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Inverse systems of quasi-compact spaces

By IVAN LONCAR (Varazdin)

Abstract. In this paper we investigate the non-emptiness and the quasi-com-
pactness of a limit of an inverse system X = {Xa,/a” 4) of Ibe non-empty and quasi
compact spaces Xa.

The main result of Section One is the following

1.9. THEOREM. Let X = {Xa,/a>0,A} be an inverse system of quasi-compact
To spaces Xa and SWO-mappings faff (almost closed mappings fafi, weakly closed
mappings fafi). 1f the spaces Xa, A € A, are non-empty, then 1imX is non-empty.

Section Two contains some theorems concerning the inverse systems X = {Xa,
fexpid) with Wallman extendible mappings. The main result of this Section is the
following

2.13. THEOREM. Let X = {Xa,faff,A} be an inverse system with closed map-
pings faff and onto projections fa : 1limX ~ Xa, a 6 A. Then the functor w is
X":ontinuous iff X is an S-system.

0. Introduction

We denote inverse systems by X = {X<*/a* A} and their limits by
X = limX. For all basic properties of inverse systems we refer to R.
ENGELKING [5].

By N is denoted the set of natural numbers. The set of aU ordinal
numbers of cardinality < Nm is denoted by Wm.

The symbol cf(A) means the cofinahty of a well-ordered set 4 i.e. the

smallest ordinal number which is cofinal in 4.
If/ : X »~ Y is a mapping and if 4 C X, then f&(4) denotes the set

-1 C/}-.
& The cg(%inality of a set 4 we denote by A4\
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1. Non-emptiness of the limit space

We say that a mapping / : X ~ Y is an SWO-mapping if for each fi-
nite open cover V= {Vi,... ,Vn} of F, the cover /" I(V) = {/-1(%),.-. ,
/™ 1(Vr)lhas thepropertythat Clf(4) C VjifAis closedand A C f~[(Vj).
Clearly, each closed mapping is an SWO-mapping.

1.1. Lemma. Let f : X * Y he an SWO-mapping. U Y is Ti, then
f is closed.

PROOF. Let FF C X be closed. Suppose that there is a point y G
CI1/(F)\/(F). For the point y we consider a cover V= {"\{y}>"b w”"ere
V is open and y G V. Clearly, V IIf(F) ¢ 0. Since / is an SWO-mapping
and FF C/ “1(F\{y}), we have CIf(F) C F\{y}. This is impossible since
y G CIf(F). The proof is complete.

We say that ¥ C X is almost closed if y G F for each closed point
y GCI(F). A mapping / : X -~ Y is ahnost closed if f(F) is almost closed
for each closed F C X.

1.2. Lemma. Let f : X ~ Y be an almost closed mapping. If Y is
Ti then f is closed.

A mapping / : X ~ Y is called weakly closed if f/Y x is closed for
each set Yx = f){CIU : U is a neighbourhood of x GX}.

1.3. Lemma. IfX is a Hausdorffspace and Y is Ti, then each map-
ping f : X ~ Y is weakly closed.

1.4. Lemma. [fX is a Hausdorffspace and iff : X ~ Y is a weakly
closed onto mapping, then Y is a Ti space.

We are now going to study the non-emptiness of the inverse limit
space.

Let X = {Xa, faf3,A} be an inverse system of non-empty spaces Xa.
We say that Y = {Ya, faf/Yf5,A} is a subsystem of X if 0 ¢p Ya C Xa
and faf(YB) C Ya for each pair a, § GA such that a < f.

A subsystem is closed if each Ya C X a is closed.

1.5. Lemma. Let X = {Xa,/a™A} be an inverse system of non-
empty quasi-compact spaces X a. There is a closed subsystem Y = {Fa,

fafB/YB,A} such that Fa = Clfaf(Yp).

