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Inverse system s o f quasi-com pact spaces

By IVAN LONCAR (Varazdin)

Abstract. In th is paper we investigate the non-em ptiness and the quasi-com­
pactness of a lim it of an inverse system  X  =  { X a , / a ^  Ä )  of Ibe non-em pty and quasi 
com pact spaces X a .

The main result o f Section One is the following

1.9. THEOREM . Let X  =  { X a , / a>0 ,A }  be an inverse system  o f quasi-compact 
To spaces X ot and SW O-mappings f a ß (almost closed mappings f aß , weakly closed 
mappings faß) .  If  the spaces X a , Oi € A, are non-empty, then I im X  is non-empty.

Section Two contains som e theorem s concerning the inverse system s X  =  { X a , 
fcxßiÄ)  w ith W allman extendible mappings. The main result o f this Section is the  
following

2.13. TH EO R EM . Let  X  =  { X a , f a ß , A }  be an inverse system  with closed m ap­
pings f a ß and onto projections f a : Iim X  ^  X a , а  6 A. Then the functor w is 
X^:ontinuous iff X  is an S -system .

0. In troduction

We denote inverse systems by X =  {X<*,/a^,A} and their limits by 
X  =  lim X . For all basic properties of inverse systems we refer to R. 
ENGELKING [5].

By N  is denoted the set of natural numbers. The set of aU ordinal 
numbers of cardinality < Nm is denoted by W m.

The symbol c f (A)  means the cofinahty of a well-ordered set A  i.e. the 
smallest ordinal number which is cofinal in A.

If /  : X  ^  Y  is a mapping and if A  C X, then f&(A)  denotes the set
{y ■ / - 1 (y ) Ç / } - .

The cardinaHty of a set A  we denote by \A\.

M athem atics subject classifications (1980): Prim ary 5jB25; Secondary 55S36,
Key words and phrases: Inverse limit, Wallman extension, functor, continuity.
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1. Non-em ptiness of the  lim it space

We say that a mapping /  : X  ^  Y  is an SWO-mapping if for each fi­
nite open cover V =  {Vi, . . .  , Vn} of F, the cover / ^ 1(V) =  { / -1 ( ¼ ) , . •. , 
/ ^ 1(Vr)Ih a s  thep roperty tha t Cl f (A)  Ç V jifA is closed and A  C f ~ l (Vj).

Clearly, each closed mapping is an SWO-mapping.
1.1. Lemma. Let f  : X  *^ Y  he an SWO-mapping. U Y  is Ti, then 

f  is closed.
PROOF. Let F  C X  be closed. Suppose that there is a point y G 

C l/ ( F ) \ / ( F ) .  For the point y we consider a cover V =  { ^ \{ y } > ^ b  w^ere 
V  is open and y G V. Clearly, V  П f ( F )  ф 0. Since /  is an SWO-mapping 
and F  C / “ 1(F \{y}), we have Cl f (F)  Ç F \{y} . This is impossible since 
y G Clf (F) .  The proof is complete.

We say that F  Ç X  is almost closed if y G F  for each closed point 
y G Cl(F). A mapping /  : X  -^ Y  is ahnost closed if f ( F )  is almost closed 
for each closed F  Ç X.

1.2. Lemma. Let f  : X  ^  Y  be an almost closed mapping. I f  Y  is 
Ti then f  is closed.

A mapping /  : X  ^  Y  is called weakly closed if f / Y x is closed for 
each set Yx = f){ClU : U is a neighbourhood of x G X } .

1.3. Lemma. I f  X  is a Hausdorff space and Y  is Ti, then each map­
ping f  : X  ~> Y  is weakly closed.

1.4. Lemma. I f  X  is a Hausdorff space and i f  f  : X  ^  Y  is a weakly 
closed onto mapping, then Y  is a Ti space.

We are now going to study the non-emptiness of the inverse limit 
space.

Let X =  { X a , f aß,A}  be an inverse system of non-empty spaces X a . 
We say that Y  =  {Ya, f aß /Yß , A}  is a subsystem of X if 0 ф Ya Ç X a 
and f aß(Yß) Ç Ya for each pair a , ß  G A  such that a < ß.

A subsystem is closed if each Ya Ç X a is closed.

1.5. Lemma. Let X =  {Xa , / a^,A} be an inverse system o f non­
em pty quasi-compact spaces X a . There is а closed subsystem Y  = {Fa , 
f a ß / Y ß , A } such that Fa =  Clfaß(Yß).

