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Convergence rates in the law of large numbers
for arrays1

By ISTVÁN FAZEKAS (Debrecen)

1. Introduction

The classical Marcinkiewicz and Zygmund [16] strong law of large
numbers states the following. Let X1, X2, ... be independent identically
distributed (i.i.d.) random variables (r.v.’s) with EXi = 0 if
E|Xi| < ∞, Sn = X1 + · · · + Xn, 0 < q < 2. Then limn→∞ Sn/n1/q = 0
almost surely if and only if E|Xi|q < ∞.

The rate of convergence to zero of quantities P (|Sn|/n1/q > ε) is
described by the well-known theorem of Baum and Katz [2]:

Theorem BK. Let X1, X2, ... be i.i.d. r.v.’s (with EXi = 0 if
E|Xi| < ∞), Sn = X1 + · · · + Xn. Let t > 0, r ≥ 1, r/t > 1/2. Then
E|Xi|t < ∞ is the necessary and sufficient condition that

(1.1)
∞∑

n=1

nr−2P (|Sn| > nr/tε) < ∞ for all ε > 0.

For r = t = 2 this theorem is due to Hsu and Robbins [11] and
Erdős [3] and [4]. If r = t = 1 the theorem has been proved by Spitzer
[17]. The other cases have been obtained by Katz [14] and Baum and
Katz [2]. In this paper we shall refer to (the sufficiency part of ) Theorem
BK as Spitzer’s theorem if r = 1 and as the Katz theorem if r > 1.

Theorem BK has been extended in several directions such as to Ba-
nach space valued random variables (see e.g. Jain [13], Woyczyński
[18]), to subsequences (see e.g. Gut [8]), to random variables with multi-
dimensional indices (see e.g. Gut [7] and Fazekas [5]), etc.

1This research was supported by Hungarian Foundation for Scientific Researches under
Grant No. OTKA-429/1989 and Grant No. OTKA-1650/1991.
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If inequality (1.1) is satisfied with r = 2 and t = 2q then it is said that
the sequence Sn/n1/q converges to 0 completely. Complete convergence
for arrays of r.v.’s has been studied recently by Hu, Móricz and Taylor
[12] and Gut [9]. Hu, Móricz and Taylor [12] established the following
result:

Let {Xnk, k = 1, ..., n, n = 1, 2, ...} be an array of rowwise in-
dependent r.v.’s, EXnk = 0 for all n and k, Sn =

∑n
k=1 Xnk. Sup-

pose that {Xnk} is weakly dominated by a random variable X such that
E|X|2q < ∞, 1 ≤ q < 2. Then Sn/n1/q converges to 0 completely.

Gut [9] completed the above result and simplified its proof.

The present paper is devoted to extensions of some results of Gut
[90]. We use the concept of weak mean domination (Definition 2.1) intro-
duced by Gut [90]. This condition is less restrictive than the previously
used weak domination condition (in other words uniformly bounded tail
probabilities, see e.g. Hu, Móricz and Taylor [12], Woyczyński [18]).
We formulate our results in terms of Banach space valued r.v.’s. However,
in view of Gut [9], they seem to be new in the case of real r.v.’s, too.

In Section 2 basic definitions and lemmas are given. Section 3 is
devoted to extensions of the Katz theorem to weakly mean dominated
arrays of Banach space valued r.v.’s. Motivated by Jain [13], Theorem 3.5
deals with the case of general Banach spaces. In this case boundedness
in probability of the normalized partial sums is required. Thereom 3.1 is
a consequence of Theorem 3.5 for Banach spaces of type p. However, a
straightforward proof of Theorem 3.1 is included because it is short and
easy especially for real r.v.’s.

In Section 4 Spitzer’s theorem is generalized to arrays. Section 5 is
devoted to the necessity part of Theorem BK. Proposition 5.1 offers the
converse statement to theorems 3.1, 3.5 and 4.1 in the case of identically
distributed r.v.’s. Proposition 5.2 deals with non-identically distributed
r.v.’s. In this case the necessary condition is expressed with tail probabil-
ities of Xnk.

In Section 6 arrays of the form {Xnk, k = 1, ..., kn, n = 1, 2, ...}
are studied. Theorems 6.2 and 6.4 offer Katz and Spitzer type results
for Skn =

∑kn

l=1 Xnl. Here we mention only that in the case of “rapidly”
increasing sequences {kn} the sufficient moment condition can be signifi-
cantly weaker than in the case of kn = n (Remark 6.5b). The results of
this section seem to be new even for i.i.d. real r.v.’s (compare with Gut
[8]).
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2. Notation and preliminary results

Let B be a real separable Banach space with norm | . | . We suppose
that B is equipped with its Borel σ-field B. Let {Xnk, k = 1, . . . , n, n =
1, 2, . . . } be a triangular array of rowwise independent B-valued random
variables (r.v.’s). We do not assume independence between rows. Let
Sn =

∑n
k=1 Xnk, n = 1, 2, ..., denote the row sums.

