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Connected relator spaces

By J. KURDICS (Nyiregyháza) and Á. SZÁZ (Debrecen)

Introduction

In this paper, we study an appropriate notion of connectedness of a
relator space which is a generalized uniform space lacking all the axioms
of uniform space except the reflexivity of the corresponding relations [11].

The results obtained extend some classical results of Riesz and Haus-
dorf on topological connectedness and some recent results of Mrówka
and Pervin [8] on uniform and proximal connectednesses.

Thus, our purpose here is very similar to that of Sieber and Pervin
[10] who studied a related concept of connectedness of Császár’s synto-
pogenous spaces.

0. Notations and terminology

A relator space is an ordered pair X(R) = (X,R) consisting of a set
X and a nonvoid family R of reflexive relations on X which is called a
relator on X.

If (xα) and (yα) are nets, A and B are sets and x is a point in X(R),
then we write:

(i) (yα) ∈ LimR(xα) ((yα) ∈ AdhR(xα)) if ((xα, yα)) is eventually
(frequently) in each R ∈ R;

(ii) x ∈ limR(xα) (x ∈ adhR(xα)) if (x) ∈ LimR(xα)
((x) ∈ AdhR(xα));

(iii) B ∈ ClR(A) (B ∈ IntR(A)) if R(B)∩A 6= ∅ (R(B) ⊂ A) for all
(some) R ∈ R;

(iv) x ∈ clR(A) (x ∈ intR(A)) if {x} ∈ ClR (A) ({x} ∈ IntR(A)).
If R is a relator on X, then the relators

R∗ =
{
S ⊂ X2 : ∃R ∈ R : R ⊂ S

}
,

R# =
{
S ⊂ X2 : ∀A ⊂ X : ∃R ∈ R : R(A) ⊂ S(A)

}
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and
R̂ = {S ⊂ X : ∀x ∈ X : ∃R ∈ R : R(x) ⊂ S(x)}

are called the uniform, proximal and topological refinements of R, respec-
tively.

Namely, R∗, R# and R̂ are the largest relators on X such that
LimR∗ = LimR (AdhR∗ = AdhR), ClR# = ClR (IntR# = IntR) and
limR̂ = limR (adhR̂ = adhR) or clR̂ = clR (intR̂ = intR), respectively.

Therefore, a relator R on X, or a relator space X(R), is called uni-
formly, proximally and topologically fine if R∗ = R, R# = R and R̂ = R,
respectively.

A function f from a relator space X(R) into another Y (S) is called
continuous if f−1◦S ◦f ∈ R for all S ∈ S. Moreover, f is called uniformly,
proximally and topologically continuous if f is continuous as a function of
X(R∗), X(R#) and X(R̂) into Y (S), respectively.

It is not very hard to see that these latter continuity properties agree
with the usual ones in the sense that:

(i) f is uniformly continuous iff (yα) ∈ LimR(xα) implies (f(yα)) ∈
LimS(f(xα));

(ii) f is proximally continuous iff B ∈ ClR(A) implies f(B) ∈ ClS
(f(A));

(iii) f is topologically continuous iff x ∈ limR(xα) (x ∈ clR(A))
implies f(x) ∈ limS(f(xα)) (f(x) ∈ clS(f(A)).

Finally, a relator R on X, or a relator space X(R), is called
(i) uniformly directed if for each R,S ∈ R there exists a T ∈ R such

that T ⊂ R ∩ S;
(ii) proximally symmetric if for each A ⊂ X and R ∈ R there exists

an S ∈ R such that S(A) ⊂ R−1(A).
The importance of these properties lies mainly in the fact that in a

uniformly directed (proximally symmetric) relator space X(R) the relation
LimR may be restricted to directed nets (ClR is symmetric).

1. Uniform, proximal and topological connectednesses

Definition 1.1. A relator R on X, or a relator space X(R), will be
called connected if

A2 ∪ (X \A)2 6∈ R
for any proper nonvoid subset A of X.

Moreover, a relatorR on X, or a relator space X(R), will be calleduniformly,
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proximally and topologically connected if the relators R∗, R# and R̂ are
connected, repectively.

Remark 1.2. Because of the inclusions R ⊂ R∗ ⊂ R# ⊂ R̂, it is clear
that ’topologically connected’ =⇒ ’proximally connected’ =⇒ ’uniformly
connected’ =⇒ ’connected’.