PROOF. Let Af be the set of all subsystems of X. The set N is non-
empty since X GAf. Let Y = {Ya,faf/Yf3,A} and Z = {Za,faf3/Zf3,A}
be a pair of subsystems of X. We write Z < Y if Za C Ya for each
a G A. Clearly, the set (JIT',<) is a partiaUy ordered set. Moreover, if for
each subsystem Y = {Ya,faB/Yf3, A} we define Y* = fI{Clfaf(Yf), S >
a}, a G A, then Y* = {FJ,/a”/F",A} is a subsytem. From the quasi-
compactness of X a it follows that Y* is non-empty since a family {faf(Yf3),
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S > a} is a centred family. It is easy to prove that Y* < Y. Let us prove
that (Af, <) has a minimal member. It suffices to prove that for each chain
Yi>Y2> ...>Yfi>..,p GM, there is Y such that Y fi > Y for
each fi GM. Since Y = {Y£,faf3/Y3,A} we have a non-empty set Ya =
n{Y£ :fi GM} (Xa is quasi-compact). Clearly, Y = {Ya,faB/Yf3, A} is
a subsystem since faf(C\{¥B :fi GM}) C D{faB(YB :p GM}) C H{Y" :
fi G M} = Ya. Thus, (Ar,<) has a non-empty subset Af of minimal
elements. Let Y = {Ya,faB/Yf3,A} be any member of Af'. Suppose that
there is a pair @, # GA such that Cl/a”(Y") C Ya. Then Y* < Y. On the

other hand we have Y > Y* since Y G Af'. Thus Y = Y*. This means
that C\faf(Yf3s) = Ya for each 3 > a. The proofis completed.

1.5.1. Remark. A space X is called C-closed if each quasi-compact
subset A C X is closed. If the Xa, a GA in Lemma 1.5. are C-closed,
then we have Ya = faf(Yp).

1.5.2. Remark. In fact, from the proof of Lemma 1.5. it follows that
each closed subsystem Z contains some minimal closed subsystem Y.

1.6. Lemma. Let X = {Xa,faf,A} be an inverse system ofnon-
empty gmisi-compact spaces X a. Each minimal subsystem Y = {Ya,

faB/YB,A} has the property that Ya C Yx(a) for some point x(a) G
Ya, a GA.

PROOF. Let x(a) be any point of Ya. Prom the relation C/<*(Y") =
Ya, 5 > @ (Lemma 1.5.) it foUows that U I1fap(YB) ¢ 0 for each f > a
and each open neighbourhood of x(a). This means that faf(U) 11 ¥Y§ ¢
0, B > a. A family {C\f~p(U) I1YB : U is a neighbourhood of x(a)} is
centred and IT{C1/“*(17) I1 ¥# : U is a neighbourhood of x(a)} = ¥p is
non-empty. Clearly faf(¥B) C Ya I1Yx(a), where Yx(a) = fl{Cli7 : U is
open and x(a) G U}. If we suppose that Ya ¢ Yx(a), then Ya flYx(a) = Za.
Now we define Zf = Y for each f > a. For all other 7 G A let Z7 be the
set Y7 GY. From the relation faf(¥p) C Ya Il Yx(a) = Za we infer that
Z = {Za,fap/ZB,A} is a subsystem such that Z < Y. This is impossible
since Y is minimal. The proof is complete.

In the sequel we use the following lemmas:

1.7. Lemma. Each closed subset F of a TO quasi-compact space X
contains a closed point.

PROOF. See [21].

1.8. Lemma. Let f : X -~ Y be an SWO-mapping and let Y be
To. Then for each closed F C X a set f(F) contains each closed point of

CIf(F).
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PROOF. Suppose that y G C\f(F)\f(F)is a closed point. Consider a
cover V= {Y\{y}, Vi 7where V is any neighbourhood ofy. Then / -1(V) —
Lf~1(Y\{y})7f (V)} is a cover of X and FF C f~i(Y\{y}). By virtue
of the definition of SWO-mappings we have CIf(F) C F\{y} ie y ¢
CI1l/(F). This is impossible since y G C1/(F). The proofis complete.

Now we prove the foHowing theorem concerning the non-emptiness of
the inverse limit.

1.9. Theorem. Let X = {Xa,faf374} be an inverse system of quasi-
compact To spaces X a and SWO-mappings faf3 (almost closed mappings
fap, weakly closed mappings faf3). If the spaces X a7 a G A 7are non-empty,
then lim X is non-empty.