PROOF. Let Af  be the set of all subsystems of X. The set N  is non- 
empty since X G Af. Let Y  =  {Ya, f aß/ Y ß,A}  and Z =  {Za , f aß/Zß , A}  
be a pair of subsystems of X. We write Z < Y  if Z a Ç Ya for each 
oc G A.  Clearly, the set (ЛГ,<) is a partiaUy ordered set. Moreover, if for 
each subsystem Y  =  {Ya, f aß/Yß ,A}  we define Y* = fl{Clf aß(Yß), ß > 
a}, a  G A, then Y* =  { F J , /a^ /F ^ ,A }  is а subsytem. From the quasi­
compactness of X a it follows that Y* is non-empty since a family {f aß(Yß),
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ß  > a}  is a centred family. It is easy to prove that Y* < Y. Let us prove 
that (Af, <) has a minimal member. It suffices to prove that for each chain 
Y i >  Y 2 > . . .  > Y fi > . . .  , p G M, there is Y  such that Y fi > Y  for 
each fi G M.  Since Y^ =  { Y £ , f aß / Y ß , A }  we have a non-empty set Ya =  
n {Y £  : fi G M} (X a is quasi-compact). Clearly, Y  =  {Ya , f aß / Yß , A}  is 
a subsystem since f aß(C\{Yß : fi G M }) Ç D{faß(Yß : p G M} )  Ç H{Y^ : 
fi G M} =  Ya . Thus, (Ar,< )  has a non-empty subset Af' of minimal 
elements. Let Y  =  {Ya, f aß / Yß , A}  be any member of Af'. Suppose that 
there is a pair a, ß  G A  such that C l/a^(Y^) C Ya . Then Y* < Y . On the 
other hand we have Y  > Y* since Y  G Af'. Thus Y  =  Y*. This means 
that C\ faß(Yß) =  Ya for each ß  > a. The proof is completed.

1.5.1. Remark. A space X  is called C-closed if each quasi-compact 
subset A  Ç X  is closed. If the X a , a  G A  in Lemma 1.5. are C-closed, 
then we have Ya = f aß(Yß).

1.5.2. Remark. In fact, from the proof of Lemma 1.5. it follows that 
each closed subsystem Z contains some minimal closed subsystem Y .

1.6. Lemma. Let X =  { X a , f aß,A} be an inverse system o fnon-  
em pty qmisi-compact spaces X a . Each minimal subsystem Y  =  {Ya , 
f a ß / Yß , A}  has the property that Ya Ç Yx(a) for some point x(a)  G 
Ya , a  G A.

PROOF. Let x(a)  be any point of Ya . Prom the relation Cl/<*^(Y^) =  
Ya , ß  > ca (Lemma 1.5.) it foUows that U П f aß(Yß) ф 0 for each ß > a 
and each open neighbourhood of x(a). This means that f aß ( U)  П Yß ф 
0, ß  > a. A family {C\ f~ß(U)  П Yß : U is a neighbourhood of x(a)} is 
centred and П{С1/“̂ (І7) П Yß : U is a neighbourhood of x(a)} =  Yß is 
non-empty. Clearly f aß(Yß) C Ya П Yx(a), where Yx(a) =  fl{Cli7 : U is 
open and x (a) G U }. If we suppose that Ya ¢. Yx(a), then Ya flYx(a) =  Z a . 
Now we define Zß =  Yß for each ß > a. For all other 7 G A let Z7 be the 
set Y7 G Y. From the relation faß(Yß)  C Ya П Yx(a) =  Za we infer that 
Z =  { Z a , f aß / Z ß , A }  is a subsystem such that Z < Y. This is impossible 
since Y  is minimal. The proof is complete.

In the sequel we use the following lemmas:
1.7. Lemma. Each closed subset F  of a T0 quasi-compact space X  

contains a closed point.

PROOF. See [21].

1.8. Lemma. Let f  : X  -^  Y  be an SWO-mapping and let Y  be 
To. Then for each closed F  Ç X  a set f ( F )  contains each closed point o f
Cl f (F) .
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PROOF. Suppose that y G C \ f ( F ) \ f ( F ) is a  closed point. Consider a 
cover V =  {Y\{y}, V } 7 where V  is any neighbourhood of y. Then / -1 (V) — 
{ f ~ l ( Y \ { y } ) 7f  (V)}  is a cover of X  and F  Ç f ~ 1 (Y \ {y} ) .  By virtue
of the definition of SWO-mappings we have Cl f (F)  Ç F \{y}  i.e. y ¢ 
C l/(F ) . This is impossible since y G C l/(F ). The proof is complete.

Now we prove the foHowing theorem concerning the non-emptiness of 
the inverse limit.

1.9. Theorem . Let X  =  {Xa , f aß7 A} be an inverse system of quasi­
compact To spaces X a and SW O-mappings f aß (almost closed mappings 
f aß, weakly closed mappings f aß). I f  the spaces X a7  a  G A 7 are non-empty, 
then Iim X is non-empty.

