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On an Nikolskii-type inequality

By NGUYEN QUANG HOA (Hanoi)

I. Introduction and result
S. M. NIKOLSKII [7] proved in 1951 an inequality of the form

(1-1) ITngL,[02%]< #IT,,(x) (LP[0,2w

where C is a constant independent of 7n(x) and n, 1 < p < g < 00 and
Tn(x) is a trigonometric polynomial of order at most n. This inequality has
had many applications in approximation theory, for example to embedding
problems (see e.g. [10]).

N. X. KY [2] introduced so-caUed {JII, A} systems (A > 0), that is

orthogonal systems w = {k>n("))*Lo> x "~ [@>L ~°° —a” —°>> such
that for each ¢m E mm(w) the following inequality is valid:
(1.2) I dnfJ*[a,6)< CnAF-T1 1 [ltqa,6] 1< < 00,
n
where7Tn(u;)istheset oftheform “a*u”(x), GfcE R, £=0,1,2,...,n.
k=0

nEP ={0,1,2... } and C is a constant independent of pn(x) a*d n.
From previous literature we can see that the classical orthonormal

systems are all of such type (see e.g. [1], [4], [5]). In this paper we give

an inequality of type (1.2) for the General Hermite system, that is the

system {pn(%) ez~x "2\X\Q2} (<*> 0), where pn(x) is the n-th orthonor-
mal polynomial with respect to the weight w(a,x) = e~x/2|x|a/2 (a >
0, —o0 < x < 00). More precisely, we shaH prove the following

Theorem. Let a > 0. For each pn E V (n E N) the following
inequality is valid:

(13) 1 He|z,i(_00,00)< CnlI2 1Pn(x)w(a,x) ||boo(_00,00)
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Here (and throughout the paper) C is an absolute constant, which may
be different at each occurrence. Vn is the set of a,lgebraic polynomials of
degree at most n. Moreover, the inequality (1.3) is sharp in the sense that
there exists a sequence {pn(x)}£L0 0" polynomials satisfying:

1 Pn  #Li(-00,00)> Cnl |[U~(-00,00)

II. Notations and lemmas

We shaU use the following notations applied in [4].

Lu@)y={/; 1 |U*(0,00)< 00;
2.1
u(a,x)e-:r/2zQ2j
L= {/; 1 HLP(-00,00)< 00;
2.2) w(a,x) = e~x2'2a/2}

(o > —1, 1 < P < cx)

We denote the Laguerre polynomials and normaHzed Laguerre polynomials
by

(2.3) Lt(x) = (nl)-"*-e+* (") “(x»+"e-)
and by
(2.4) ux )-(-ir (r(I; i +1)) 1/t* )

(x>0, @> —1, n EP)

respectively.
The normalized General Hermite polynomials will be denoted by H%(x)
(a> 1, x ER) ie.

(2.5) JSE(x) ST (x)e-*2

-00

where Snm is the Kronecker symbol.
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The Laguerre functions and General Hermite functions are denoted by
(2.6) Cdx)= e-*/2z“/2L%“(z)
and by
(2.7) K(*)=e-‘V2M

(a>-1,nepP)
respectively.

Lemma 1. Let V*n-i(/1x) "e "2 e La Vallée-Poussin mean of
the General Hermite expansion of a function f 6 £#(a)(1 < P < °0)> “hen

0° 2n-1
(2.8) VS$?2 (/;*)= / /(<)2 On,a. !(*)"(a:) (<)e-**|ircft
-» %_o0
f 1 ,£<n

w w e .,(t) |~ tisfcs2n,!

