,1].

Therefore, with the notation used before, for all p = 1,2,... ,n we
can define a function

Fp: (W25[0,1])" — W7¢[0,1] by
Fy(zq,...,20)(t) = i2(Fp(i1(21(t)), ... ,i1(zy(t)) such that

n ap
(36) 1Fp(ar, . w0)llws—eo < K (1 +y ||xz-||v;g_5[0,”) eI, 50

i=1
Now we define a function
F: (W2[0,1))" — (W=5[0,1)™ by
F(xy,...,xn)(t) = (Fi(z1, ... ,20) (), ..., Fn(z1, ... ,x0)(1)).

In the following we shall look for conditions for the function F' to
satisfy the hypotheses of Schauder’s fixed-point theorem.
For each p=1,2,... ,n, we define

- L
Rp = Kp <]. + ZR?Z) ||UpHﬁp,§p.
i=1

Then, for R > R, we have

* of
(3.7) R>K; (1 +Y R ) [y | 5o a0

=1
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Hence, taking R > max {R,}, we obtain that
= n

=1,4,...,

||(Z‘1, . 7mn)”(W¢3_5[0,1])” = ’L:{%E’LX ” ||‘,E’L'||W§_E[O,1] <R
implies
HF(xl, . e ,xn)H(WE—E[O’l])n = p:]i_[’lé?x n ||Fp($1, oo ,.rn)HWE—E[O,l] S R.

Indeed, from inequalities (3.6) and (3.7) we get

af
V[;E*E[O’l} ”uPHﬁngp S R

Let us consider now the sets D! and D? defined as follows:

1Fp(xr, ) lyo-erony < K (1 + ) |
=1

D :{ (@1, san) € (WEE0,A)" s max ol yys—epoq < R,

=1,4,...,

B1yees En >0, F1,... 0, <0

a.e. in [0,1] and z1,... ,z, satisfy (3.2) }.

D? :{ (21,0 sw) € W0, _max [aillyeoq) < B

Tlyeee yTpyZLiyeen T <0

a.e. in [0,1] and z1,... ,z, satisfy (3.2) }.
In terms of these notations, using the above results, we can prove the
following

Theorem 3.1. Suppose that the above conditions a/,b/,... e/ are
satisfied and for all p=1,2,... . nand T =1,2,... ,2n+ 1 we have

2+l
(3.8) 5P (1 - Zl W) > 1.
For each p =1,2,... ,n let M, denote the norm of the imbedding
W3, () — 0'(Q)

Put v, = 1+ |v,| + 2|n,| + $M,R, and suppose that B, (0) C Q and at
least one of the following conditions is satisfied:
a/ n,>0 (p=12,...,n)

b// Mp < 0 sSup up(n) < —Tp (10 = ]-7 27 s 7”)
UEBTP(O)
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Then the initial value problem (3.1) has a solution belonging to the
space (W27¢[0,1])" for all € > 0.

ProOOF. Differentiating with respect to ¢ in formula (3.2), by a’/ and
b’/ we obtain that

F(DY)C D' and F(D?) c D2

Since inequality (3.8) is fulfilled, each component of the function F), is
continuous /see Th. 1.4/, so F'is continuous. From the Rellich-Kondrasov
theorem we know that the inclusions

W3=¢0,1] <5 W2[0,1] and W2[0,1] <= W3=¢[0,1]

are compact. Therefore F' is a compact function. Thus Schauder’s theorem
provides a fixed-point for the function F' which is a solution to the initial
value problem (3.1).

I am grateful to prof. F. SzZIGETI for calling my attention to the
problem and his helpful suggestions.
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