The fact that the converse implications do not, in general, hold will
be cleared up by our forthcoming Examples 1.8, 4.9, and 4.10.

Remark 1.3. Because of the equalities (R#)∗ = R# and (R̂)# = R̂,
it is clear that R is proximally (topologically) connected if and only if
R# (R̂) is uniformly (proximally) connected.

The appropriateness of Definition 1.1 is apparent from the next the-
orem and its subsequent corollary.

Theorem 1.4. If X(R) is a relator space, and moreover Y = {0, 1}
and S = {4Y }, then the following assertions are equivalent:

(i) X(R) is connected;
(ii) each continuous function f from X(R) into Y (S) is constant.

Proof. If f is a function from X into Y , and A = f−1(1), then one
can easily check that

f−1 ◦ 4Y ◦ f = f−1 ◦ f = A2 ∪ (X \A)2.

And hence, by the corresponding definitions, the equivalence of the asser-
tions (i) and (ii) is obvious.

As an immediate consequence of this theorem, we can at once state

Corollary 1.5. A relator space X(R) is uniformly, proximally, resp.
topologically connected if and only if each uniformly, proximally, resp.
topologically continuous function f from X(R) into Y (S), with Y = {0, 1}
and S = {4Y }, is constant.

At this point, it seems also convenient to state the next obvious

Theorem 1.6. If X is an arbitrary set and R = {4X}, then
(i) R is connected if and only if card(X) 6= 2;
(ii) R is uniformly connected if and only if card(X) ≤ 1.

Remark 1.7. Note that if card(X) ≤ 1, then any relator R on X is
topologically connected.

In this respect, it is also worth mentioning that the relator R = {X2}
is always topologically connected.

Now, as a trivial consequence of Theorem 1.6, it is also convenient to
state

Example 1.8. If X is a set such that card(X) ≥ 3, and R = {4X},
thenR is a connected relator on X such thatR is not uniformly connected.



158 J. Kurdics, Á. Száz

2. Characterizations of proximal and topological connectednesses

To state briefly our subsequent characterization theorems, it seems
convenient to introduce two different kinds of clopen sets.

Definition 2.1. A subset A of a relator space X(R) will be called
proximally (topologically) open if

A ∈ IntR(A) (A ⊂ intR(A)).
Moreover, a subset A of a relator space X(R) will be called proximally

(topologically) clopen if both A and X \ A are proximally (topologically)
open.

Remark 2.2. Because of the corresponding definitions, it is clear that
each proximally open set is also topologically open.

Clearly, the converse is not true. However, as an immediate conse-
quence of [11, Theorem 6.7], we still have the next useful

Proposition 2.3. If X(R) is a relator space and A ⊂ X, then the
following assertions are equivalent:

(i) A is a topologically open subset of X(R);
(ii) A is a proximally open subset of X(R̂).

Remark 2.4. Hence, it is clear that a subset of a topologically fine
relator space is topologically open if and only if it is proximally open.

Now, it is easy to state and prove our basic characterization theorems
of proximal and topological connectednesses.

Theorem 2.5. If X(R) is a relator space, then the following assertions
are equivalent:

(i) X(R) is proximally connected;

(ii) no proper nonvoid subset of X(R) is proximally clopen.

Proof. If (i) does not hold, then there exists a proper nonvoid subset
A of X such that

R = A2 ∪ (X \A)2 ∈ R#.

Hence, in particular, it follows that there exist R1, R2 ∈ R such that

R1(A) ⊂ R(A) = A and R2(X \A) ⊂ R(X \A) = X \A.

This shows that both A and X \A are proximally open subsets of X(R).
And thus, (ii) cannot hold.
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Conversely, if (ii) does not hold, then there exists a proper nonvoid
subset A of X for which there exists R1, R2 ∈ R such that

R1(A) ⊂ A and R2(X \A) ⊂ X \A.

Hence, by defining RB ∈ R for each B ⊂ X such that

RB = R1 if ∅ 6= B ⊂ A, and RB = R2 if ∅ 6= B ⊂ X \A,

we can at once state that the relation

R = A2 ∪ (X \A)2

has the property
RB(B) ⊂ R(B)

for all B ⊂ X. Consequently, R ∈ R#, and thus (i) cannot hold.

From this theorem, using Remark 1.3 and Proposition 2.3, we can at
once derive

Theorem 2.6. If X(R) is a relator space, then the following assertions
are equivalent:

(i) X(R) is topologically connected;
(ii) no proper nonvoid subset of X(R) is topologically clopen.