PROOF. For / G"sa(a)’~s Hermite-Fourier series is
00 . 7
(2.9) Na*tf”r (z),where ak [ I()tfE(i)e i2]ijach
*—g -1>
If we put Sn(f/x) = 3 akH%(x), then
#=0

r"5;L,(/;X) =i (E S,(/;x)- 2 Si(/;*)).
u Vi) *=) /

Using Abel transform, we have

2n-1 2n-1% °?
T g LC)R/C)M(x)e--% ™I
#=0 =0 =0
2n-1 °? /2n-1 N
(2.10) = X) Me Ef(t)aZ(x)e-*"\t\°dtl J2 1

f—0 ~ 00 \ i—k
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analogously,
n 1 mn 1 (X)

(2.11) £> (/%) =£>-*%) /| /(OA?2(*)A*(*)e" il «t
fo fo 4,

(2.10) and (2.11) lead to (2.8). q.e.d.
Denoting by (C, 1)” (a)(/; x) the first Cesaro mean of (2.9) we have

(2.12) (C, 1)2<*>(h1) = i]12 (£ ajfff(x) 1.

A=0 VjZo
We can see that

(2.13) (C, Df<*>(/;x)

00 / n \

=/ Jw iE ('-~)* * M * % (% ))'Aj* p*

<*=()
Lemma 2.
(2.14) AXn(x) = L Mi (x2)
(2.15) A"m+1(x) = 1*~(x2)x (a>-1,x 6 R)
PROOF. Let y= x2, then
@ ()
J  LTHILT e Nak=
-00 0
@
- J  Ln*~  (y)L°F (v
analogously,
00

7 LM~ (x2)xL"~(x2)xe~z2\x\a

= J L"~ (y)L"~ (y=



On an NikoLskii-type inequality 199

finally,

00

/ L'Pr (x2)L"~(x2)xe K[“dx=0 Vn,mGP

as the integrand is an odd function, g.e.d.

Lemma S.
-1 2a-1
v9m~x-?n~ ,0 < x2 <
u-1/%*,
(2.16) |w & (x)|<d
Ww/x2 13+ \x2—~D] M ,v|2 < X2 < 3u/2

xi/2e-y*2 ,3i//12 < X2
ux " rl ,0<x2<l1l/u
v~I1!4 /v < X2 < v|2

(2.17) [Whm+iWi<4
Ww/x2 13+ x2D] 1M ,v|2 < X2 < 3v/2

X1Me" 7%2 3012 < X2
where C17 are positive constants independentofn, i/ = 4n + a + 1.

PROOF. Let y = X2. Using lenrnia 2. we have

(WI.(F)I = |iO *)e-,,/2|*[/r|= |[tf>)e-"V '*|
using [3] , (2.8) we get (2.16). The proof of (2.17) is analogous, q.e.d.

Corollary 1. Ha >1/2 then
1120 < X2 <
(2.18) W2, (x)[<C {I
2.19 \II[n+1(x)\< C 0= X 3n
<
(2.19) I n+1(x) {I/zg'7*
where C7j arepositiveconstan=4 + a + 1.

Lemma 4.
''nl/2p—/4

(2.20) (%) Wy 1 n-(1/12+1/6p) 4 C
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(2.21) Sr+1(*)-5,%,(*)inb(,l~n,2'-1/< (n*00)

PROOF. Assume that n is even, i.e. n = 2rn (m GN) (the case when
n is odd, leads to a sUght modification only).
Let y —x2. We have

1Ip

2. ()11 %,., = ILiif1(")ILij,., =( j\iT tfy -""iM °n\d4
-00

1/p

JlLtT(y)e->lA-'AJyj =HiT(.V) 111'7-75_7:55

Put a= a/2 —1/p, a+ b= (a —1)/2,then a+ 6> —1 and a > —2/p as
a > —1. FVom [4], (2.9) we get

11*r-W IIiJw =II ii-'w ilij,.,.

[ m1/2*1/4 J <p<4 f nil/2p~1" ,I<P<4
~\ m-d/i2-i/6p) fd<p<oo. ~ 1 n-(i/i2+i/6p) U <p <

(2.21) is proved from (2.20) and the fact that n” (1/12+1/6?) < UlI2P-114
for n GN, 4 < p < oo. g.e.d.