Throughout the paper we assume that

(2.1) EXnk = 0 whenever E|Xnk| < ∞ ,

k = 1, ..., n, n = 1, 2, . . . .

(If E|X| < ∞, then EX is to be understood in the Bochner sense.)
Definition 2.1 (Hu, Móricz, Taylor [12], Gut [9]). We say that the

array {Xnk, k = 1, . . . , n, n = 1, 2, . . . } is
(a) weakly dominated by the r.v. X if

(WD) P (|Xnk| > x) ≤ P (|X| > x)
for all x > 0 and for all k and n;

(b) weakly mean dominated by the r.v. X if, for some γ > 0,

(WMD)
1
n

n∑

k=1

P (|Xnk| > x) ≤ γP (|X| > x)

for all x > 0 and for all n.

The (WMD) assumption is strictly weaker than the (WD) assumption
(Gut [9], Example 2.1). The following example shows that this is true for
sequences, as well.

Example. Let |Xk| = k
1
4 if k = 2l (l = 1, 2, . . . ) and |Xk| = 1

otherwise. Then {Xk} satisfies (WMD) but does not satisfy (WD).
We shall use the well-known inequality of P. Lévy (see Hoffmann-

Jørgensen [10]).

Lemma 2.2. If X1, . . . , Xn are independent, symmetric, B-valued
r.v.’s, Sn = X1 + · · ·+ Xn, then for λ > 0

(2.2) P

(
max

1≤j≤n
|Sj | > λ

)
≤ 2 P (|Sn| > λ).

The most powerful tool used in this paper is the following inequality
(see Hoffmann-Jørgensen [10], Jain [13]).
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Lemma 2.3. Let X1, . . . , Xn be independent, symmetric, B-valued
r.v.’s, Sn = X1 + · · ·+ Xn. If s, t are nonnegative real numbers, then

(2.3) P (|Sn| > 2t + s) ≤ P

(
max

1≤k≤n
|Xk| > s

)
+ 4(P (|Sn| > t))2.

Moreover, if j is a positive integer, then

(2.4) P (|Sn| > 3jt) ≤ AjP

(
max

1≤k≤n
|Xk| > t

)
+ Bj(P (|Sn| > t))2

j

,

where Aj and Bj are nonnegative constants which depend only on j.

In the symmetrization/desymmetrization procedure we use the fol-
lowing inequalities. Let X∗ = X −X ′ be a symmetrization of the r.v. X.
Then

(2.5) P (|X∗| ≥ t) ≤ 2 P (|X − a| ≥ t/2) for every a ∈ B and t ≥ 0.

On the other hand we have

(2.6) P (|X∗| ≥ t/2) ≥ P (|X| > t) P (|X ′| < t/2) for every t ≥ 0.

Let Φ denote the set of functions ϕ : [0,∞) → [0,∞) that are strictly
increasing, unbounded, and ϕ(0) = 0.

The following lemma is a version of Lemma 2 of Bakštys and Nor-
vaǐsa [1].

Lemma 2.4. Let X1, X2, ... be a sequence of B-valued r.v.’s and let
{X∗

i = Xi −X ′
i, i = 1, 2, ...} be its symmetrization. Let ϕ ∈ Φ and let t

and δ be positive numbers. Suppose that

(2.7) P (|Xi| < ϕ(i) t/2) > δ for i > nt,δ.

Then there exists an n0 = n0(t, δ) such that

(2.8) P

(
max

1≤i≤n
|X∗

i | > ϕ(n) t/2
)

> δP

(
max

1≤i≤n
|Xi| > ϕ(n) t

)

for n > no.

Moreover

(2.9) P

(
sup
i≥n

|X∗
i |

ϕ(i)
>

t

2

)
≥ δP

(
sup
i≥n

|Xi|
ϕ(i)

> t

)
for n > n0.

Proof. Let n0 be so large that

(2.10) inf
j<n

P (|Xj | < ϕ(n) t/2) > δ for all n > n0.
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Let n > n0 and set

(2.11) Bi = {|X ′
i| < ϕ(n) t/2}, Ai = {|Xi| > ϕ(n) t}, i = 1, ..., n.

Then {|X∗
i | > ϕ(n) t/2} ⊃ AiBi for i = 1, ..., n. An application of

the “Lemma for events” (Loève [15] p. 258 ) yields (2.8). The proof of
(2.9) is similar.

We adopt the following notation used by Jain [13]. If ϕ and ψ are in
Φ (the class of functions introduced just before stating Lemma 2.4), then
θ denotes the composite function

(2.12) θ = ϕ ◦ ψ.

