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Oscillation of Nonlinear Differential
Equations of Second Order

By S. R. GRACE (Giza)

Abstract. A new oscillation criterion is established for second order differential
equations of the form

(a(t)z'(£))" + p(t)z'(t) + q(t)|z(t)|* sgnz(t) =0, A >0,

where a,p,q : [to,00) — R are continuous and a(t) > 0 for ¢ > t5. The criterion is
obtained by using an integral averaging technique and can be applied in some cases in
which other known oscillation results are not applicable.

1. Introduction

In this paper we are concerned with the oscillatory behavior of second
order ordinary differential equations of the type

(a(t)z'(t)) + p(t)a’(t) + q(t)|z(t)|* sgnz(t) =0,
(1) .
A>0, ( = E) ’

where a, p, ¢ : [to,00) — R are continuous and a(t) > 0 for t > to > 0.

We restrict our attention to solutions of equation (1) which exist on
some ray [tp,0), to > 0. Such a solution is said to be oscillatory if it has
arbitrary large zeros; otherwise it is said to be nonoscillatory. Equation
(1) is called oscillatory if all its solutions are oscillatory.

Recently, GRACE and LALLI [4] considered the second order differen-
tial equation

(2) (a(t)z’(t)) + p(t)z (t) + q(t)f(z(2)) = 0,
where the functions a,p and ¢ are defined as in equation (1), f: R = R

is continuous, zf(z) > 0 and f'(z) 2 k> 0forz #0, (' = and

%)
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established some oscillation criteria for equation (2) which extend and
improve some of the results of BUTLER [1], COLES [2], [3], KAMENEV (5]
and WILLETT [6]. It is observed that the results in [4] are not applicable to
the special case of differential equation (1) because of the above restriction
on the function f.

Therefore, the purpose of this paper is to establish some new theorems
for the oscillation of equation (1) by using an averaging condition of the
type presented in [4]. The results obtained for the superlinear case, i.e.,
A > 1, extend and improve some of the results of BUTLER [1]. We also
mention that the results of this paper for the sublinear case, 1.e., A < 1 are
new and are independent of those in [1], [3], [6] and [7], but that they are
similar to those in [1]-[6] when A = 1.

2. Main results

Let ¢(t,tp) denote the class of all positive and locally integrable func-
tions, but not integrable, which contains all bounded functions ¢ > t,.
We shall use the following notation. For an arbitrary function ¢ €

®(t,t0) and p € C’ [ [to, 00), (0,00) ] and for any T > to and all T, we let
¢
alt,T) = ] o(s)ds,
7

1
n(t) = aO)pd)’
v(t) = a(t)p'(t) — p(t)p(t),

w[t,T]—r)(t)(/t )ds) ,

v[t, T*] = t)/ ¢q(s) ds, forsome T*>T

and

Aylt,T] =

t .
a[:ﬂ /‘f’(s)fp(u)q(u)duds.
T T

Theorem 1. Soppuse that there exist functions ¢ € ®(t,ty) and p €
C' [ [to, 00), (0,00) ] such that
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(3) ¥(t)>0 and ~'(t)<0 for t2>t,.
(4) gll.% inf / p(s)q(s)ds > —oo;

(5) [ n(eyis = oo

and

(6) /u[.Es;]‘]ds—oo forsome T>t and u, 0<pu<l.

If
(7) tl_i‘r& Aglt, to) = 00

the equation (1) is oscillatory for all A > 1.

PROOF. Let z(t) be a nonoscillatory solution of equation (1). With-
out loss of generality, we assume that z(¢) # 0 for ¢t > t;. Furthermore, we
suppose that z(t) > 0 for t > tg, since the substitution w = —z transforms
equation (1) into an equation of the same form subject to the assumptions
of the theorem. Now, we define

W(t) = (t)a(t)()) for > to.

