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On the characterization of
additive functions on rare sets

By K. KOVÁCS (Budapest)

Throughout this paper f : N → Rk denotes an additive function and
‖v‖ is the (arbitrary, but fixed) norm of the vector v ∈ Rk.

A set A = {a1 < a2 < · · · < am < . . . } ⊂ N is said to be a set of
uniqueness if the characterizing condition

(C1) f(am) = 0 m = 1, 2, . . .

implies f ≡ 0.
Weaker conditions of charecterization are the following:

f(am+1)− f(am) is convergent,(C2)

‖f(am+1)− f(am)‖ is convergent,(C3)

‖f(am+1)‖ − ‖f(am)‖ is convergent.(C4)

R. Freud shoved in [1] that to any function h : N → R there exists
a set A satisfying the rarity condition

(R1)
am+1

am
> h(m)

and (C2) implies f ≡ 0. (He dealt with f : N → C functions, but the
proof remains valid for f : N → Rk functions as well.)

In this paper we shall prove that any of the weaker characterizing
conditions (C3) and (C4) also implies f ≡ 0, but instead of (R1) we can
guarantee only the rarity condition
(R2) am+1 − am > h(m) .

Theorem. a) To any function h : N → R we can construct a set A
satisfying (R2) such that (C4) implies f ≡ 0.

b) The same holds if (C4) is replaced by (C3).

Remark 1. It is not difficult to verify that for an arbitrary(not neces-
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sarily additive) function f we have (C2) ⇒ (C3), (C2) ⇒ (C4),
(C3) 6⇒ (C2), (C4) 6⇒ (C2), (C3) 6⇒ (C4) and (C4) 6⇒ (C3).

Remark 2. If f is completely additive, then the rarity condition in the
Theorem can be replaced even by
(R3) am+1 > h(am)

if we consider the set

A =
⋃

p prime

{
pkip , psip , i = 1, 2, . . . , lim

i→∞
(sip − kip) = ∞

}
,

where the values of kip and sip can be chosen so that pkip and psip are
consecutive elements of A.

Proof of the Theorem. We shall use several times the following
proposition.

Lemma. We can find a constant α > 1 and a positive integer B such
that given any set of B vectors in Rk there must be two among them, say
u and v, which satisfy

(1) ‖u + v‖ ≥ α min(‖u‖, ‖v‖) .

This is clear for the euclidean norm (e.g. with α =
√

2, and B = 2k+1)
and it can be easily verified for many other norms as well. Intuitively it
can be justified for any norm by saying that if there are sufficiently many
vectors, then there must be a u and v among them which fall nearly in
the same direction, hence ‖u + v‖ is nearly as big as ‖u‖ + ‖v‖. This
argument implies that (1) holds for all α < 2 (of course B depends on α).
M. Laczkovich was so kind to provide us with a formal proof (moreover
he pointed out that improving the ideas even the intersting fact can be
shown that B does not depend on the norm).

Proof of the Lemma. We shall give M. Laczkovich’s proof for
the somewhat stronger statement suggested by the heuristic argument
above, i.e. we shall show that to any ε > 0 there is a B such that for
arbitrary B vectors, there must be a u and a v among them satisfying

(1A) ‖u + v‖ ≥ (1− ε)(‖u‖+ ‖v‖).
Consider the set T = {v; ε/2 ≤ ‖v‖ ≤ 1}. We “draw” around each

point of T an “open sphere” of “radius” % = ε2/2. Since T is compact, we
can select finitely many, say M, of these spheres which still cover T. We
claim that B = M + 1 will satisfy the requirements.

Take any B vectors in Rk.After multiplying them uniformly by a
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suitable constant, we may assume that the maximal norm among them is
exactly 1.

If ‖u‖ < ε/2 holds for some vector u then taking the vector v with
‖v‖ = 1 we have

‖u + v‖ ≥ ‖v‖ − ‖u‖ > 1− ε/2 > (1− ε)(1 + ε/2) > (1− ε)(‖u‖+ ‖v‖) .

Hence we have to deal only with the case when all vectors are in T.
Since B > M, there must be two vectors, u and v, which are in the same
small sphere, i.e. ‖u− v‖ < 2%. Since

‖u‖+ ‖v‖ =
∥∥∥∥

u + v

2
+

u− v

2

∥∥∥∥ +
∥∥∥∥

u + v

2
− u− v

2

∥∥∥∥ ≤

≤ 2
∥∥∥∥

u + v

2

∥∥∥∥ + 2
∥∥∥∥

u− v

2

∥∥∥∥ = ‖u + v‖+ ‖u− v‖

we have
‖u + v‖ ≥ ‖u‖+ ‖v‖ − ‖u− v‖ > ‖u‖+ ‖v‖ − 2% ≥ (1− ε)(‖u‖+ ‖v‖).

(We used ‖u‖ ≥ ε/2, ‖v‖ ≥ ε/2 in the final inequality.)