Define a sequence {β(n), n = 1, 2, . . . } by

(2.13) β(n) = θ(n + 1)− θ(n), n = 1, 2, . . . .

We assume that the sequence {β(n)} satisfies the following condition

(2.14) for some C1, C2 > 0, C1 ≤ C2 β(n + 1) ≤ β(n) for all n.

We suppose also that ϕ satisfies the so called ∆2-condition, which is
equivalent to the following

(2.15) for some C < ∞, ϕ(3x) ≤ C ϕ(x) for all x > 0.

We need the following lemmas of Jain [13].
Lemma 2.5. Let X be a B-valued r.v. and ϕ ∈ Φ. Then

(2.16) E ϕ(|X|) < ∞ iff

∞∑
n=1

β(n) P (|X| > ψ(n)) < ∞.

In particular, for r > 0, t > 0

(2.17) E|X|t < ∞ iff

∞∑
n=1

nr−1P
(
|X| > nr/t

)
< ∞.

Lemma 2.6. Let {Xnk, k = 1, . . . , n, n = 1, 2, . . . } be an array of
rowwise independent, symmetric B-valued r.v.’s, Sn =

∑n
k=1 Xnk , n =

1, 2, . . . . Let ϕ ∈ Φ satisfy condition (2.15). Assume that there exists a
nonnegative sequence {γn, n = 1, 2, . . . } such that {|Sn|/γn} is bounded
in probability. Then there exists a constant A < ∞ such that

(2.18) E ϕ(|Sn|) ≤ 2C

n∑

k=1

E ϕ (|Xnk|) + 8 A Cϕ(γn) for all n.

The proof of this lemma is the same as Theorem 3.1 of Jain [13].
The following lemma is a variant of Lemma 2.1 of Gut [9].
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Lemma 2.7. Let the array {Xnk} be weakly mean dominated by X.

(a)
∑n

k=1 E|Xnk| ≤ nγE|X|.
(b) If ϕ ∈ Φ then {ϕ(|Xnk|)} is weakly mean dominated by ϕ(|X|).
(c) If A > 0 then

(2.19)
n∑

k=1

E|Xnk|I{|Xnk| > A} ≤ γnE|X|I{|X| > A}.

Here, and in the sequel, I{ . } denotes the indicator of a set.

We also need the following statement of Woyczyński [18] (Prop.
1.3):

Lemma 2.8. Let {Xi} be independent, symmetric B-valued r.v.’s,
Sn =

∑n
k=1 Xk. Let {ai}, {bi}, {ci} be sequences of positive numbers

such that ai ↑ ∞, ci ↓ 0 and
∑j

i=1 2ib2i = O(2jc2j ). If

(2.20)
∞∑

n=1

cnP (|Sn|/an > ε) < ∞ for all ε > 0,

then

(2.21)
∞∑

n=1

bnP

(
sup
k≥n

{|Sk|/ak} > ε

)
< ∞ for all ε > 0.

We recall that the Banach space B is of (Rademacher) type p (0 <
p ≤ 2) iff there exists a C > 0 such that

(2.22) E |
n∑

i=1

Xi|p ≤ C

n∑

i=1

E|Xi|p

for every independent B-valued r.v.’s X1, . . . , Xn with E|Xi|p < ∞ (and
EXi = 0, if p ≥ 1), i = 1, . . . , n. We remark that there is no Banach
space of type p for p > 2 and every Banach space is of type p for 0 < p ≤ 1.
Moreover, if B is of type p and p′ < p, then B is of type p′.

The following version of the Marcinkiewicz-Zygmund inequality is due
to Woyczyński [18]:

Lemma 2.9. Let B be of type p (1 ≤ p ≤ 2), q > p. Let X1, . . . , Xn be
independent B-valued r.v.’s with E|Xi|q < ∞ and EXi = 0, i = 1, . . . , n.
Then there exists an A > 0 such that

(2.23) E |
n∑

i=1

Xi|q ≤ A n(q−p)/p
n∑

i=1

E|Xi|q.
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For q = p inequality (2.23) reduces to inequality (2.22).

3. Generalizations of the Katz theorem

In this section we generalize the Katz theorem for weakly mean domi-
nated Banach space valued arrays. In Theorem 3.5 the case of general
Banach spaces and general normalizing functions are considered. This the-
orem has been obtained by Jain [13] for i.i.d. B-valued sequences. Our
proof relies heavily on the method of Jain [13]. Theorem 3.1 is a conse-
quence of Theorem 3.5 for Banach spaces of type p and for power functions
as normalizing functions. However, we give an independent proof of The-
orem 3.1 because it is short due to the direct applicaton of the Hoffmann-
Jørgensen and the Marcinkiewicz-Zygmund inequalities (see also Theorem
2.1 of Gut [9]).