PROOF. Firstly we consider the inverse systems with SWO-mappings.
Let Y = {YO/faf/YP74A} be a minimal subsystem of X. Now we prove
that for each a G 4 the set Ya has only one point. By virtue of Lemma
1.7. there is a closed point ya G Ya. From Lemma 1.8. it follows that
ya G fafp(Yfs) for each f > a. (This is true also if the mappings faff are
almost closed). This means that the sets Zf = fafi(ya)OYp are non-empty.

For each f§ < a let ZB = faf(ya). For all other 7 G A we define Z; = YI.
Now we obtain a subsystem Z = {Za7fafl/Zf74}. Clearly, Z < Y. On
the other hand we have Y < Z since Y is a minimal subsytem. Thus,
Y = Z ie. Ya = ya. Since this is true for each a GA we have a subsystem
Y = {{yva}"fap/{Va}~A}. Clearly, Y is a point oflimX i.e. limX is non-
empty. In order to complete the proof it suffices to prove that IimX is
non-empty if the mappings fafs are weakly closed. Let us note that closed
mappings are SWO-mappings. From the preceding part of this proof it
follows that Theorem 1.9. is true for closed mappings fafs. Finally, if the
mappings faff are weakly closed, then by Lemma 1.6. we infer that each
minimal inverse subsystem Y = {Yasfafl/Yf374} has the closed bonding
mappings fafi/Yf. Thus, imY C [imX is non-empty i.e. limX is non-
empty. The proof is complete.

1.10. Remark. Theorem 1.9. is a generalization of Stone’s well-known

theorem [21] since closed mappings are SWO-mappings (almost closed and
weakly closed mappings).

Now we prove the qua<si-compactness of the limit space.

1.11. Theorem. Let X = {Xasfafs7A} be as in Theorem 1.9. Then
IimX is quasi-compact.

PROOF. Let U = {Utfi :p G M} be any open cover of [im X. By virtue
of the definition of a base in limX there is an open Utifa C X o7 for each
a GA and p G M7such that Ud = U{Ufi%a :a GA;7 Zai(Utifa) C Uti and
Utifa is a maximal set with respect to property / -1(i7m,a) ¢ Uti. Let Ua be
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a family {UB)Q :a G A}. If Ua is the cover of X a then fa/(Ua) is a cover

of [im X which refines U. This means that U has a finite subcover since
Ua has a finite subcover. Now we prove that there exists an ¢ G 4 such

that Ua is a cover of X a. In the opposite case the set Za = Xa\(U{i7a)/i :
p GM}) is non-empty for each a GA. Now we obtain a closed subsystem
Z = {Za,faB/Z3,A}. By virtue of 1.5.2. it follows that there is a closed
subsystem Y < Z such that Y is minimalL From the proof of Theorem 1.9.
it follows that Iim Y is non-empty. This means that HmZ ¢ 0. Let z be any
point of imZ. It is easy to prove that z ¢ U{fal(UB)a) :a GA, p GM}.
This is impossible since U = {Ufi : p G M} is the cover of limX. Thus,
there is an @ G 4 such that Ua is a cover of Xa. The proof is complete.

We close this Section with two theorems concerning the week closed-
ness of the projections.

1.12. Theorem. Let X = {Xa,fafs, A} be an inverse system of quasi-
compact Ti spaces. The projections fa :UmX ~> Xa, a GA, are weakly
closed if the mappings faf; are weakly closed.

PROOF. Let X be any point of limX. We have the inverse subsystem
Y = {YXa :xa —fa(x), a G A}, where YXa = fl{ClUa : Ua is open and
xa G Ua}. Let F be a closed subset of Yx. Let a G A be fixed. Now we
prove that fa(F) is closed. Suppose that Za = Clfa(F)\fa(F) is non-
empty. Then Zpf = CIff(F)\f(F) is non-empty for each f > a since
fB(F) A YX3 and faB/YX3 is closed. From the closedness of faf/Y 3 it
follows that for each za G Za and each ff > a the set Wf = f~I(za) 1 ZB
is closed and non-empty. From Theorem 1.9. it foHows that the inverse
system W = {Wp, fBy/Wy, a < <7} has anon-empty limit . Clearly,
W C F since F = lim{Clfa(F), /Q/Cl/*(F),A}. On the other hand, for
any w G W we have fa(w) = za G Cl/a(F)\/a(F). This is impossible
since W C F. The proof is complete.