PROOF. Firstly we consider the inverse systems with SWO-mappings. 
Let Y  =  {YQ7 f aß / Yß 7 A}  be a minimal subsystem of X. Now we prove 
that for each а  G A  the set Ya has only one point. By virtue of Lemma
1.7. there is a closed point ya G Ya. From Lemma 1.8. it follows that 
ya G f aß(Yß ) for each ß > a. (This is true also if the mappings f aß are 
almost closed). This means that the sets Zß = f aß(ya)OYß are non-empty. 
For each ß < a  let Zß =  f aß(ya). For all other 7  G A  we define Z 1  =  Y1. 
Now we obtain a subsystem Z =  {Z a7 f aß /Zß 7 A}.  Clearly, Z < Y. On 
the other hand we have Y  < Z since Y is a minimal subsytem. Thus,
Y  =  Z i.e. Ya =  ya. Since this is true for each a  G A  we have a subsystem
Y  =  {{ya}^faß/{Va}^A}.  Clearly, Y  is a point o flim X  i.e. Iim X is non­
empty. In order to complete the proof it suffices to prove that IimX is 
non-empty if the mappings f aß are weakly closed. Let us note that closed 
mappings are SWO-mappings. From the preceding part of this proof it 
follows that Theorem 1.9. is true for closed mappings f aß. Finally, if the 
mappings f aß are weakly closed, then by Lemma 1.6. we infer that each 
minimal inverse subsystem Y  =  {Ya 7 f aß /Yß 7 A}  has the closed bonding 
mappings f aß / Y ß . Thus, Iim Y  Ç Iim X is non-empty i.e. Iim X is non­
empty. The proof is complete.

1.10. Remark. Theorem 1.9. is a generalization of Stone’s well-known 
theorem [21] since closed mappings are SWO-mappings (almost closed and 
weakly closed mappings).

Now we prove the qua<si-compactness of the limit space.

1.11. Theorem . Let X =  { X a 7 f aß 7A} be as in Theorem 1.9. Then 
Iim X is quasi-compact.

PROOF. Let U =  {Uti : p G M} be any open cover of Iim X. By virtue 
of the definition of a base in Iim X there is an open Utifa Ç X a7 for each 
a  G A  and p G M7 such that Uti = U{Ufi â : a  G A } 7 Z a 1 (Utifa) C Uti and 
Utifa is a maximal set with respect to property / -1 (і7д,а) Ç Uti. Let Ua be
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a family {Uß}Q : a  G A}. If Ua is the cover of X a then f a l (Ua) is a cover 
of Iim X which refines U . This means that U has a finite subcover since 
Ua has a finite subcover. Now we prove that there exists an a  G A  such 
tha t Ua is a cover of X a. In the opposite case the set Z a =  X a \(U{ï7a)/i : 
p G M }) is non-empty for each a  G A.  Now we obtain a closed subsystem 
Z =  { Za, f aß /Zß , A} .  By virtue of 1.5.2. it follows tha t there is a closed 
subsystem Y  <  Z such that Y  is minimaL From the proof of Theorem 1.9. 
it follows that Iim Y  is non-empty. This means that Hm Z ф 0. Let z be any 
point of limZ. It is easy to prove that z ¢ U{ f a l (Uß)a) : a  G A, p G M }. 
This is impossible since U =  {Uti : p G M} is the cover of lim X . Thus, 
there is an a  G A  such that Ua is a cover of X a . The proof is complete.

We close this Section with two theorems concerning the week closed­
ness of the projections.

1.12. Theorem . Let X =  { X a , f aß, A } be an inverse system  o f quasi- 
compact Ti spaces. The projections f a : UmX ~> X a, a  G A, are weakly 
closed i f  the mappings f aß are weakly closed.

PROOF. Let X be any point of lim X . We have the inverse subsystem 
Y  =  {YXa : x a — f a(x), a  G A}, where YXa = fl{ClUa : Ua is open and 
x a G Ua }. Let F  be a closed subset of Yx. Let a  G A be fixed. Now we 
prove that f a( F ) is closed. Suppose that Z a = Clf a( F ) \ f a(F)  is non­
empty. Then Zß = Clf ß ( F ) \ f ß ( F )  is non-empty for each ß  >  a  since 
f ß (F)  Яі YXß and f aß / Y Xß is closed. From the closedness of f aß / Y Xß it 
follows that for each za G Z a and each ß >  a  the set Wß =  f ~ l (za ) П Zß  
is closed and non-empty. From Theorem 1.9. it foHows that the inverse 
system W  =  {Wß , f ß y / W y, a < ß  < 7 } has a non-empty limit W.  Clearly, 
W  C F  since F  =  lim{Clf a (F),  / Q̂ /C l/^ (F ),A } . On the other hand, for 
any w G W  we have f a(w) =  za G C l/a ( F ) \ / a(F ). This is impossible 
since W  Ç F. The proof is complete.