Theorem 3.1. Let {Xnk, k = 1, . . . , n, n = 1, 2, . . . } be an array
of rowwise independent B-valued r.v.’s. Suppose that this array satisfies
condition (WMD) with X such that E|X|t < ∞ for some t > 0. Set
Sn =

∑n
k=1 Xnk, n = 1, 2, . . . . Suppose that B is of type p for some

0 < p ≤ t ∧ 2. If r > t/p, then

(3.1)
∞∑

n=1

nr−2P (|Sn| > εnr/t) < ∞ for all ε > 0.

Proof. First we assume symmetry. By inequality (2.4)

(3.2) P (|Sn| > 3jεnr/t) ≤

≤ Aj

n∑

k=1

P (|Xnk| > εnr/t) + Bj(P (|Sn| > εnr/t))2
j

.

Let us consider the second term in the right-hand side of (3.2). If
t ≤ 1, by Markov’s inequality, the cr-inequality and Lemma 2.7

(3.3) P (|Sn| > εnr/t) ≤ E|Sn|t
εtnr

≤ 1
εtnr

n∑

k=1

E|Xnk|t ≤ γE|X|t
εtnr−1

.

If t ≥ 1, then Markov’s inequality, the Marcinkiewicz-Zygmund in-
equality and Lemma 2.7 give

(3.4) P (|Sn| > εnr/t) ≤ E|Sn|t
εtnr

≤ Cnt/p−1

εtnr

n∑

k=1

E|Xnk|t ≤ CE|X|t
εtnr−t/p

.
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By (3.2)–(3.4)

(3.5)
∞∑

n=1

nr−2P (|Sn| > 3jεnr/t) ≤

≤ Ajγ

∞∑
n=1

nr−1P (|X| > εnr/t) + Bj

∞∑
n=1

nr−2

(
γE|X|t
εtnr−λ

)2j

,

where λ = 1 if t ≤ 1 and λ = t/p if t > 1. The first term on the right-hand
side of (3.5) is finite (by E|X|t < ∞ and Lemma 2.5) while the second
term can be made finite by choosing an appropriate j if r > λ, i.e. if r > 1
whenever t ≤ 1 and if r > t/p whenever t > 1. The proof is complete in
the case of symmetric r.v.’s.

In the general case let {X∗
nk} be a symmetrization of {Xnk}. By (2.5),

the array {X∗
nk} satisfies condition (WMD) with 2X and 2γ. Therefore

the sums S∗n corresponding to {X∗
nk} satisfy (3.1). On the other hand,

(3.3) and (3.4) imply that

(3.6) P (|Sn| < εnr/t) > δ if n > nδ.

Thus an application of inequality (2.6) completes the proof.

Remark 3.2. If we specialize Theorem 3.1 we obtain some previous
results. In the case of B = R and r = 2 we get Theorem 2.1 of Gut [9].
In the case of B = R, r = 2 and condition (WD) we get Theorem 2 of
Hu, Móricz and Taylor [2]. In the case of a sequence {Xi} of weakly
dominated, independent B-valued r.v.’s and 1 < t < 2 we obtain (a part
of) Theorem 4.3 of Woyczyński [18].

Remark 3.3. Using the notation of Theorem 3.1, let Snl =
∑l

k=1 Xnk,
l = 1, . . . , n, n = 1, 2, . . . . Under conditions given in Theorem 3.1 we have

(3.7)
∞∑

n=1

nr−2P

(
max

1≤l≤n
|Snl| > εnr/t

)
< ∞ for all ε > 0.

The proof of this fact is the same as that of Theorem 3.1 if one uses
Lévy’s inequality in the symmetric case and inequality (2.8) instead of
(2.6) in the general case.

Corollary 3.4. Let us suppose that the array in Theorem 3.1 is given
by a sequence: Xnk = Xk for all n and k. Then, under conditions of
Theorem 3.1,

(3.8)
∞∑

n=1

nr−2P

(
sup
k≥n

{|Sk| /kr/t} > ε

)
< ∞ for all ε > 0.
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Proof. As r > 1 we can apply Lemma 2.8 in the symmetric case.
The general case follows from the symmetric case if we use (2.9).

Assume that functions ϕ and ψ belong to Φ, functions θ and β are
defined by (2.12) and (2.13), respectively, and conditions (2.14) and (2.15)
hold.

Theorem 3.5. Let {Xnk, k = 1, . . . , n, n = 1, 2, . . . } be an array
of rowwise independent B-valued r.v.’s. Suppose that this array satisfies
condition (WMD) with X such that E ϕ(|X|) < ∞ for a ϕ ∈ Φ. Set
Sn =

∑n
k=1 Xnk, n = 1, 2, . . . . Suppose that there exists a sequence γn

such that {|Sn|/γn} is bounded in probability and

(3.9) (n ∨ ϕ(γn))/θ(n) = O((log n)−δ ∧ (β(n))−δ) for a δ > 0.