If A is the set N of natural numbers, then the quasi-compactness of
Xa can be omitted since the point w can be constructed by total induction,
Thus we have

1.13. Theorem. Let X = {Xn,/nm,X} be an inverse sequence of
T: spaces Xn with weakly closed mappings fnm. Then the projections
fn :limX ~ Xn, n GX, are weakly closed.

2. Inverse systems with W allman extendible bonding mappings

Let X be a topological Ti space and let J = {A" : p G M} be a
centred family of closed subsets Afl C X. We say that J is fixed (free)
if IV = n{F :F GJ} is non-empty (empty). By Zom’s lemma each
centred family is contained in some maximal centred family.
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The Wallman extension w.X of a space X is a set wX = X UF0(X),
where FO(X) is a set of all free maximal centred families of closed subsets
of X, with topology whose base is the family of aU sets U* = UU {J G
FO(X) : F C U for some F G *7}, U is open in X [5].

We say that a continuous mapping / : X ~ VY is Wallman extendible
if there is a continuous mapping wf :wX ~ wY such that / = wf/X.

A category C of T\ spaces and continuous mappings is said to be a
W -category if each morphism of C has a unique Wallman extension.

2.1. Lemma. If Cis any W-category; then w : X ~ wX is a covari-
ant functor in a category Qcpt ofT\ quasi-compact spaces and continuous
mappings. Moreover, ifX = {Xa,/a”,A} is an inverse system, then wX,
defined to be {wXa,w/a™ A}, is an inverse system.

PROOF. Trivial.

2.2. Definition. The functor w is called X-continuous if there is a
homeomorphism # : w(limX) ~ limwX such that A2(x) = x, x GlimX.
In this case we write w(limX) « limwX. We say that w is C-continuous
if w is X-continuous for each X in pro-C, the category with the inverse
systems in C as the objects and the mappings of the inverse systems as the
morphisms.

2.3. Remark. The functor w is not Top-continuous since there exists
an inverse system with empty limit.

2.4. Definition. An inverse system X = {Xa,/a”,A} is called an §S-
system if for each pair F, G of disjoint closed subsets of [imX there is an
a G A such that Cl/a(F) M Cl/a(G) = 0, where fQ : imX "> Xa is a
projection.

2.5. Examples, a) Each inverse system of quasi-compact spaces and
closed bonding mappings is an 5-system. This follows from [21].

b) If X = {Xn,/nm,X} is an inverse sequence of countably compact
spaces X n and closed mappings /nm, then X is an 5-system [14].

c¢) Let X be an inverse sequence of sequentially compact (strongly
countably compact, F-compact) spaces. Then X is an 5-system.

d) Let X = {Xa,/a”",Ww} be an inverse system of Nm-compact
spaces Xa and closed mappings faf, Then X is an 5-system [14].

e) Let X = {Xa,/al}, 4} be a well-ordered inverse system with weight
w(Xa) < T and c¢f(4) > r. If X is continuous or fafi are perfect (open)
mappings, then X is an 5-system. This follows from [23: Theorem 2.2.]
since now the weight w(limX) < r and each closed F C IimX is /" 1(Fa)
for some closed Fa C Xa.

f) Similarly, each well-ordered inverse system X = {Xa,/a”,A} with
M(Xa) < T and cf(A) > r is an 5-system [15].

The importance of 5-systems is shown by the following
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2.6. Theorem. Let X = {Xa,Zaf> A} be an inverse system. If
IImwX « u>(limX), then X is an S-system.

PROOF. Let F,G be disjoint closed subsets of imX. It is known [4]
that the closures of F, G in [imu>X are the sets Fif = FU{J G Fo(limu>X) :
F GJ}) G*—CU{7 G Fo(limu"X) *G G *Z} and that (FnGrn* = F*nG>.
This means that F* T Gr* = 0. Since wX is an 5-system (see Examples
2.5.) and since F* 2 ~ Gr* D G are disjoint closed sets in limwX, we
infer that there is an @ G 4 such that CI/A(F*) NClJa(G4) = 0, where Jd
is a projection. Since Ja(F) C Ja(F4) and Za(Gr) C J:¢dG) we infer that
Cl/a(F)nCl/a(G) = 0. Thus X is an 5-system and the proofis complete.