Remark 2.7. Because of [11, Theorem 2.6], it is clear that a subset A
of a relator space X(R) is proximally clopen if and only if

X \A 6∈ ClR(A) and A 6∈ ClR(X \A)

Hence, we can state that a subset A of a proximally symmetric relator
space X(R) is proximally clopen if and only if A is proximally open.

Therefore, from Theorem 2.5, we can also at once derive the next

Theorem 2.8. A proximally symmetric relator space X(R) is proxi-
mally connected if and only if no proper nonvoid subset of X(R) is proxi-
mally open.

Hence, by Remarks 1.3 and 2.4, it is clear that we can also state

Theorem 2.9. A proximally symmetric, topologically fine relator
space X(R) is topologically connected if and only if no proper nonvoid
subset of X(R) is topologically open.

Remark 2.10. Note that a relator space may be called proximally
(topologically) indiscrete if no proper nonvoid subset of it is proximally
(topologically) open.
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3. Characterizations of uniform connectedness

Theorem 3.1. If X(R) is a relator space, then the following assertions
are equivalent:

(i) X(R) is uniformly connected;
(ii) for each proper nonvoid subset A of X there exists a net ((xα, yα))

in A× (X \A) ∪ (X \A)×A such that (xα) ∈ LimR(yα);
(iii) for each proper nonvoid subset A of X there exists a net

((xα, yα)) in A× (X \A) ∪ (X \A)×A such that (xα) ∈ AdhR(yα).

Proof. If (i) holds and A is a proper nonvoid subset of X, then

A2 ∪ (X \A)2 6∈ R∗.
Thus, for each R ∈ R, there exists an (xR, yR) ∈ R such that (xR, yR) 6∈
A2 ∪ (X \A)2, i.e.,

(xR, yR) ∈ A× (X \A) ∪ (X \A)×A.

Hence, by preorderingR with the reverse set inclusion (the largest possible
preorder), we can at once state that ((xR, yR))R∈R is a net in A × (X \
A) ∪ (X \A)×A such that

(xR) ∈ LimR(yR) ((xR) ∈ AdhR(yR)).

Thus, (i) implies (ii) and (iii).
The converse implications (ii) =⇒ (i) and (iii) =⇒ (i) are even more

obvious.

Remark 3.2. In the assertion (iii), we may always assume that the net
((xα, yα)) is directed.

Moreover, assuming the uniform directedness of X(R), we can sup-
plement Theorem 3.1 with the next useful

Theorem 3.3. If X(R) is a uniformly directed relator space, then the
following assertions are equivalent:

(i) X(R) is uniformly connected;
(ii) for each proper nonvoid subset A of X there exists a directed net

((xα, yα)) in A× (X \A) or (X \A)×A such that (xα) ∈ LimR(yα);
(iii) for each proper nonvoid subset A of X there exists a directed

net ((xα, yα)) in A× (X \A) or (X \A)×A such that (xα) ∈ AdhR(yα).

Proof. From the proof of Theorem 3.1, it is clear that in this case
the net ((xα, yα)) may be assumed to be directed not only in the assertion
(iii), but also in the assertion (ii) of Theorem 3.1.
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Therefore, to obtain Theorem 3.3, we need only to note that each
directed net being in a finite union has a directed subnet being in some
member of that union, and to apply [11, Theorem 1.8] and [12, Theorem
1.5].

From this theorem, by using [11, Theorem 3.1], Remark 2.7 and The-
orem 2.5, we can at once derive the next striking

Theorem 3.4. A uniformly directed relator space X(R) is uniformly

connected if and only if it is proximally connected.

Remark 3.5. Our forthcoming Example 4.9 will show that even a prox-
imally directed and uniformly connected relator space X(R) need not be
proximally connected.

4. Connectedness properties of the Davis-Pervin relators

Theorem 4.1. If A is a nonvoid family of subsets of a set X and

RA = A2 ∪ (X \A)×X

for all A ∈ A, then

RA = {RA : A ∈ A}

is a uniformly connected relator on X.

Proof. If B ⊂ X such that

B2 ∪ (X \B)2 ∈ R∗A,

then there exists an A ∈ A such that

A2 ∪ (X \A)×X ⊂ B2 ∪ (X \B)2.

And this implies that B = X or ∅.
Remark 4.2. The relator RA has been called the Davis-Pervin relator

on X generated by A in [12, p. 195].