Then

(3.10)
∞∑

n=1

(β(n)/n) P (|Sn| > εψ(n)) < ∞ for every ε > 0.

Proof. We first assume symmetry. By inequality (2.4)
(3.11)

P
(|Sn| > 3jεψ(n)

) ≤ Aj

n∑

k=1

P (|Xnk| > εψ(n))+Bj (P (|Sn| > εψ(n)))2
j

.

By Markov’s inequality, lemmas 2.6 and 2.7, and condition (3.9) we
have

(3.12)

P (|Sn| > εψ(n)) ≤ P (ϕ(|Sn|) > ε′θ(n)) ≤ Eϕ(|Sn|)
ε′θ(n)

≤

≤ [2C

n∑

k=1

Eϕ(|Xnk|) + 8ACϕ(γn)] /[ε′θ(n)] ≤

≤ [2CnEϕ(|X|) + 8ACϕ(γn)] /[ε′θ(n)] =

= O

(
n ∨ ϕ(γn)

θ(n)

)
= O

(
(log n)−δ ∧ (β(n))−δ

)
.

Multiplying (3.11) by β(n)/n, summing on n, using condition (WMD) and
inequality (3.12) we obtain

∞∑
n=1

(β(n)/n)P
(|Sn| > 3jεψ(n)

) ≤(3.13)

≤ Ajγ

∞∑
n=1

β(n)P (|X|>εψ(n)) + Bj

∞∑
n=1

β(n)
n

[O
(
(log n)−δ∧(β(n))−δ

)
]2

j

.
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The first term on the right-hand side of (3.13) is finite by Lemma 2.5. The
second term is

(3.14) Bj

∞∑
n=1

β(n)
n

O(log n ∨ β(n))−δ2j

=
∞∑

n=1

O

(
1
n

1
(log n)1+α

)
< ∞

(where α > 0 can be attained by choosing an appropriate j). Therefore,
(3.10) is proved in the symmetric case.

In the general case we symmetrize . Let {X∗
nk = Xnk−X ′

nk} be a sym-
metrized version of {Xnk} and {S∗n}, {S′n} the partial sums corresponding
to {X∗

nk} and {X ′
nk}, respectively. {X∗

nk} satisfies condition (WMD) with
2X and 2γ, Eϕ(|2X|) < ∞. Inequality (2.5) shows that {|S∗n| /γn} is
bounded in probability. Therefore

(3.15)
∞∑

n=1

(β(n)/n) P (|S∗n| > εψ(n)) < ∞ for all ε > 0.

By (3.9), limn→∞ γn/ψ(n) = 0. Since {|Sn|/γn} is bounded in probability,
we get

(3.16) lim
n→∞

P (|Sn| > εψ(n)) = 0 for all ε > 0.

Now, an application of inequality (2.6) completes the proof.

Remark 3.6. Let B be of type p (1 ≤ p < 2), E|X|p < ∞. Then
Markov’s inequality, the condition of type p (or the Marczinkiewicz-Zyg-
mund inequality), and (WMD) give

(3.17) P (|Sn| /γn > ε) ≤ ε−1AE|X|p n1/p/γn for all ε > 0.

Therefore, if {n1/p/γn} is bounded, then {|Sn| /γn} is bounded in proba-
bility in the case considered.

We mention the following : if B is of type ϕ, where ϕ is a sub-
multiplicative Orlicz function, Eϕ(|X|) < ∞, then the boundedness of
{nϕ(1/γn)} is sufficient that {|Sn|/γn} be bounded in probability. The
proof is a modification of the method used in Theorem 4.1 of Fazekas [6].

Remark 3.7. Using the above remark one can specialize Theorem 3.5
to get Theorem 3.1.

4. A generalization of Spitzer’s theorem

In this section we generalize Spitzer’s theorem to weakly mean domi-
nated arrays of B-valued r.v.’s, where B is of type p+δ. For real r.v.’s this
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theorem has been obtained by Gut [9], Theorem 6.1. For weakly domi-
nated sequences this theorem has been proved by Woyczyński [18]. To
prove our theorem we follow the methods of Theorem 4.3 of Woyczyński
[18].

Theorem 4.1. Let {Xnk, k = 1, . . . , n, n = 1, 2, . . . } be an array
of rowwise independent B-valued r.v.’s, Sn =

∑n
k=1 Xnk. Suppose that

{Xnk} satisfies condition (WMD) with X such that

(4.1) E|X|p(log+ |X|)u < ∞
for some 0 < p < 2, u ≥ 0. Assume that B is of type p + δ for some
δ > 0 (p + δ ≤ 2). Then

(4.2)
∞∑

n=1

n−1(log n)uP
(
|Sn| > n1/pε

)
< ∞ for all ε > 0.