If A is the set N  of natural numbers, then the quasi-compactness of 
X a can be omitted since the point w can be constructed by total induction, 
Thus we have

1.13. Theorem . Let X =  {Xn, / nm,X } be an inverse sequence o f 
T1 spaces X n with weakly closed mappings f nm. Then the projections 
fn  : Iim X  ^  X n, n G X, are weakly closed.

2 . I n v e r s e  s y s t e m s  w i t h  W a l l m a n  e x t e n d i b l e  b o n d i n g  m a p p i n g s

Let X  be a topological Ti space and let J  =  {A^ : p G M }  be a 
centred family of closed subsets A fl Ç X. We say that J  is fixed (free) 
if П J  = n {F  : F  G J }  is non-empty (empty). By Zom’s lemma each 
centred family is contained in some maximal centred family.



234 Ivan Loncar

The Wallman extension w X  of a space X  is a set w X  = X  U F0(X ), 
where F0(X ) is a set of all free maximal centred families of closed subsets 
of X , with topology whose base is the family of aU sets U* =  U U { J  G 
F0(X ) : F  C U for some F  G *7}, U is open in X  [5j.

We say that a continuous mapping /  : X  ^  У is Wallman extendible 
if there is a continuous mapping w f : w X  ^  w Y  such that /  =  w f / X .

A category C of T\ spaces and continuous mappings is said to be a 
W -category if each morphism of C has a unique Wallman extension.

2.1. Lemma. I f  C is any W -category; then w : X  ^  w X  is a covari­
ant functor in a category Qcpt ofT\  quasi-compact spaces and continuous 
mappings. Moreover, i fX  =  {Xa , / a^,A} is an inverse system , then wX, 
deßned to be {wXa ,w /a^,A }, is an inverse system.

PROOF. T riv ia l.

2.2. Definition. The functor w is called X-continuous if there is a 
homeomorphism h : w (lim X) ^  limwX such that h(x) = x, x G lim X . 
In this case we write w(lim X) «  limwX. We say that w is C-continuous 
if w is X-continuous for each X in pro-C, the category with the inverse 
systems in C as the objects and the mappings of the inverse systems as the 
morphisms.

2.3. Remark. The functor w is not Top-continuous since there exists 
an inverse system with empty limit.

2.4. Definition. An inverse system X =  {Xa , / a^,A} is called an S -  
system if for each pair F, G of disjoint closed subsets of Iim X there is an 
oc G A such that C l/a(F ) П C l/a (G) =  0, where f Q : Iim X ^> X a is а 
projection.

2.5. Examples, a) Each inverse system of quasi-compact spaces and 
closed bonding mappings is an 5-system. This follows from [21].

b) If X  =  {Xn, / nm,X } is an inverse sequence of countably compact 
spaces X n and closed mappings / nm, then X is an 5-system  [14].

c) Let X be an inverse sequence of sequentially compact (strongly 
countably compact, F-com pact) spaces. Then X is an 5-system .

d) Let X =  {Xa , / a^ ,W w} be an inverse system of Nm-compact 
spaces X a and closed mappings f aß. Then X is an 5-system  [14].

e) Let X =  {Xa , / aß, A}  be a well-ordered inverse system with weight 
w (X a ) < T and c f (A)  > r. If X  is continuous or f aß are perfect (open) 
mappings, then X is an 5-system . This follows from [23: Theorem 2.2.] 
since now the weight w(lim X) < r  and each closed F  Ç Iim X  is / ^ 1(Fa ) 
for some closed Fa Ç X a .

f) Similarly, each well-ordered inverse system X =  {Xa , / a^,A} with 
M ( X a ) < T and c f (A)  > r  is an 5-system  [15].

The importance of 5-systems is shown by the following
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2.6. Theorem. Let X =  {Xa ,Za£> A} be an inverse system . If 
Iim w X  «  u>(limX), then X is an S-system .

