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A theorem for the fixed effects
one- and two- way analysis

of the variance model

By LÁSZLÓ TAR (Debrecen)

1. Introduction

In his paper [3] Béla Gyires proved the following criterion for the
randomized block design ([3], p. 285, Theorem 2). The expectations of
the sample elements can be decomposed into the sum of two quantities
corresponding to the block-effect and to the treatment-effect, respectively,
if and only if the expectations of the random errors are zero.

The author dealt with the above-mentioned problem in the case of the
Latin square design ([4], [5]) but was unable to obtain the corresponding
criterion.

In the fixed effects one-way analysis of the variance model we were
able to prove the reverse of the following Theorem. If the expectations
of the sample elements can be decomposed into the sum of two quantities,
where the first one is a constant (the so-called overall mean) and the second
member corresponds to the effect of the selected level of the single factor
having fixed effects, then the expectations of the random errors are zero ([6],
p. 295, Theorem 2). In the proof of the criterion we used the method of
Gyires’s paper [3]. [6] contains also the minimum dyadical representation
of the expectation of the matrix of sample elements ([6], Section 3).

The following problem arises: Is it possible to prove by another meth-
od, the reverse of the above-formulated theorem valid for the one-way
analysis of the variance model ? There is a positive answer to this question.

We shall give the proof of the reversed theorem for the generalized
one-way analysis of the variance model already introduced in [6] applying
the method well-known for the homogeneous linear matrix equation ([2],
pp. 199–204).
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In the present paper we will use the following notations: ξjk, εjk

random variables; ξ, η1, η2, ζ matrix-valued random variables with m
rows and n columns, that is matrices of dimension m × n consisting of
such random variables that have expectations; E identity matrix of order
m or n; 0 zero matrix of dimension m× n; S1, S2 are stochastic matrices
of order m and n, respectively; A, B are square matrices of order m and
n, respectively; A∗ is the transpose of A; B−1 is the inverse matrix of
B; U, V, W, T orthogonal matrices; M(ξjk) expectation of ξjk; M(ξ)
is the expectation of the matrix ξ, M(ξ) consists of the expectations of

the elements of ξ; A =
( a11, a12, ... , a1n

...

am1, mm2, ... , amn

)
is a matrix which is given

by its elements; A = ‖ajk‖m×m or A = ‖ajk‖j,k=1,m is a square matrix
given by its general element; a0, λ, . . . m-dimensional column vectors; b0,
µ n-dimensional column-vectors; b∗0 is the transpose of b0; o zero vector;
instead of j = 1, 2, . . . ,m we use the notation j = 1,m; if necessary, we
indicate the dimension of a vector in the form λm×1.

In the second section we give the generalized form of the one-way
analysis of the variance model and the theorems obtained. The third
section contains the above-mentioned criterion for the fixed effects one-
way analysis of the variance model which is a special case of Theorem 2 in
[6] (p. 295).

It is to be noted that this method can be applied also with the random-
ized blocks to prove the reverse of the corresponding well-known theorem
valid for the unreplicated fixed effects two-way layout ([3], p. 285, Theorem
2 and p. 287, a)). The latter proof can be found in the fourth section of
this paper.

2. One-way analysis of the variance model and its generalization

Let us assume that equal numbers of observations are made at each
level of the single factor having systematic effects on the result. The usual
form of such a model is

(1) ξjk = γ + λj + εjk (j = 1,m; k = 1, n),

where
∑

λj = 0, γ is the so-called overall mean, and λj is a quantity
corresponding to the effect of the j-th level of the factor. The random
variables εjk (j = 1,m; k = 1, n) are assumed to be independent and
normally distributed with parameters 0 and σ, where σ is positive. The
variance σ2 is unknown.
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Usual notations for the various sample means:

ξ̄j. =
1
n

n∑

k=1

ξjk, ξ̄ =
1

mn

m∑

j=1

n∑

k=1

ξjk.

The differences ξ̄j. − ξ̄ (j = 1,m) are discrepancies between the levels
of the factor. The differences ξjk − ξ̄j. (k = 1, n) are discrepancies within
the j-th level of the systematic factor. The latter differences are said to
be random errors. One can prove that they have zero expectations.

By the help of the generalized model we shall prove the following
Theorem. If the expectations of the random errors are zero then the sample
elements can be written in the form (1) assuming the existence of the
expectations of the sample elements.