2.7. Lemma. IfX = {Xa,faf, A} is an inverse S-system with closed
mappings Jaf3 and onto projections Ja : limX ~ Xa, a G A, then the
projections /a, a G A, are closed.

PROOF. Let F be any closed subset of lim X. In order to prove that Ja
is closed it suffices to prove that Ja(F) is closed. For each xa * Ja(F) we
have J~I(xa)nF = 0. Thereisa f G A, f > a, with JBJ~I(xa)nJB(F) =
0 since X is an S5-system. From the closedness of Jap it follows that
ClJa(F) = Jap(ClJB(F)). We now have that {xa} n/a”(CI/*(F)) = 0 i.e.
xa ¢ Cl/a(F). Thus, xa ~ /a(F) implies xa * ClJa(F). This means that
Ja(F) is closed. The proof is complete.

2.8. Remark. We say that a mapping J : X ~ Y is hereditarily
quotient [5, Exercise 2.4.F.] if for each y G Y and any open U 5 J~I(y)
we have y G IntJ(U).

By the same method as in the proof of Lemma 2.7. we have the
following

2.9. Lemma. If X is an S-system with quotient (hereditarily quo-
tient) mappings Jafs and onto projections, then theprojections are quotient
(hereditarily quotient).

2.10. Remark. We say that a topological property V is relatively
continuous with respect to X if [im X has V' when the spaces Xa G X have
V. Let us note that if X is an 5-system, then V' — “normal” (“connected”)
is relatively continuous with respect to X.

2.11. DelJinition. A mapping J : X ~> Y is called a WC-mapping if
Z has a unique closed extension wJ :wX ~ wY.
A class of WC-mappings was introduced by D. Harris [9].

2.12. Lemma. [20]. Every closed onto mapping J : X " Y has a
closed onto extension wJ :wX ~ wY.

PROOF. In [20] the proof for multi-valued mappings was given. We
now give an alternate proof. The proof is broken up into several steps.
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Step 1. A w-mapping / : X -~ Y is a u>c--mapping ifFwf(Fm is closed
in wY for each closed subset F C X.

PROOF. Necessity. For each closed FF C X we have that C\wx FF —Fm
If/ : X -~ Y is a we-mapping, then wf : wX ~* wY is closed. Thus,
WF(F B is closed in wY.

Sufficiency. Suppose that each wf(Fm is closed and let us prove
that wf is closed. Let A4 be a closed subset of wX. There is a family
{Fji : Ffi is closed in X,fi G Af} such that a —n{FM, fi G Af}. Clearly,
wf(4) C i]{wf(Fp*) :fi G Af}. Let us prove that wf(4) D I{wf(Ffm :
fi G Af}. For each y G IIywf(F") : [ G Af} we infer that (wf)~/(y) 11
Ffim is non-empty. Since (wf)”~(y) is quasi-compact, we have that the
intersection C\{(wf)~Il(y) I Ffim : fi G Af} is non-empty. Thus, there is a
point X G (w/)-1(y) such that y G n{F** : fi G Af} = A. This means
that y G wf(4). Finally, we have that wf(4) = I{Wf(Ffim : fi G Af}.
Since each Wf(Ffim is closed, we infer that wf(A4) is closed. The proof is
complete.

Step 2. In the sequel we use the following relations. The continuity
of wf implies

€8 wf(Fm C Clwhwf(F) = CIwYf(F,9 F is closed in X.
On the other hand we have
2) Clyf(F) = CIwVf(F) nY C Clwyf(F).
The inclusion f(F) C Clyf(F) gives
3) CIwYf(F)CCIwY(CIyf(F)).
Similarly from (2) we obtain
4) CW (Cly/(F)) C
FinaUy we have
%) CLrf(F)=CW(Cly/(F)).
From (1) and the last relation it foHows
(6) Wf(F0) CC*y(Cly/(F)), is closed in

B3 A ic-mapping / X  — ¥ a toc-mapping ifF for each closed
set F  C 1 follows wf(F,) = Cl*¥*y(Cly/(F)) =

PROOF. Apply Step 1. and the relations (1)-(6).