PROOF. Let F,G  be disjoint closed subsets of lim X . It is known [4] 
that the closures of F, G in Iim u>X are the sets Fif =  F U { J  G Fo(limu>X) : 
F  G J}) G* — CrU{j7̂  G Fo(Iimu^X) * G G *Z} and that (F nG r)* =  F*nG>. 
This means that F* П Gr* =  0. Since wX is an 5-system  (see Examples
2.5.) and since F* 2  ^  Gr* Э G are disjoint closed sets in lim w X , we 
infer that there is an a  G A  such that C l/^(F*) П ClJa(G4) = 0, where J 1a 
is a projection. Since Ja(F)  Ç J ta(F4t) and Za (Gr) Ç J 1a(G)  we infer tha t 
C l/a (F )n C l/a (G )  =  0. Thus X is an 5-system  and the proof is complete.

2.7. Lemma. I fX  =  {Xa , f aß, A} is an inverse S -system  with closed 
mappings Jaß and onto projections Ja : Iim X ^  X a , a  G A, then the 
projections / a , a  G A, are closed.

PROOF. Let F  be any closed subset of Iim X. In order to prove that Ja 
is closed it suffices to prove that Ja (F)  is closed. For each x a ^  Ja(F)  we 
have J ~ l (xa ) n F  = 0. There is a ß  G A, ß  > a , with JßJ~l ( xa ) n J ß ( F )  = 
0 since X is an 5-system . From the closedness of Jaß it follows tha t 
ClJa (F) = Jaß(ClJß(F)).  We now have that {xa } n / a^ (C l/^ (F )) =  0 i.e. 
x a ¢ C l/a (F ). Thus, x a ^  / a (F ) implies x a ^  ClJa (F).  This means that 
Ja (F)  is closed. The proof is complete.

2.8. Remark. We say that a mapping J  : X  ^  Y  is hereditarily 
quotient [5, Exercise 2.4.F.] if for each y G Y  and any open U 5  J ~ l (y) 
we have y G In tJ(U).

By the same method as in the proof of Lemma 2.7. we have the 
following

2.9. Lemma. If X is an S-system  with quotient (hereditarily quo­
tient) mappings Jaß and onto projections, then theprojections are quotient 
(hereditarily quotient).

2.10. Remark. We say that a topological property V  is relatively 
continuous with respect to X if Iim X has V  when the spaces X a G X have 
V. Let us note that if X is an 5-system , then V  — “normal” ( “connected” ) 
is relatively continuous with respect to X.

2.11. DeJinition. A mapping J  : X  ~> Y  is called a W C-m apping if 
Z has a unique closed extension w J : w X  ^  wY.

A class of WC-mappings was introduced by D. Harris [9].

2.12. Lemma. [20]. Every closed onto mapping J  : X  ^  Y  has a 
closed onto extension wJ : w X  ^  wY.

PROOF. In [20] the proof for multi-valued mappings was given. W e  
now give an alternate proof. The proof is broken up into several steps.
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Step 1. A w-mapping /  : X  -^  Y  is a u>c--mapping ifF w f ( F m) is closed 
in w Y  for each closed subset F  C X.

PROOF. Necessity. For each closed F  Ç X  we have that C\wx F  — Fm. 
If /  : X  -^ Y  is a wc-mapping, then w f  : w X  ~* w Y  is closed. Thus, 
Wf (F1tt) is closed in wY.

Sufficiency. Suppose that each w f ( F m) is closed and let us prove 
tha t w f  is closed. Let A  be a closed subset of wX.  There is a family 
{Fji : Ffi is closed in X, f i  G Af} such that a — n{FM*, fi G Af}. Clearly, 
w f ( A )  C i]{wf(Fp*) : fi G Af}. Let us prove that w f ( A )  D П{ w f ( F ßm) : 
fi G Af}. For each y G П{ w f ( F ^ )  : pL G Af} we infer that ( w f ) ~ l (y) П 
Ffim is non-empty. Since ( w f ) ^ ( y )  is quasi-compact, we have that the 
intersection C\{(wf)~l (y) П Ffim : fi G Af} is non-empty. Thus, there is a 
point X G (w /) -1 (y) such that y G n{F^* : fi G Af} =  A.  This means 
tha t y G wf (A) .  Finally, we have that w f ( A )  =  П{Wf(Ffim) : fi G Af}. 
Since each Wf(Ffim) is closed, we infer that wf ( A )  is closed. The proof is 
complete.

Step 2. In the sequel we use the following relations. The continuity 
of w f  implies

(1) w f ( F m) C ClwVw f ( F )  = ClwYf ( F ) 9 F  is closed in X.

On the other hand we have

(2) Cly f ( F )  =  ClwVf ( F )  n  Y  C Clwyf ( F) .

The inclusion f ( F )  Ç C l y f ( F)  gives

(3) ClwYf ( F ) C C l wY(Cly f (F) ) .

Similarly from (2) we obtain

(4) C W (C ly /(F ) )  C

FinaUy we have

(5) C L r f ( F )  = C W (C 1 y /(F ) ) .