Proof. Introduce the truncated variables Ynk = Xnk I{ |Xnk| ≤
n1/p}. Then

∞∑
n=1

n−1(log n)uP
(
|Sn| > n1/pε

)
≤

≤
∞∑

n=1

n−1(log n)uP

(
max

1≤k≤n
|Xnk| > n1/p

)
+(4.3)

+
∞∑

n=1

n−1(log n)uP

(
|

n∑

k=1

Ynk| > n1/p ε

)
.

Using condition (WMD), Lemma 2.5, and (4.1) one can see that the first
term on the right-hand side of (4.3) is finite. To estimate the second term
define

(4.4) X ′ = X ′(n, p) = X I{|X| ≤ n1/p}+ n1/pI{|X| > n1/p}.
If p < 1, then Markov’s inequality, the cp-inequality, and condition (WMD)
imply that

(4.5) P

(
|

n∑

k=1

Ynk| > n1/pε

)
≤

≤ n−
p+δ

p ε−(p+δ)
n∑

k=1

E|Ynk|p+δ ≤ Cn−
δ
p E|X ′|p+δ,
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where p + δ ≤ 1. Now, consider the case p ≥ 1. We have (recall that
EXnk = 0)

|
n∑

k=1

EYnk| = |
n∑

k=1

EXnkI{|Xnk| > n1/p}| ≤(4.6)

≤ nE|X|I{|X| > n1/p} ≤
≤ n

n(p−1)/p
E|X|pI{|X| > n1/p} = o(n1/p) if n →∞.

Therefore, if n is large enough, say n > nε, then

(4.7) P

(
|

n∑

k=1

Ynk| > n1/p ε

)
≤ P

(
|

n∑

k=1

(Ynk − EYnk)| > n1/p ε/2

)
.

Using Markov’s inequality, the assumption that B is of type p + δ, the
cp-inequality, and condition (WMD) we get (p ≥ 1)

P

(
|

n∑

k=1

(Ynk − EYnk)| > n1/p ε

)
≤

C1n
−(p+δ)/p

n∑

k=1

E|Ynk − EYnk|p+δ ≤(4.8)

≤ C2 n−(p+δ)/p
n∑

k=1

E|Ynk|p+δ ≤ C3 n−δ/p E|X ′|p+δ.

Now, (4.7) and (4.8) imply that (4.5) is true for n > nε in the case of
p ≥ 1, as well. We estimate E|X ′|p+δ:

E|X ′|p+δ =
∫ n(p+δ)/p

0

P (|X|p+δ > x)dx =(4.9)

= C

∫ 1

0

n1+δ/psδ/pP
(
|X| > n1/ps1/p

)
ds.

By (4.5) and (4.9)

∞∑
n=1

n−1(log n)uP

(
|

n∑

k=1

Ynk| > n1/pε

)
≤(4.10)

≤ C3

∫ 1

0

sδ/p
∞∑

n=1

(log n)uP
(
|Xs−1/p| > n1/p

)
ds ≤
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≤ C4

∫ 1

0

sδ/p E|Xs−1/p|p(log+ |Xs−1/p|)uds ≤

≤ C5E|X|p(log+ |X|)u

∫ 1

0

sδ/p−1−ρds < ∞

because ρ > 0 can be chosen to be arbitrarily small. This completes the
proof.

Remark 4.2. The original Spitzer theorem is obtained by putting
u = 0.

Corollary 4.3. Let {Xk} be a sequence of independent B-valued
r.v.’s, Sn =

∑n
k=1 Xk. Suppose that {Xk} satisfies condition (WMD)

with X such that E|X|p log+ |X| < ∞, 0 < p < 2. Assume that B is of
type p + δ, where δ > 0. Then

(4.11)
n∑

k=1

n−1P

(
sup
n≤k

{|Sk| /k1/p} > ε

)
< ∞ for all ε > 0.

To prove this corollary one can apply Lemma 2.8.

5. Some converse statements

In the case of identically distributed r.v.’s, Theorem 3.5 has the fol-
lowing converse.

Proposition 5.1. Let {Xnk, k = 1, . . . , n, n = 1, 2, . . . } be an array
of rowwise independent B-valued r.v.’s, Sn =

∑n
k=1 Xnk. Suppose that

Xnk are identically distributed and ϕ satisfies (2.15). If inequality (3.10)
is satisfied for some ε > 0, then E ϕ (|X11|) < ∞.

Proof. In the symmetric case Lévy’s inequality implies

(5.1)

P

(
max

1≤k≤n
|Xnk| > 2x

)
≤

≤ P


 max

1≤k≤n
|

k∑

j=1

Xnj | > x


 ≤ 2P (|Sn| > x).