Pt/ X " K closed then wf is a wc-mappin
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PROOF. 1t is suffiecient to prove that w/(F*) = (/(F))* for each
closed FF C X . From (1) it follows that wf(F+) C (/(F))*. Clearly, /(F) C
w/(F*) C (/(F))*. We now use the condition (KC).

(KC) If 4 is a closed subset of ¥ and K C wY is quasi-compact with
A C K C Cl*yA, then FT is closed.

If we prove that wY satisfies condition (KC) then Step 3. is proved since
Wf(Fw is quasi-compact.

Siep 4. The Wallman compactification wX of a T\ space X satisfies
condition (KC).

PROOF. Suppose that we have a closed subset of X and a quasi-
compact subset K such that 4 C K C Clt'yA If we suppose that K is
not closed then there exists a point y E C1x"\"\ For each point £ E K
there is an open set [P6 [2:232] such that £ E (P6and y ¢ F£. FVom the
compactness of K it follows that there is a finite subfamily {{% ,... ,Uf }

which covers K. Since (Ukl U... UUkn)* = (U1 U... U&n) 1 we ™ er
that 4 C Ukl U ...UJ7*n. This means that CI"xA C (Ukl U ... Ukn)* This
is impossible since y ¢ (Fjtl U... U Ukn)* The proof of Lemma 2.12. is
complete.

The main result of this Section is the foUowing

2.13. Theorem. Let X = {Xa,/a”,A} be an inverse system with
closed mappings f 3 and onto projections fQ:1imX -~ Xa, a E A. Then
the functor w is X-continuous iff X is an S-system.

PROOF. Let the functor w be X-continuous. Then by Theorem 2.5.
X is an 5-system. Conversely, if X is an 5-system we consider the in-
verse system wX = {wXa,wfaf, A}. This system exists since wfafs are
the unique extensions of f@. Since fa : limX —* Xa is onto and closed
(Lemma 2.7.) we have a closed extension wfa : w(limX) ~ wXa, a E A4.
The mappings wfagj a E 4, induce a mapping H : uv>(limX) ~> lim wX
such that f'H = wfa, where Ja : limu>X ~ wXa, a E JI, are projec-
tions. Now we prove that H is onto and a 1-1 mapping. Ifx is a limtoX,
then fa(x) E wXa, a E A4, and (wfa)**fa(x) is a non-empty subset of
w(limX). Since u>(UmX) is quasi-compact and since {(wfa)~if"(x) :a E
A} is a centred family of closed sets, there is a point y E C\{(wfa)~If"(x) :
a E A}. Clearly, wfa(y) = fla(x) i.e. H(y) = x. Thus, H is onto. Let
us prove that H is 1-1. Let y,z be a pair of distinct points in w(hmX).
This means that there is a pair of disjoint closed subsets F, G of imX F E
y, G E 2. Since X is an 5-system we have some a E 4 such that /a(F)
and fa(G) are disjoint (fa is closed !). This means that wfa(y) ¢ wfa(z)
and, consequently, H(y) ¢ H(z). In order to prove that H is a home-
omorphism it remains to prove that H is closed. If F C w(limX) is
closed, then each wfa(F), a E A 1is closed (Lemma 2.12.). The set
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Y = r\{(fla)~Iwfa(F) : @ G A} is closed and H(F) C Y. We prove
that ¥ = H(F). Suppose that y G Y\H(F). We have fa(x) G wfa(F)
and (“fa)~Ifa(x) IIF 7 0. Since F is quasi-compact the intersection
Z =n{(wfa)~Ilfa(x) I1F :a GA} is non-empty. For each z G Z we have
wfa(z) —/a(”™)’ a ~ A. This means that H(z) = x. On the other hand
we have z G F and H(z) G H(F). A contradiction #(2) = x GY\H(F)
and H(z) G#(J7) completes the proof of the closedness of H. The proof
of Theorem 2.13. is complete.