Lemma 5.
(2.22) ess supAn(*; a, a —1/2, 1)< C ,a>—/2
(2.23) An(*; a, a - 1/2, 0) < C ,a>-1/2

Here An(*;a,7,1) is the Lebesgue function, defined by

(2.24) An(i-a,b 6) = (AGF \Y, A *n_kLk(x)Lf(t)\
o *=0

where

(2.25) A* = ( + A

PROOF. (2.23) was proved in ([3] p. 30-31). Putting r = —1/4 into
[8], Corollary of theorem 1, we obtain

1(C,1)t 11(%,..,,..]1 £ C .
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However
1 (C,1)“ H["(a-1/2)]= ess 1/2,1)

(c.f. [3], (4.19)) so we get (2.22). q.e.d.

III. The proofofthe Theorem

Using the notation (2.2) we shall show the existence of a constant C
such that

(3.1) P Cnk||£~@)

for every pn G Vn, and this inequality is sharp. Let pn G Vn be arbitrary,
then

I Al | # il
=12(C.1S (p.:x)-(C.1HS>(p*:x) It
<2l (C,DK (p.,;x) |tiia) + H(C,1 (L1
< £21(2n-1) + Kn
where
00 n
e-S/2\t\a/2dt
iM = JE ('-~i)w fO
~00 k~° LH)
Ab/2 +vAV A 00
] , . , + J ).
) g ' 0770 y/lv/2

h(n) <p (1-" ") I §HI[ez) IUtlal \Fk (t)\e-""IH®l4t
yjtTj2

< BP9 /

y3ir/2

=0

- Dj
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Hence, using lemma 3. and lemma 4, we obtain

n 00

h(n) < C kIS4 f xlI!2eIx dx

3.2) <Cnj'4 J
VAV2
< Cn5Ze-"n' 1/4<Cne’n < C
Analogously, we can see that
(3.3) hi{n)<C

Now, let us prove that /2(n) < Cnl/2 Let » = 2m + 1 (the case
n = 2m can be dealt with in a similar way with slight modification)

2m+1

(Adhr)*rw*iv— £ (‘—srPi) ****** )
Jb=0 *=0

=E(1- 2" 2)4(%)4m+£L (i- éra) S*wW&*w

E

+E (> -2 1 )Ar (.27 (* 1><

~@@m+2)E b (1% *' (12)i(=:J1i+ A2+ JI3

SO A BH2(x)HW e I~|a:i|*“2cix<ii
«KE>- ] -

Qg TIT 2 —
3 Voo
<4 AN S/ [\Ajle
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Putting x = £2, r2, we get
37200 N | \
h(n)=cj ] E(A-")v'(ov'w
0 0 J-0
3v/2 oo
r | o - s ) N 3 i"~("T)a™d"d
0 0 J_o
3%A/2 00
1 *A Aati .o« A pyrAd g
+C g AT 2J7E AV <«V W [ ( r) T
A% J=0

=c/ E(L-dn)if & p M

372/2 00 m

+c § E(l-dn) (@

00 JO
3t//2 oo
+
.
3i//2
=C Am(r ;~2~> Ay A’ Or 1247
0
3u/2
+ C JAm (r;”ii, ~, I)r_1/2dr
3i//2
+
(2m A 2)

Hence (2.22) and (2.23) of lemma 5. yield

3i//2 3t//2
hin)<C T~ 1/2dr+ A/ 1d
(3.4) (n)=<¢,; [ pmads 2 f
(6] o

<Cvl'2<Cnl'2
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(3.2), (3.3) and (3.4) lead to (3.1).

FinaUy, we show that (3.1) is sharp. We can choose the test polyno-
mials as foHows:

3.5) pn(x) ;= {HZ(x)51“ 2(x)} xGR, n>2

Then, for 1 < p < oo, by (2.21)
IPn(*) 11%. = 1K (x) - e; ,(z) Tililai- »m/»'-+/<

Consequently,
1|pn(*;iiLH(ﬁ)— B L2

Thus there exists a constant C > 0, such that for each n GN
IIA(*) H . > ¢ ~ 11IA(*) IU-.,

This completes the proof of the Theorem, q.e.d.
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