Then it follows from equation (1) that

z'(t) 2(t)

(8)  W(t) = —p(t)a(t) +(t) 5= 22(2) = 2a(t)p(t) =77y (g’ t 2t

and consequently

t t
z'(t

at)olt) s = 1 = [ o(o)a(s)ds + [+()
(9) ¥ K

z'(s)
—x':\—fs—)ds
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where § = % and ¢; = a(to)p(to) x)((t;;)) :

By the Bonnet theorem, for any ¢ > ¢, there exist a £ € [to,t] so that

t z(€)

[r5 -y(t)[ S ds =(ta) [ u

1o z(to)

= 20 13 (t0) - 2 X0)] < L8021 Mt0) = M

Thus, for t > {5, we get

2 t
(10) a(t)p(t) *(t] +Afa(s p(s) ( (( ) d3+in/p(s)q(s)ds <L
or

(11) W)+ / mzzﬂﬂ'”(s)wz(s)d&-{- / p(s)q(s)ds < L,

where L = ¢; + M,.
Next, we consider the following three cases for the behavior of z°.

Case 1. z" is oscillatory. Thus there exists a sequence {t,, } m=12,.. in
[to,00) with lim t,, = oo and such that z'(¢,,) =0 (m =1,2,...). Thus

m=—0oc

(8) gives

j Xa(s)p(s) ( j,',((?))z ds < L- 7p(s)q(s)ds (m=1,2,...),

tg to

and hence, by taking into account (3), we conclude that

(12) fa(s)p(s) (j}(j)))z ds < co.

to

So, for some positive constant N, we have

ja(s)p(s) (%%)2 ds <N for t2>t,.

to
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By the Schwarz inequality

s - ; 2
([ ) ([ oo (355 )

to

= / =" / TRy

[ Ga)

to

or

: 1/2
|* =2 (t) — &' ~A(to)| < |1 - BIN'/? (/ n(s)ds) ;

to

There exists a t; > to and a constant M > 0 so that

t

1/2
(13) |zl_ﬁ(t)| <M (/ n(s)ds) forall t>t;.

to

Using (13) in (8) we get

Wi(t) < —p(t)q(t) +(t)n(t)W(t) - Mig'w[f,tolwz(f), t2t.

Now, we proceed in a similar way as in the proof of Theorems 1 and 2
in [4].
As in the above proof, we easily obtain

t t

(14) W(t) + %fw[s,tg]wz(s)ds <L - ]p(s)q(s)ds,

131 t

where L; is a constant.
We multiply (14) by ¢(¢) and integrate from t; to t we get

(15) ;/Qf’(S)W(S)dS-i- j%E/‘#’(s)/‘”[uafO]I'Vz(u)du &

ty

<aft,ty] [ L1 — Aglt, 1] ] -
Using condition (7), there exists a t; > t; such that

L] ”A¢[t,t]l <0 for fztg
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Then, for every t > t,
A t 8 t
G(t) = 173 ] é(s) f NN | R / 8(s)W (s)ds.
iy 1 t

Since G is nonnegative we have

¢ 2
(16) G*(t) < ( / gb(s)W(s)ds) .

By the Schwarz inequality, we obtain

{ j ( ¢(s) )(\/w[?“,tulwm)ds} <

Vwls, to]

17 2(s /
(17) < ( tj[s(tc).]ds) /w[s,tolwz(s)ds-_—

= Ez—l.I[t tI]G (t) t2> ta.
Now,

Gl f¢ )/w[u to]W?(u) duds >
(18)

> M2 /¢(3 (fw[u,to]Wz(u)du) ds = calt,t,],

where

tz

e= ﬁ;’ /w[u to]W?(u)du.

ty
From (16), (17) and (18), we get

/\C (8 {f f]}

el > GH2 ()G (1) for all t > t; and some pu, 0 <

(19) el
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Integrating (19) from t; to t, we obtain

Act [8 tl]d 1 1 2
M? V[.S f;] 1-— U Gl_"(tg) s
ty

a contradiction.

Case 2. z° > 0 on [T,o0) for some T > t;. From (2) and (10) it
follows that (12) holds for ¢ > T', hence we can complete the proof by the
procedure of Case 1.