If the spaces Xa, a G A, are normal then IimX is normal if X is an
5-system (see Remark 2.10.). Moreover, wXa = fXa and u>(limX)
B(limX) [5]. Thus, from Theorem 2.13. follows

2.14. Theorem. Let X = {Xa,/a”,A} be an inverse system ofnor-
mal spaces X a, a G A, with onto projections /a : limX - Xa, a G A.
Then f(\imX) « limfBX iffX is an S-system.

PROOF. Now, fafs and /a, a G A, are WC-mappings since wXa =
~"Xa. Apply Theorem 2.3.

Applying the Examples 2.5. we obtain the following corollaries of
Theorem 2.13.

2.15. Corollary. Let X —{Xa,/a",A} be an inverse system ofTi
quasi-compact spaces Xa and closed onto mappings faf. Then IimX is T\
and quasi-compact.

PROOF. Now, wXa —Xa and wX = X. By Theorem 2.13. te(limX)
S4limwX —1imX. The proof is complete.

Let us recall that the proof of Corollary 2.15. is an alternative proof
of Stone’s theorem [21].

We say that a space X is a C-space if each countably compact sub-
space Y C X is closed in X. It is readily seen that each first-countable
regular space is a C-space. Moreover, if / : X ~ Y is a mapping of a
countably compact X onto a C-space Y, then / is closed. From these facts
and from Example 2.5.b) follows the

2.16. Corollary. Let X = {Xn,/nm,iV} be an inverse sequence of
countably compact spaces X n and closed onto mappings fnm or countably
compact C-spaces (regular first-countable spaces) X n and onto mappings
fnme Then w(limX) « limu>X.

By virtue of Examples 2.5.d) - 2.5.f) and Theorem 2.13. we obtain

2.17. Corollary. Let X = {Xa,/a”,A} be an inverse system from
examples 2.5.d) - 2.5.1). Ifthe mappings faf are closed and the projections
fa :limX ~ Xa are onto mappings, then limu>X « tc(limX).
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2.18. Remark. If X = {Xa,faf5,A} is an inverse system of normal
spaces Xa, a G A then Corollaries 2.16. and 2.17. are corresponding
theorems for the continuity of the Stone-Cech functor /.

We say that a mapping / : X s Y is fully closed [6] if for eachy G Y
and each open cover {U)\,... ,Un} ofaset/ 1(y) the set {y} UJ£(Ui) U
... Uf*{Un) is open.

2.19. Theorem. Let X = {Xa,/a”,A} be an inverse system such
that the Jafs are perfect fully closed. If the spaces Xa, a G A1 are count-
ably compact, then ic(limX) « limu>X.

PROOF. The projections /a : IimX s Xa, a G A Ilare perfect fuUy
closed [6]. If FIG are disjoint closed subsets of HmX, then Ya = Ja(F) 11
Ja(G)1l a G A4 is discrete. By countable compactness of Xa it foUows that
Ya is finite. This means that Y = {Fa,/a”/F~,A} has a non-empty limit
Y C F II1 G Since this is impossible we infer that there is an @ G A such
that Ya = 0. This means that X is an 5-system. Theorem 2.13. completes
the proof.

The space HmX in Theorem 2.19. is countably compact as shown by
the following

2.20. Lemma. Let X = {Xa,/a",A} be an inverse S-system with
closed mappings faf3 and onto projections Q. A space X = lim X is count-
ably compact if and only if the spaces Xa, a G A 1 are countably compact.

PROOF. The “only if” part follows from the fact that a continuous
image of a countably compact space is countably compact [5: Theorem
3.10.5].

The “if” part: Let F be a countably closed subset of X. Then Ja(F)I
a G Alis a countably closed subset of Xa since Jai a G A1lis closed
(Lemma 2.7.). By the countable compactness of Xa Ja(F) is compact [5:
Exercise 3.10.a)]. We have a system Y = {Ja(F)1Jaf/JB(F)IA} whose
limit Y is compact [5]. Since ¥ = F' [5: Proposition 2.5.6.] we infer that
F is compact. The proof is complete.

2.21. Theorem. Let X = {Xa,JafIA} be an inverse system in a W -
category C (i.e. X is an object in pro-C). Then there exists a continuous
mapping H :tc(limX) s limtcX. JfX is an Ssystem 1 then H is 1-1.