From (1) and the last relation it foHows

(6) W f ( F 0) CCl* y (C ly /(F )), is closed in

Step3. A ic-mapping /  : X  —̂ Yis a toc-mapping ifF for each closed
set F  C Xit follows w f ( F , )  =  C l* y (C ly /(F )) =

PROOF. Apply Step 1. and the relations (1)-(6).

Step3. If /  : X  ^  Yis closed then w f  is a wc-mapping.
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PROOF. It is suffiecient to prove that w /(F*) =  ( /(F ))*  for each 
closed F  Ç X . From (1) it follows that wf(F+)  Ç (/(F ))* . Clearly, / ( F )  Ç 
w /(F*) C ( /(F ))* . We now use the condition (KC).
(KC) If A  is a closed subset of Y  and K  C w Y  is quasi-compact with 
A  Ç K  C Cl^yA, then FT is closed.
If we prove that w Y  satisfies condition (KC) then Step 3. is proved since 
Wf(Fwt) is quasi-compact.

Siep 4. The Wallman compactification w X  of a T\ space X  satisfies 
condition (KC).

PROOF. Suppose that we have a closed subset of X  and a quasi­
compact subset K  such that A  C K  C Clt̂ yA  If we suppose that K  is 
not closed then there exists a point y E С 1 ^ х ^ \^ \ For each point k E K  
there is an open set U% [2:232] such that k E U% and y ¢  F£. FVom the 
compactness of K  it follows that there is a finite subfamily {U% , . . .  , U£ } 
which covers K. Since (Ukl U . . .  U Ukn)* =  (U^ 1 U . . .  U &Zn) И  we ^ er 
that A  C Ukl U . . .UJ7*n. This means that C l^xA  Ç (Ukl U . .. Ukn)*- This 
is impossible since y ¢  (Fjt1 U . . .  U Ukn)*. The proof of Lemma 2.12. is 
complete.

The main result of this Section is the foUowing
2.13. Theorem . Let X =  {Xa , / a^,A} be an inverse system with 

closed mappings f Qß and onto projections f Q : Iim X -^ X a , a  E A. Then 
the functor w is X-continuous iff X is an S -system .

PROOF. Let the functor w be X-continuous. Then by Theorem 2.5. 
X is an 5-system. Conversely, if X is an 5-system  we consider the in­
verse system w X  = { w X a, w f aß, A}.  This system exists since w f aß are 
the unique extensions of f Qß. Since f a : Iim X —* X a is onto and closed 
(Lemma 2.7.) we have a closed extension w f a : w(lim X) ^  wXa , a  E A.  
The mappings w f aj a  E A , induce a mapping H  : u>(limX) ~> Iim w X  
such that f ' H  =  w f a, where J ta : limu>X ^  wXa , a  E Л, are projec­
tions. Now we prove that H  is onto and a 1-1 mapping. If x  is a limtoX, 
then fa(x)  E wXa , a  E A , and (wfa)**fa(x)  is a non-empty subset of 
w(lim X). Since u>(UmX) is quasi-compact and since { ( wf a)~ 1 f ^ ( x )  : a  E 
A}  is a centred family of closed sets, there is a point y E C\{(wfa)~l f ^ ( x )  : 
a  E A}.  Clearly, w f a(y) = f'a(x) i.e. H(y)  =  x . Thus, H  is onto. Let 
us prove that H  is 1-1. Let y , z  be a pair of distinct points in w( hmX) .  
This means that there is a pair of disjoint closed subsets F , G of Iim X F  E 
y, G E 2. Since X is an 5-system  we have some a  E A  such that / a (F )  
and fa(G)  are disjoint ( f a is closed !). This means that w f a(y) ф w f a(z) 
and, consequently, H(y)  ф H(z) .  In order to prove that H  is a home- 
omorphism it remains to prove that H  is closed. If F  Ç w(lim X) is 
closed, then each w f a( F ), a  E A 1 is closed (Lemma 2.12.). The set
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Y  = r\{(f'a )~l wf a (F)  : OL G A} is closed and H(F)  Ç Y. We prove 
that Y  = H(F) .  Suppose that y G Y \ H ( F ) .  We have f'a(x) G w f a(F)  
and ( ^ f a ) ~ l fa(x)  П F  7̂  0. Since F  is quasi-compact the intersection 
Z = n { ( w f a )~l f'a(x)  П F  : oc G A} is non-empty. For each z G Z  we have 
wf a ( z ) — /á (^ ) ’ a  ^ A.  This means that H(z)  = x. On the other hand 
we have z G F  and H(z)  G H(F) .  A contradiction # ( 2) =  x G Y \ H ( F )  
and H(z)  G # ( J 7) completes the proof of the closedness of H.  The proof 
of Theorem 2.13. is complete.