Case 8. z° < 0 on [T, 00) for some T > to. If (12) holds, then we can
arrive at a contradiction by the procedure of Case 1. So, we suppose that
the integral in (12) diverges. Using (3) in (10) we have

@) a5 2 -C+) / a(s)o(s) ( Gepl) s,

where C is a constant. By the assumption, we can choose a T} > T so
that

Ty
(z(s))
A [ a(8)p(s) 55 = ds=1+C
! 2+ (s)

and then for any t > T, we get
_a(t)p(t)f;-((i} (—,\" : )

-C + Afa(s)p (—’i-:.{r';%l;ds

z'(1)
2 =A%)

Integrate the above inequality from T to ¢ we obtain

i [ C+)\T.‘/a(s)p(s)(’\£]g))ds] >,\/(%§)‘3))¢9

1

A
=In (:c(T;))
z(t)
which together with (20) yields

z(T; A
—a(t)p(s) f(?) (_f(;))) ,
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from which it follows that

z'(t) < — (z(Ty))* 5(?515(?5 <0 for t>T,

or

1
a(s)p(s)

contradicting the fact that z(t) > 0 for t > ¢y. This completes the proof.
The following result is concerned with the oscillatory behavior of equa-
tion (1) for all A > 0.

Corollary 1. Let the differentiable function p assumed in Theorem 1
be defined by

(21) p(t) = exp (/ -E((-E-;-ds) for t2>tg,

and let conditions (3), (5)—(7) hold. Then equation (1) is oscillatory for
all A > 0.

PROOF. Let z(t) be a nonoscillatory solution of equation (1), say
z(t) > 0 for t > to. From (21), we see that v(t) = 0 for all ¢ > ¢y5. Now, if
W is defined as in the proof of Theorem 1, then we obtain (10) or (11).

The rest of the proof is similar to that of Theorem 1 and hence is
omitted.

ds - —00 as t— 00,

2(t) < #(Ty) — (2(T1))* ]
Ty

In the following corollary we study the oscillatory behavior of the
undamped equation

(22) (a(t)z' (1)) + ¢(t)|z(t)|* sgnz(t) =0, A >0,
where the functions a and ¢ are defined as in equation (1).

Corollary 2. Suppose that there exists a function ¢ € ®(t,ty) such
that

t
(23)  liminf ] il =4,
t—00
to

oo

(24) ] ﬁd& = 00,

n
(25) /%ds = oo for some T > ty, and pu, 0 < p < 1,
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where
e e ‘a 3)¢%(s ' &3 T | ds
6T = o0 | ()qs()(]a(,)d)d.
B T
If
. : t s .
(26) ‘lln:o m{/(,’b(&){/q(u)duds = 00,

then equation (22) is oscillatory for all A > 0.

151

PRroOOF. It follows from Corollary 1 by letting p(t) = 0 and p(t) = 1

for t > .

The following example is illustrative.

Ezample 1. Consider the second order differential equation

; &
(Wn (t)) +15° (t)
it +— [2 T —sin ‘] |(t)|* sgna(t) = 0

Vi
for A>0 and t>t =7\2

Here, we take

2 4 cost

1 ) 1 :
a(t) = 7 p(t) = i q(t) = 7i [T - Smfl ,

gity=+%. and. di=1l tZ2li=wnid

We consider the following two cases:
(i) Let § =1/2 and A > 1. In this case, we obtain

() = -2—% a[t,w/?]:ln%, A,

1
2V — a3

¥

S

wt,7/s] = i>=x/2

and

u[t,:r]=2t[1n%—\/§(1—\/1r_/t)] for t>t =m>t.
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Now, we can easily calculate that

t

t
m -1
f—(a[s,tl]) ds>1/1(1ni)“ ds +o0ast— o0, u>0

v[s, t] =3P Al %

and
t
—— [ plw)a(u) duds
! é(s)ds i

t s
= 1:“ /E/ﬁ[m—sinu‘ du ds
= ] 2u

1n
=x/2 =/2

> 122¢ {\/5_ (1+21ni—t) \/‘ﬂ'/?l — 00 as t— oo.
n—

m

Thus, all conditions of Theorem 1 are satisfied and hence equation (27) is
oscillatory for all A > 1.
(i1) Let § =1 and A > 0. Then we have

¥#)=0 for t>=/2.

As in the above case, we see that all conditions of Corollary 1 are satisfied
and hence equation (27) is oscillatory for all A > 0.

lW’e note that none of the known oscillation criterion can cover this
result.

Remarks. .
1. In the results obtained here, we note that we do not require that

o0
[ 1/a(s)ds to be finite or infinite, also we do not require that the
damping coefficient p(¢) be a small function.

2. It would be interesting to obtain results similar to those presented
here without condition (4), and also, to study equation (2) without
the restriction that f'(z) > k > 0 for z # 0.
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