The proximal and topological connectedness properties of RA can be
easily derived from Theorems 2.5 and 2.6 by using the next simple
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Proposition 4.3. If A is a nonvoid family of subsets of a set X and

B is a proper nonvoid subset of X, then

(i) B is a proximally open subset of X(RA) if and only if B ∈ A;

(ii) B is a topologically open subset of X(RA) if and only if B is a

union of certain members of A.

Proof. If B is a proximally open subset of X(RA), then there exists
an A ∈ A such that

RA(B) ⊂ B.

And hence, since B 6= X and B 6= ∅, it follows that B = A.

Conversely, if B ∈ A, then since

RB(B) = B,

it is clear that B is a proximally open subset of X(RA).
This proves (i). The proof of (ii) is even more obvious.

Remark 4.4. Hence, it is clear that if A is closed under arbitrary
unions, then a subset B of X(RA) is proximally open if and only if it is
topologically open.

Now, as an immediate consequence of Theorem 2.5 and 2.6 and Propo-
sition 4.3, we can at once state the next useful

Theorem 4.5. If A is a nonvoid family of subsets of a set X, then

(i) RA is proximally connected if and only if there is no proper non-

void subset B of X such that both B and X \B are in A;

(ii) RA is topologically connected if and only if there is no proper

nonvoid subset B of X such that both B and X \B are unions of certain

members of A.

Remark 4.6. Hence, it is clear that if A is closed under arbitrary
unions, then A is proximally connected if and only if it is topologically
connected.

Remark 4.7. From Theorem 4.5, it is also clear that if X 6= A1 ∪ A2

for all A1, A2 ∈ A (X 6= ∪A), then RA is proximally (topologically)
connected.

However, in view of Theorem 1.6, it is more interesting to state now
another easy consequence of Theorem 4.5.
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Corollary 4.8. If A is a partition of a nonvoid set X, then
(i) RA is proximally connected if and only if card (A) 6= 2;
(ii) RA is topologically connected if and only if card (A) = 1.

Hence, by Theorem 4.1, we can at once state

Example 4.9. IfA is a partition of a set X such that card(A) = 2, then
RA is a uniformly connected relator on X such that RA is not proximally
connected.

Moreover, from Corollary 4.8, we can also at once state

Example 4.10. If A is a partition of a set X such that card(A) ≥ 3,
then RA is a proximally connected relator on X such that RA is not
topologically connected.

Remark 4.11. Note that if A is as in Corollary 4.8, then RA is not
only strongly transitive, but also proximally directed [12, Example 1.3].

In this respect, it is also worth mentioning that if A is as in Example
4.9, then RA is in addition properly symmetric in the sense that R−1

A =
RA.

5. Notes and comments

It is commonly accepted but quite unreasonable practice to call a
uniform space connected if the underlying topological space is connected.

Proper definitions for connectedness of a uniform space have only been
considered by Lubkin [7, p. 207], Mrówka and Pervin [8], Sieber and
Pervin [10] and James [3, p. 125].

The first part of our Definition 1.1 is partly due to Levine [5] who
showed that a topological space is connected iff its Pervin quasi-uniformity
is connected.

The second part of Definition 1.1 has mainly been suggested by some
former results on uniform, proximal and topological continuities [11].

Because of Theorem 1.4 and Corollary 1.5, it is clear that our present
definitions of the various connectednesses agree with those of the above
authors.

The proximally open sets, Proportion 2.3 and the derivation of The-
orem 2.6 appear to be completely new. They well illustrate the appropri-
ateness of our treatment.

Theorems 2.6 and 2.5, together with Corollary 1.5, greatly extend a
basic fact from topology [3, p. 114] and a part of [8, Theorem 1], respec-
tively.
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Theorems 3.1 and 3.3∗ seem to have no analogues in the existing
literature, while a particular case of Theorem 3.4 was already proved in [8].

If A is a topology, then the relator R′A consisting of all finite inter-
sections of members of RA was first utilized by Davis [2] and Pervin [9].

However, the relationship between A and R′A was more fully explored
only by Levine [5] who actually showed that R′A is uniformly connected
iff A is connected.

Finally, we remark that Levine [6] also proved several relevant theo-
rems concerning well-chained uniformities which will as well be extended
to relator spaces.
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∗Meantime, we observed that our Theorem 3.3 is closely related to Theorem 82 of L.E.
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