If the spaces X a , a  G A, are normal then Iim X is normal if X is an 
5-system  (see Remark 2.10.). Moreover, w X a = ß X a and u>(limX) æ 
ß(lim X ) [5]. Thus, from Theorem 2.13. follows

2.14. T heorem . Let X =  { X a , / a^ ,A } be an inverse system o f nor­
mal spaces X a , а  G A, with onto projections / a : Iim X -^ X a , a  G A. 
Then ß( \ i mX)  «  l i m ß X  i f f X  is an S-system .

PROOF. Now, f aß and / a , a  G A, are WC-mappings since w X a =  
^ X a . Apply Theorem 2.3.

Applying the Examples 2.5. we obtain the following corollaries of 
Theorem 2.13.

2.15. C orollary. Let X — {Xa , / a^,A} be an inverse system ofTi  
quasi-compact spaces X a and closed onto mappings f aß. Then Iim X is T\ 
and quasi-compact.

PROOF. Now, w X a — X a and w X  =  X. By Theorem 2.13. te(limX) 
5¾ Iim w X  — lim X . The proof is complete.

Let us recall that the proof of Corollary 2.15. is an alternative proof 
of Stone’s theorem [21].

We say that a spâce X  is a C-space if each countably compact sub­
space Y  Ç X  is closed in X. It is readily seen that each first-countable 
regular space is a C-space. Moreover, if /  : X  ^  Y  is a mapping of a 
countably compact X  onto a C-space Y , then /  is closed. From these facts 
and from Example 2.5.b) follows the

2.16. C orollary. Let X  = {Xn, / nm,iV} be an inverse sequence of 
countably compact spaces X n and closed onto mappings f nm or countably 
compact C-spaces (regular first-countable spaces) X n and onto mappings 
fnm • Then w (lim X) «  limu>X.

By virtue of Examples 2.5.d) -  2.5.f) and Theorem 2.13. we obtain

2.17. C orollary. Let X  = {Xa , / a^,A} be an inverse system  from 
examples 2.5.d) -  2.5.f). I f  the mappings f aß are closed and the projections 
f a : Iim X ^  X a are onto mappings, then limu>X «  tc(lim X).
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2.18. Remark. If X =  { X a, f aß,A}  is an inverse system of normal 
spaces X a , a  G A 1 then Corollaries 2.16. and 2.17. are corresponding 
theorems for the continuity of the Stone-Cech functor ß.

We say that a mapping /  : X  s  Y  is fully closed [6] if for each y G Y  
and each open cover {U\ , . . .  , Un} of a set / _1(y) the set {y} U J ẑ (Ui)  U 
. . .  U f *{Un)  is open.

2.19. Theorem . Let X =  {Xa , / a^,A} be an inverse system such 
that the Jaß are perfect fully closed. I f  the spaces X a , а G A 1 are count- 
ably compact, then ic(lim X) «  limu>X.

PROOF. The projections / a : IimX s  X a , а  G A 1 are perfect fuUy 
closed [6]. If F1 G are disjoint closed subsets of HmX, then Ya =  Ja(F)  П 
Ja(G)1 oc G A  is discrete. By countable compactness of X a it foUows that 
Ya is finite. This means that Y  =  {Fa , / a^ /F ^ ,A } has a non-empty limit 
Y  C F  П G. Since this is impossible we infer that there is an a G A  such 
that Ya = 0. This means that X is an 5-system . Theorem 2.13. completes 
the proof.

The space HmX in Theorem 2.19. is countably compact as shown by 
the following

2.20. Lemma. Let X  =  {Xa , / a^,A} be an inverse S -system  with 
closed mappings f aß and onto projections f Q. A space X  =  Iim X is count­
ably compact i f  and only i f  the spaces X a , a  G A 1 are countably compact.

PROOF. The “only if” part follows from the fact that a continuous 
image of a countably compact space is countably compact [5: Theorem 
3.10.5].

The “if ” part: Let F  be a countably closed subset of X. Then Ja(F)1 
a G A 1 is a countably closed subset of X a since Jai a G A 1 is closed 
(Lemma 2.7.). By the countable compactness of X a Ja(F) is compact [5: 
Exercise 3.10.a)]. We have a system Y  =  {Ja(F)1 Jaß/Jß(F)1A}  whose 
limit Y  is compact [5]. Since Y  = F  [5: Proposition 2.5.6.] we infer that 
F  is compact. The proof is complete.