Let ξ be a matrix of dimension m×n. Let its elements be the random
variables ξjk (j = 1,m; k = 1, n) defined by (1). In this case

(2) ξ = ‖γ‖m×n + ‖λj‖j=1,m;k=1,n + ‖εjk‖m×n.

Then M{‖εjk‖m×n} = 0m×n in consequence of (1). (2) can be written in
the form

(3) M(ξ) = γa0b∗0 + λb∗0

applying the notations introduced.

Let S1 be a stochastic matrix of order m having identical elements
1
m

.
Let S2 be a stochastic matrix of order n consisting of identical elements
1
n

. Then

(4) S1 =
1
m

a0a∗0, S2 =
1
n
b0b∗0.

Let us further define the following matrix-valued random variables of
dimension m× n:

(5) η2 = ξS∗2, ζ = S1ξS∗2.

Then

η2 =




ξ̄1., ξ̄1., . . . , ξ̄1.

. . .
ξ̄m., ξ̄m., . . . , ξ̄m.




m×n

, ζ = ‖ξ̄‖m×n.

In this way
ξ − η2 = ‖ξjk − ξ̄j.‖j=1,m;k=1,n
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is the matrix of the random errors.

η2 − ξ = ‖ξ̄j. − ξ̄‖m×n

is the matrix of the discrepancies between the effects due to the levels of
the systematic factor. The undermentioned two theorems have been for-
mulated and proved in [6] (p. 295, Theorem 2 and Theorem 3):

Theorem 1. The decomposition (3) is valid if and only if

(6) M(ξ − η2) = 0m×n.

Theorem 2. Let (3) be true. Then

M(η2 − ζ) = 0m×n

if and only if
λ = ca0,

where c is a constant.

The following minimum dyadical representation of M(ξ) can be found
in [6] (p. 297, (29)):

(7) M(ξ) =




γ + λ1
...

γ + λm


 (1, . . . , 1)1×n.

Therefore the rank of M(ξ) is 1. On the basis of the foregoing we can
say for the case m = n = 1 that in the one-way analysis of the variance
model the sample elements can be written in the form (1) if and only if the
expectations of their random errors are zero.

3. The proof of a criterion with a recent method

We assume the existence of the expectations of the sample elements
ξjk (j = 1,m; k = 1, n).

Theorem 3. (1) is true for the sample elements if and only if the
expectations of the random errors are zero.

Proof. If (1) is true for the sample elements then the expectations
of the random errors are zero.

To prove this direction one has to substitute ξjk from (1) in M(ξjk −
ξ̄j.) and to take into consideration the conditions prescribed earlier for the
model.

We shall prove Theorem 3 by showing the next theorem. (In the case
m = n = 1 Theorem 4 is identical with Theorem 3.)



A theorem for the fixed effects one- and two- way analysis of the variance model 117

Theorem 4. (3) is true if and only if

M(ξ − η2) = 0m×n.

Proof. 1. If (3) is true then M(ξ − η2) = 0. The truth of this
statement follows from the fact that the elements of the expectation of the
random error matrix are equal to zero.

2. If M(ξ − η2) = 0 then M(ξ) = γa0b∗0 + λb∗0.

In consequence of (5)

M(ξ − η2) = M(ξ)(E− S2)∗.

So (6) can be written in the form:

(8) EM(ξ)−M(ξ)S2 = 0,

where the matrices E and S2 have simple structures. Since the equation
(8) is of form AX −XB = 0, that is (8) is a homogeneous linear matrix
equation, we can use a well-known theorem to solve the matrix equation
(8) ([2], p. 202, Satz 1).

The Jordan normal forms for our symmetric matrices are

(9) Em×m = VV∗,

where V is an orthogonal matrix;

(10) S2 = U




1, 0, . . . , 0
0, 0, . . . , 0
...
0, 0, . . . , 0




n×n

U∗,

and here

U =




√
n
−1

, u12, . . . , 0√
n
−1

, u22, . . . , 0
...√

n
−1

, un2, . . . , unn




n×n

is also an orthogonal matrix. Substituting (9) and (10) in (8) we get

(11) VV∗M(ξ)−M(ξ)U




1, 0, . . . , 0
0, 0, . . . , 0
...
0, 0, . . . , 0


U∗ = 0m×n.
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Pre-and post-multiplying (11) by V∗ and U

(12) V∗M(ξ)U−V∗M(ξ)U




1, 0, . . . , 0
0, 0, . . . , 0
...
0, 0, . . . , 0


 = 0.