We turn now to the proof of part a) of the Theorem. To each fixed
n ≥ 2 let us choose infinitely many finite sequences of primes > n so that
the i–th sequence contains exactly i primes. We denote the i–th sequence
by (pnij)i

j=1. Let further be

An,i =
⋃

1≤j≤i

{pnij , npnij , pnijpnil, 0 < l, 0 < j − l ≤ B} .

We can choose the primes pnij so that the elements of the above blocks in
An,i are strictly increasing as j is increasing. Finally let

Am = A2,m−1 ∪ · · · ∪Aj,m+1−j ∪ · · · ∪Am,1 and A =
⋃
m

Am .

By a suitable choice of pnij we can guarantee that the order of An,t in the
definition of Am denotes the natural increasing order of the elements of
An,t and the ordering of the sets Am in A conforms to the increasing of
m, further the rarity condition (R2) is satisfied.

Let f be a function satisfying (C4). Then we have

(2) lim
m→∞

(‖f(am+1)‖ − ‖f(am)‖ = c ,

where c ≥ 0 obviously.
If for some n ∈ N there exists a w such that {f(pniw}∞i=1 is not
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bounded, then by (2) there exists also a sequence (it) such that

(3) ‖f(pnitj)‖ → ∞ as it →∞ for all w ≤ j ≤ w + B

strictly monotonically increasing.
By (1) we can find r, s ∈ {w, w + 1, . . . , w + B} (r 6= s) for wich

(4) ‖f(pnitrpnits)‖ ≥ α min( ‖f(pnitr)‖, ‖f(pnits)‖ )

(r and s may depend on it), i.e.

(5) ‖f(pnitrpnits)‖ − ‖f(pnitz)‖ ≥ (α− 1)‖f(pnitz)‖
holds for z = r or z = s.

At the same time pnitr, pnits and pnitrpnits are in A and there are no
more than L = (B + 2)2 elements of A between any two of them. Hence if
it is large enough then (2) implies

‖f(pnitrpnits)‖ − ‖f(pnitz)‖ ≤ L max{1, 2c}
for z = r or z = s, which, by (3), contradicts (5).

So {f(pnij)}∞i=1 must bounded for any fixed n, j ∈ N. Hence for a
suitable (vt)∞t=1 we have
(6) lim

t→∞
f(pnvtj) = cn,j

where (vt) depends on j (and on n). We start with the sequence (vt)
belonging to j = 1, retain its first element and thin out the rest to abtain
a sequence for j = 2, again we retain the first element, thin out, etc. Using
this simple selecting process, we arrive at a universal sequence (vt) such
that (6) is uniformly satisfied for all j (we keep n fixed).

Let us consider first the case when the limit c in (2) is 6= 0. Then we
have
(7) 2c > ‖f(am+1)‖ − ‖f(am)‖ > c/2

if m is large enough. If j > B, then
pnvtj , npnvtj , pnvtjpnvt,j−B , . . . , pnvtjpnvt,j−1, pnvt,j+1

are consecutive elements of A, hence (6) and (7) imply

‖cn,j+1‖ − ‖cn,j‖ >
Bc

2
,

i.e.
(8) ‖cn,j‖ → ∞ as j →∞ .

Let j > vt/2. By similar arguments as in (4) and (5) and using the
monotonicity of‖cn,j‖, we can find r, s ∈ {j, j + 1, . . . , j + B}, r < s,
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satisfying

(9) ‖f(pnvtrpnvts)‖ − ‖f(pnvtr)‖ ≥
(α− 1)‖cn,r‖

2
it t is large enough. Here the left hand side is bounded (since pnvtr and
pnvtspnvtr are almost consecutive elements of A and we can use (7)) and
the right hand side is unbounded by (8) since t →∞ and j > vt/2 imply
also r →∞.

Let us turn now to the case c = 0 in (2). If for some n ∈ N there
exists a d for which f(pnisd) → 0 for some sequence (is), then (2) implies
also

‖f(n)‖ ≤ ‖f(npnisd)‖+ ‖f(pnisd)‖ → 0 as s →∞ ,

i.e. f(n) = 0 obviously.
If there is no such a d then let us consider the sequence (pnij)∞i=1 for

each fixed j ∈ {1, . . . , B}. We can choose a (vt)∞t=1, for wich

(10) lim
t→∞

f(pnvtj) = cn,j 6= 0 .

By (1) we can find r, s ∈ {1, . . . , B} and vt large enough so that (9) is
satisfied. Using (2) the left hand side of (9) tends to zero as vt → ∞,
which contradicts (10).

We turn now to the proof of part b) of the Theorem. To any n ∈ N let
us choose a strictly monotonically increasing sequence (tni)∞i=1, for which
(tni, n) = 1. Let

Ani = {tni, ntni} and A =
⋃

n,i
Ani .

By a suitable choice of the numbers tni the two elements of Ani will be
consecutive elements in A. So

lim
i→∞

‖f(ntni)− f(tni)‖ = c

implies ‖f(n)‖ = c. This, by (1), gives f ≡ 0.
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