2.21. Theorem . Let X =  {Xa , Jaß1 A} be an inverse system  in a W - 
category C (i.e. X is an object in pro-C). Then there exists a continuous 
mapping H  : tc(lim X) s  lim tcX. J fX  is an S s y s te m 1 then H  is 1 - 1 .

PROOF. A straightforward modification of the proof of Theorem 2.3.

2.22. Theorem . Let X =  {Xa , Jaß1 A} be an inverse system  in a W - 
categoryC o f quasi-compact Ti spaces X a . Then IimX is a quasi-compact 
T\ space.

PROOF. Now we have гсХ =  {wXa ,w /a^,A} =  {Xa , / a^,A}. By 
Theorem 2.21. we have a continuous mapping H  : u;(HmX) s  limu>X.
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Since w(lim X) is T\ and quasi-compact it follows that HmwX =  IimX is 
quasi-compact. The proof is complete.

A mapping /  : X  ^  Y  is said to be a W O-mapping if for each 
finite open cover U =  {U i1 . . .  , Un} of Y  there exists a finite open cover 
V =  ( ½ , . .. , Vm} of X  with the foUowing property [9]:
(WO) If A  Ç X  is closed and A  Ç Vj G V, then there is Ui € U such that
Cl f (A)  C Ui.

If U and V are as in the last definition, then we write V < /  U. The 
importance of WO-mappings lies in the following.

2.23. Theorem . [9: Theorem A.]. Every WO-mapping has a unique 
W ^xtension1 and this extension is also a WO-mapping.

2.24. Theorem . Let X =  {Aa , f aß? A} be an inverse system ofquasi- 
compact T\ spaces A a , а  G A, and W O-mappings f aß such that the pro­
jections fa : HmX -^  A a , a  G A 1 are onto WO-mappings. Then IimX is 
a quasi-compact T\ space.

PROOF. Let us observe that from the assumption of Theorem it fol­
lows that X is an object in pro-C, where C is the category of quasi-compact 
Ti spaces and WO-mappings. Thus, from Theorem 2.21. it follows that 
there exists a continuous mapping H  : w(HmX) -^  lim wX. The proof is 
complete.

A filter J  in the lattice of closed subsets of a Ti space will be called 
indicative provided that fl{C(A) : A  G J }  is a singleton in wA, where 
C(A)  is the family of all ultrafilters in w X  which contain A. A  continuous 
mapping /  : A  ^  Y  from a Ti space A  to a Ti space Y  will be called a 
W I-mapping provided that: i) /  has a continuous Wallman extension, 
ii) for every indicative filter J  in the lattice of closed subsets of A, {B  Ç Y  : 
B  is closed in Y  and f ( A )  Ç B  for some A  G J }  is indicative [10].

The category of all Tj spaces and all W I-mappings is larger than the 
category of aU Ti spaces and all WO-mappings [10].

2.25. Lemma. [10: Proposition 4.] I f  f  : X  —► Y  is a W l-m apping, 
then the continuous Wahman extension w f  : w X  ^  w Y  is unique.

2.26. Theorem . Let X =  {Aa , / a^, A} be an inverse system of Ti 
quasi-compact spaces A a , а  G A 1 and W I-mappings f Qß such that the 
projections fa  : HmX ^  A a , a  G A 1 are onto W I-mappings. Then IimX 
is a quasi-compact Ti space.

PROOF. A straightforward modification of the proof of Theorem 2.24.

At the end of this Section we consider a W C-category i.e. the category 
of Ti spaces and WC-mappings (not necessarily closed) (see Definition
2.11.).



Inverse systems of quasi-compact, spaces 241

2.27. Theorem . Let X  =  {Xa , / a^,A} be an inverse S -system  ofT i  
spaces X a and W C-m appings f aß which is onto. Then w(lim X) «  Iim w X  
iff the projections f Q : Iim X  -^ Х а , а  E A, are onto W -mappings.

PROOF. The “if” part: If the projections / а , а  E A, are W -
mappings, then there exist the mappings w fa : u;(limX) ^  Iim w X  
which are onto. As in the proof of Theorem 2.13. we obtain a mapping 
H  : u>(limX) ^  l i m w X  wWch is onto and 1-1 (see the proof of Theorem
2.13.). Similarly, as in the proof of Theorem 2.13. it follows that H  is 
closed. Thus, H  is a homeomorphism.

The uonly if ” part: If a homeomorphism H  : tr(lim X ) -^ Iim w X  
exists such that H(x)  =  x for each x E UmX, then the mappings H p a : 
tr(lim X ) ^  w X a , a  E A, are extensions of the projections f a : Iim X  ^  
X a , a  E A, onto tr(lim X), where pa : Iim w X  ~> шХа , а  E A, are the 
projections. The proof is complete.
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