With the notation
M̃(ξ) = V∗M(ξ)U,

we get from (12)

(13) M̃(ξ)




0, 0, . . . , 0
0, 1, . . . , 0
...
0, 0, . . . , 1




n×n

= 0.

Suppose that
M̃(ξ) = ‖m̃jk‖m×n.

Therefore from (13)



0, m̃12, m̃13, . . . , m̃1n

0, m̃22, m̃23, . . . , m̃2n
...
0, m̃m2, m̃m3, . . . , m̃mn


 = 0.

Finally

M̃(ξ) =




m̃11, 0, 0, . . . , 0
m̃21, 0, 0, . . . , 0

...
m̃m1, 0, 0, . . . , 0


 .

Hence M̃(ξ) involves m free parameters which differ from zero. Since
M(ξ) = VM̃(ξ)U∗, and U is given at (10), the elements of M(ξ) are
identical in each row. Let λ̃j (j = 1,m) be the element of the j-th row of
the expectation matrix. For this reason

(14) M(ξ)m×n =




λ̃1, λ̃1, . . . , λ̃1

λ̃2, λ̃2, . . . , λ̃2
...

λ̃m, λ̃m, . . . , λ̃m


 .
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If λ̃l 6= 0 then the minimum dyadical decomposition of M(ξ) on the basis
of [1] or [6] is as follows:

M(ξ) =
1
λ̃l




λ̃1
...

λ̃m


 (λ̃l, . . . , λ̃l)1×n =




λ̃1
...

λ̃m


 (1, . . . , 1)1×n.

If
λ̃l = γ + λl (l = 1,m),

then
M(ξ) = (γa0 + λ)b∗0.

This means that Theorem 4 is valid.

Remark 1. It follows from Theorem 4 for the fixed effects one-way
analysis of the variance model:

The expectations of the sample elements can be written in the form

M(ξjk) = γ + λj (j = 1,m; k = 1, n)

if and only if
M(ξjk − ξ̄j.) = 0.

Remark 2. The method used in this section is applicable with the
randomized block design to prove the corresponding theorems. In the
proof of the theorems the following theorem must be applied:

The general solution of AX − XB = F (F 6= 0) is the sum of the
general solution of the homogeneous linear matrix equation AX −XB =
0 and of an arbitrary particular solution of the nonhomogeneous linear
matrix equation AX−XB = F ([2], pp. 208–209).

4. A criterion for the fixed effects two-way layout

In the first place we give a matrixical generalization of the unreplicated
fixed effects two-way layout on the basis of [3] ([3], p. 284, Corollary 4;
[3] pp. 285–287, third section). Then we formulate a criterion for the
generalized model. To prove the theorem we shall apply results valid for
the general solution of the nonhomogeneous linear matrix equation AX−
XB = F and the minimum dyadical representation of a matrix.

Let us consider the matrix

(15) ξ = ‖ξjk‖m×n,
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where the elements ξjk (j = 1, n; k = 1, n) have expectations. According
to the definition of the randomized block design let

(16) M(ξjk) = γ + λj + µk,

where γ is a constant (overall mean), λj corresponds to the j-th block-
effect and µk amounts to the effect of the k-th treatment. Let S1 and S2

be stochastic matrices of order m and n, respectively. Suppose that S1

has identical elements 1
m and S2 has identical elements 1

n , and they have
1 as a simple eigenvalue ([3], p. 284, Corollary 4). Let us further define
the matrix-valued random variables

(17) η1 = S1ξ, η2 = ξS∗2, ζ = S1ξS∗2.

On the basis of (16) the expectation of ξ can be given in the form

(18) M(ξ) = γa0b∗0 + λb∗0 + a0µ
∗.

Here a0 denotes the m-dimensional column-vector consisting only of
components 1, b∗0 is the row-vector of dimension n composed only of
components 1, λ is the m-dimensional column-vector with components
λ1, λ2, . . . , λm, where λj corresponds to the j-th row-effect (j = 1,m)
and µ∗ is the n-dimensional row-vector of the k-th column-effects µk

(k = 1, n).
It seems from (18) that the expectation of ξ is the sum of three dyads.

From the definition of S1 and S2 one can get

(19) S1 =
1
m

a0a∗0, S2 =
1
n
b0b∗0.