Hence

(5.2)
∞∑

n=1

(β(n)/n)P

(
max

1≤k≤n
|Xnk| > 2εψ(n)

)
< ∞ for some ε > 0.
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By Lemma 2.3 of Jain [13] Eϕ(|Xnk|) < ∞. The symmetrization proce-
dure is the same as in Theorem 3.3 of Jain [13].

We remark that the above proposition contains the converse of theo-
rems 3.1 and 4.1, too.

In the non-identically distributed case our aim is to prove that

(5.3)
∞∑

n=1

nβP (|Sn| > nαε) < ∞ for all ε > 0

implies

(5.4)
∞∑

n=1

nβ
n∑

k=1

P (|Xnk| > nαε) < ∞ for all ε > 0.

Gut [9] has proved that for α > 0 and β = 0 (5.3) implies (5.4) if
Xnk are symmetrically distributed or weakly dominated r.v.’s. Using the
method of Erdős [3] we extend this result.

Proposition 5.2. Let {Xnk, k = 1, . . . , n, n = 1, 2, . . . } be an array
of rowwise independent B-valued r.v.’s, Sn =

∑n
k=1 Xnk. Suppose that

the r.v.’s Xnk are symmetric or satisfy condition (WD). Suppose that
(5.3) is satisfied for an α > 0 and Sn/nα → 0 in probability (when β < 0).
Then (5.4) holds true.

Proof. First we suppose symmetry. Inequality (5.1) implies that

(5.5) lim
n→∞

P

(
max

1≤k≤n
|Xnk| > 2nαε

)
= 0.

Therefore

(5.6) lim
n→∞

P


|

n∑

l=1
l 6=k

Xnl| > nαε


 = 0 uniformly in k,

since Sn/nα → 0 in probability.

We have

(5.7)
n⋃

k=1

{|Xnk| > 2nαε}




|

n∑

l=1
l 6=k

Xnl| < nαε




⊂ {|Sn| > nαε}.
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The same calculation as on p.290 of Erdős [3] gives

(5.8)

P (|Sn| > nαε) ≥

≥
n∑

k=1

P (|Xnk| > 2nαε)

[
P

(
|

n∑

l=1
l 6=k

Xnl| < nαε

)
−

− P

(
max
1≤l≤k

|Xnl| > 2nαε

)]
.

By (5.5), (5.6) and (5.8) we obtain that for a δ > 0

(5.9) P (|Sn| > nαε) ≥ δ

n∑

k=1

P (|Xnk| > 2nαε) if n > nδ.

This establishes the symmetric case.
The symmetrization procedure is the following. Denote by Y ∗ =

Y − Y ′ the symmetrization of a r.v. Y . Then inequality (2.5) shows that
{X∗

nk} satisfies the conditions of our proposition. Therefore (5.3) is true
for {S∗n}. By inequality (2.6) and condition (WD), (5.3) is true for {Sn}
as well.

The following simple example shows that without conditions on Xnk

or Sn (5.3) does not imply (5.4).
Example 5.3. Let Xnk = 0 for all k if n is odd and let Xnk =

(−1)k nα+1 if n is even. Then Sn = 0 for all n, but P (|Xnk| > nαε) = 1
for every k if n > ε and n is even.

6. General arrays

Let {kn, n = 1, 2, . . . } be a strictly increasing sequence of positive
integers. Let {Xnk, k = 1, . . . , kn, n = 1, 2, . . . } be a rowwise independent
array of B-valued r.v.’s, Skn =

∑kn

k=1 Xnk, n = 1, 2, . . . . Following Gut
[8], introduce the functions Ψ and M :

(6.1) Ψ(x) = Card{n : kn ≤ x} for x > 0 and Ψ(0) = 0,

(6.2) M(x) =
[x]∑

n=1

kn.

The following lemma is a generalization of Lemma 2.1 of Gut [8].



68 István Fazekas

Lemma 6.1. Let ρ > 0 and suppose that

(6.3) lim sup
n→∞

kn/M(n− 1) < ∞

if ρ > 1. Then

(6.4) E (M(Ψ(|X|)))ρ < ∞
implies

(6.5)
∞∑

n=1

Mρ−1(n) kn P (|X| > kn) < ∞.

The proof can be accomplished by methods of Jain [13], Lemma 2.2
and Gut [8], Lemma 2.1. We remark that a similar converse statement
also holds.

The following theorem is a generalization of Theorem 4.1 of Gut [9].

Theorem 6.2. Let {Xnk} be the array above. Let r ≥ 1, t > 0 and
suppose that (6.3) is satisfied if r > 2. Let B be of type p for some
p ∈ (0, 2]. Let {Xnk} satisfy (WMD) with an X for which

(6.6) E (M(Ψ(|X|t/r)))r/2 < ∞
and

(6.7) E |X|s < ∞
for an s ≥ p. Suppose that r > t/p if s > 1 while r > t/s if s ≤ 1. Then

(6.8)
∞∑

n=1

(M(n))r/2−1 P
(
|Skn | > kr/t

n ε
)

< ∞ for every ε > 0.