PROOF. A straightforward modification of the proof of Theorem 2.3.

2.22. Theorem. Let X = {Xa,JafslIA} be an inverse system in a W -

categoryC of quasi-compact Ti spaces Xa. Then limX is a quasi-compact
T\ space.

PROOF. Now we have rcX = {wXa,w/a",A} = {Xa,/a",A}. By
Theorem 2.21. we have a continuous mapping H :u;(HmX) s limu>X.
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Since w(limX) is T\ and quasi-compact it follows that HmwX = [IimX is
quasi-compact. The proof is complete.

A mapping / : X ~ Y is said to be a WO-mapping if for each
finite open cover U = {Uis... ,Un} of Y there exists a finite open cover
V= (%,...,Vm}of X with the foUowing property [9]:

(WO) If 4 C X is closed and 4 C Vj GV, then there is Ui € U such that
CIlf(A) c Ui

If U and V are as in the last definition, then we write V </ U. The
importance of WO-mappings lies in the following.

2.23. Theorem. [9: Theorem A.]. Every WO-mapping has a unique
W*xtensionland this extension is also a WO-mapping.

2.24. Theorem. Let X = {Aa,fafi?A} be an inverse system ofquasi-
compact T\ spaces Aa,a GA, and WO-mappings fafs such that the pro-
jections fa : HmX -~ Aa, a GA1are onto WO-mappings. Then limX is
a quasi-compact T\ space.

PROOF. Let us observe that from the assumption of Theorem it fol-
lows that X is an object in pro-C, where Cis the category of quasi-compact
Ti spaces and WO-mappings. Thus, from Theorem 2.21. it follows that
there exists a continuous mapping H : w(HmX) - limwX. The proof is
complete.

A filter J in the lattice of closed subsets of a 7i space will be called
indicative provided that flI{C(A) : 4 G J} is a singleton in wA, where
C(A4) is the family of all ultrafilters in wX which contain 4. 4 continuous
mapping / : A ~ Y from a Ti space A to a Ti space Y will be called a
WIl-mapping provided that: i) / has a continuous Wallman extension,

ii) for every indicative filter J in the lattice of closed subsets of A, {B C Y :
B is closed in Y and f(4) C B for some 4 GJ} is indicative [10].

The category of all Tj spaces and all WI-mappings is larger than the

category of aU Ti spaces and all WO-mappings [10].

2.25. Lemma. [10: Proposition 4.] Iff : X —W»Y is a Wil-mapping,
then the continuous Wahman extension wf :wX ~ wY is unique.

2.26. Theorem. Let X = {Aa,/a” A} be an inverse system of Ti
quasi-compact spaces Aa, a G A1 and Wil-mappings QB such that the
projections fa :HmX ~ Aa, a GA1are onto Wl-mappings. Then limX
is a quasi-compact Ti space.

PROOF. A straightforward modification of the proof of Theorem 2.24.

At the end of this Section we consider a W C-category i.e. the category
of Ti spaces and WC-mappings (not necessarily closed) (see Definition
2.11.).
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2.27. Theorem. Let X = {Xa,/a”,A} be an inverse S-system ofTi
spaces Xa and WC-mappings fafs which is onto. Then w(lim X) « IimwX
iff the projections fQ:1limX -~ Xa, a E A, are onto W-mappings.

PROOF. The “if” part: If the projections /a, a E A, are W-
mappings, then there exist the mappings wfa : u;(limX) » IimwX
which are onto. As in the proof of Theorem 2.13. we obtain a mapping
H :uw>(limX) ~ limwX wWch is onto and 1-1 (see the proof of Theorem
2.13.). Similarly, as in the proof of Theorem 2.13. it follows that H is
closed. Thus, H is a homeomorphism.

The uonly if” part: If a homeomorphism H : tr(limX) -» IimwX
exists such that H(x) = x for each x E UmX, then the mappings Hpa :
tr(limX) ~ wXa, a E A, are extensions of the projections fa : [imX »
Xa, a E A, onto tr(lim X), where pa : imwX ~ mXa, a E A, are the
projections. The proofis complete.
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