Let us introduce the usual notations for the marginal and total means:

ξ̄j. =
1
n

n∑

k=1

ξjk, (j = 1,m);

ξ̄.k =
1
m

m∑

j=1

ξjk, (k = 1, n);

ξ̄ =
1

mn

m∑

j=1

n∑

k=1

ξjk.

Then the elements of the matrix η1 are equal column by column to the
quantities ξ̄.k (k = 1, n), the elements of η2 are equal row-by-row to the
quantities ξ̄j. and each element of ζ is ξ̄.
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We call the the differences ξ̄j.− ξ̄ (j = 1, m), ξ̄.k− ξ̄ (k = 1, n) discrep-
ancies between rows and discrepancies between columns, respectively. The
quantities ξjk− ξ̄j.− ξ̄.k + ξ̄ are the random errors (j = 1,m; k = 1, n). It is
easy to prove the next theorem for the above - mentioned model applying

the definition and the customary assumptions
m∑

j=1

λj = 0,
n∑

k=1

µk = 0.

If M(ξjk) can be decomposed into the form of (16), then the expectation
of the random error equals zero. Since

(20)

η1 − ζ =




ξ̄.1 − ξ̄, . . . , ξ̄.n − ξ̄
...

ξ̄.1 − ξ̄, . . . , ξ̄.n − ξ̄




m×n

,

η2 − ζ =




ξ̄1. − ξ̄, . . . , ξ̄1. − ξ̄
...

ξ̄m. − ξ̄, . . . , ξ̄m. − ξ̄




m×n

,

and ξ − η1 − η2 + ζ is composed of the random errors

ξjk − ξ̄j. − ξ̄.k + ξ̄ (j = 1,m; k = 1, n ),

we call the matrix η1− ζ the matrix of the discrepancies between columns,
the matrix η2 − ζ is the matrix of discrepancies between rows and the
matrix ξ − η1 − η2 + ζ is the so-called random error matrix.

Theorem 5. If the expectations of the elements of ξ can be decom-
posed into the sum of three quantities as in (16), then the expectation of
the random error matrix is the zero matrix.

Proof. The usual restrictions for the λj and µk quantities, as has
been mentioned earlier, are

(21)
m∑

j=1

λj = 0 and
n∑

k=1

µk = 0.

By the help of (21) we obtain the following formulae:

(22)

M(η1) = M(‖ξ̄.k‖m×n)

= ‖γ + µk‖m×n,

M(η2) = M(‖ξ̄j.‖m×n)

= ‖γ + λj‖m×n and

M(ζ) = M(‖ξ̄‖m×n)

= ‖γ‖m×n.
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So—in consequence of (16) and (22)—M(ξ − η1 − η2 + ζ) = 0.

Theorem 5′. If all the elements of ξ have expectations and

M(ξ) = γa0b∗0 + a0λ
∗ + µb∗0

then
M(ξ − η1 − η2 + ζ) = 0.

Proof. The truth of the statement of Theorem 5′ comes from The-
orem 5.

Now we formulate the converse of Theorem 5′.

Theorem 6. If M(ξjk) (j = 1,m; k = 1, n) exists and

(23) M(ξ − η1 − η2 + ζ) = 0,

then
M(ξ) = γa0b∗0 + a0µ

∗ + λb∗0.

Remark 3. Theorem 5′ and Theorem 6 are equivalent to Theorem 2
in [3] (p. 285).

Remark 4. Since the rank of M(ξ) is 2, which can be seen also with
the minimum dyadical decomposition ([1]),

M(ξ) = γa0b∗0 + a0µ
∗ + λb∗0

can be written in the following forms:

M(ξ) = a0(γb∗0 + µ∗) + λb∗0, or

M(ξ) = a0µ
∗ + (γa0 + λ)b∗0.

In the proof of Theorem 6 we apply the theorem about the general so-
lution of the nonhomogeneous linear matrix equation AX−XB = F (F 6=
0).

Proof of Theorem 6. In consequence of (17) we get

M(ξ − η1 − η2 + ζ) = M [(E− S1)]ξ(E− S2)∗].

Therefore the other form of (23) is

(24) (E− S1)m×mM(ξ)m×n(E− S2)∗n×n = 0.

Let

(25) M̄(ξ) = (E− S1)M(ξ).
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Then (24) can be written in the form

(26) EM̄(ξ)− M̄(ξ)S2 = 0.