Proof. In the symmetric case we use inequalities (2.4) and (2.23)
(as in Theorem 3.1) to get

(6.9)

∞∑
n=1

(M(n))r/2−1 P
(
|Skn | > kr/t ε 3j

)
≤

≤C1

∞∑
n=1

(M(n))r/2−1 kn P (|X| > kr/t
n ε)+

+ C2

∞∑
n=1

(M(n))r/2−1
(
ks/p−sr/t

n E|X|s
)2j

.
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By Lemma 6.1 this expression is finite. The symmetrization procedure
is the same as in Theorem 3.1.

Let us mention some special cases.
Remark 6.3. (a) Let kn = n, n = 1, 2, . . . . Then M(n) ³ n2 and

M(Ψ(x)) ³ x2. Condition (6.6) is reduced to E|X|t < ∞. If we take
s = t, then we obtain Theorem 3.1.

(b) Let kn = ln, n = 1, 2, . . . . Then M(n) ³ ln and M(Ψ(x)) ³ x.
Condition (6.6) is reduced to E|X|t/2 < ∞. Our theorem is meaningless
for r < 2. If r = 2, then s > t/2, therefore (6.7) is strictly stronger than
(6.6). On the other hand, if t and r are given and r > 2 (and B is of type
p for some p ∈ (t/r, 2] ), then one can choose s so that t/r < s < t/2.
Therefore, in this special case, (6.7) can be omitted.

(c) Let kn = nd, where d is a positive integer. Then M(n) ³
nd+1, M(Ψ(x)) ³ x(d+1)/d and (6.6) is equivalent to E |X| t(d+1)

2d < ∞.
If, moreover, r > 2d/(d + 1), then (6.6) implies (6.7).

(d) If r = 2 and B = R, then our Theorem 6.2 is the same as
Theorem 4.1 of Gut [9].

Theorem 6.4. Let {Xnk} be an array as above. Let r ≥ 1 and t > 0
and suppose that (6.3) is satisfied if r > 2. Assume that B is of type p
for some p ∈ (0, 2]. Suppose that {Xnk} satisfies (WMD) with an X such
that

E |X|t/r < ∞,(6.10)

E (M(Ψ(|X|t/r)))r/2 < ∞,(6.11)
∫ 1

0

sp−1E(M(Ψ((|X|s−1)t/r)))r/2ds < ∞.(6.12)

Then

(6.13)
∞∑

n=1

(M(n))r/2−1P (|Skn | > kr/t
n ε) < ∞ for all ε > 0.

Proof. The proof is similar to that of Theorem 4.1. Let Ynk =
Xnk I{|Xnk| < k

r/t
n } and

(6.14) X ′ = X ′(n, r, t) = X I{|X| < kr/t
n }+ kr/t

n I{|X| ≥ kr/t
n }.

Then
∞∑

n=1

(M(n))r/2−1 P (|Skn | > kr/t
n ε) ≤(6.15)
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≤
∞∑

n=1

(M(n))r/2−1 kn P (|X| > kr/t
n )+

+
∞∑

n=1

M(n)r/2−1P

(
|

kn∑

k=1

Ynk| > kr/t
n ε

)
.

The first term on the right hand side is finite by Lemma 6.1. The second
term is

(6.16)

∞∑
n=1

(M(n))r/2−1 P

(
|

kn∑
n=1

Ynk| > kr/t
n ε

)
≤

≤ C

∞∑
n=1

M(n)r/2−1 k1−pr/t
n E|X ′|p.

By (6.12), the last expression is finite.

Remark 6.5. (a) Let kn = n. Then (6.11) is E|X|t < ∞ and this im-
plies (6.10). Furthermore, (6.12) is satisfied iff p > t. Therefore our result
is in accordance with the classical ones. Theorem 6.4 covers the classical
results if r = 1, while Theorem 6.2 does not (because, if r = 1, then s > t;
therefore (6.7) is more restrictive than the classical assumptions).

(b) Let kn = ln. Then condition (6.11) is the same as E|X|t/2 < ∞
and this implies condition (6.10) when r ≥ 2. Condition (6.12) is satisfied
iff p > t/2. For r = 2 we get the following: E|X|q < ∞ implies that

∞∑
n=1

P
(
|Sln | > (ln)

1
q ε

)
< ∞ for all ε > 0

if 0 < q < p. For B = R it is contained in Theorem 4.2 of Gut [9].

Acknowledgement. I wish to thank Allan Gut for several helpful discus-
sions. I would also like to thank the referees for their careful attention to
my paper.
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