This is similar to equation (8). Consequently, taking into consideration
(14), the solution of (26) is

(27) M̄(ξ)m×n =




λ̂1, λ̂1, . . . , λ̂1

λ̂2, λ̂2, . . . , λ̂2
...

λ̂m, λ̂m, . . . , λ̂m


 ,

On the other hand, from (25)

EM(ξ)− S1M(ξ) = M̄(ξ).

This can be written in the form

(28) S1M(ξ)−M(ξ)E = −M̄(ξ).

The problem is to determine the general solution of the nonhomogeneous
linear matrix equation (28). For this reason we give the general solution
of the homogeneous linear matrix equation

(29) S1M(ξ)−M(ξ)E = 0.

Let the Jordan normal form of the symmetric coefficient matrix S1 be

(30) S1 = W




1, 0, . . . , 0
0, 0, . . . , 0
...
0, 0, . . . , 0




m×m

W∗,

where W is an orthogonal matrix which has the form

W =




√
m
−1

, w12, . . . , 0√
m
−1

, w22, . . . , 0
...√

m
−1

, wm2, . . . , wmm




m×m

.

Let the Jordan normal form of E be

(31) En×n = TT∗,



124 László Tar

where T is also an orthogonal matrix. On substituting (30) and (31) in
(29)

(32) W =




1, 0, . . . , 0
0, 0, . . . , 0
...
0, 0, . . . , 0




m×m

W∗M(ξ)−M(ξ)TT∗ = 0.

Pre- and post-multiplying (32) by W∗ and T and considering the orthog-
onality we get

(33)




1, 0, . . . , 0
0, 0, . . . , 0
...
0, 0, . . . , 0




m×m

W∗M(ξ)T−W∗M(ξ)T = 0.

Let us introduce the notation

(34) M̃(ξ) = W∗M(ξ)T.

Therefore we obtain from (33)

(35)




0, 0, . . . , 0
0, 1, . . . , 0
...
0, 0, . . . , 1




m×m

M̃(ξ) = 0.

Let M̃(ξ) = ‖m̃jk‖m×n. In consequence of (35) there are n free parameters
different from zero in M̃(ξ), that is

M̃(ξ) =




m̃11, m̃12, . . . , m̃1n

0, 0, . . . , 0
...
0, 0, . . . , 0


 .

From (34)

M(ξ) = WM̃(ξ)T∗.

This means that M(ξ) consisits of columnwise identical elements. If we in-
troduce the notations µ̃1, . . . , µ̃n for the elements of the columns of M(ξ),
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then

(36) M(ξ)m×n =




µ̃1, µ̃2, . . . , µ̃n

µ̃1, µ̃2, . . . , µ̃n
...

µ̃1, µ̃2, . . . , µ̃n


 .

Suppose that µ̃l 6= 0 (l = 1, n ). Then the minimum dyadical representation
of (36) is

(37)

M(ξ) =
1
µ̃l




µ̃l
...
µ̃l




m×1

(µ̃1, . . . , µ̃n)

=




1
...
1




m×1

(µ̃1, . . . , µ̃n).

With the notation µ̃l = γ + µl (l = 1, n ) one can obtain from (37)

M(ξ) = γ




1
...
1




m×1

(1, . . . , 1)1×n +




1
...
1




m×1

(µ1, . . . , µn)

= γa0b∗0 + a0µ
∗.

This expression is the general solution of the homogeneous linear matrix
equation (29).

It is easy to prove that λb∗0 is a particular solution of the nonhomo-
geneous linear matrix equation (28) by substituting in it M(ξ) = λb∗0 and
M̄(ξ) on the basis of (27).

Finally the general solution of the nonhomogeneous linear matrix
equation (28) is given by the following expression:

M(ξ) = γa0b∗0 + a0µ
∗ + λb∗0.

This proves the statement of Theorem 6.

Remark 5. Applying a suitable transformation γ may become zero.
In the case of m = n = 1 on the base of Theorem 5′ and of Theorem

6 the following criterion may be formulated for the fixed effects two-way
layout.

An arbitrary sample element can be written in the form

ξjk = γ + λj + µk + εjk
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if and only if
M(ξjk − ξ̄j. − ξ̄.k + ξ̄) = 0,

where εjk is a random variable having normal distribution with the mean
zero and unknown variance σ2.
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