Two remarks on Hosszú's functional inequality

By JOSIP E. PEČARIĆ (Zagreb)

Hosszú's functional inequality

$$
\begin{equation*}
f(x+y-x y)+f(x y) \leq f(x)+f(y) \tag{1}
\end{equation*}
$$

was considered in [1] and the following results were proved:
(i) If $f:(0,1) \rightarrow R$ is a concave function, then f satisfies (1);
(ii) if $a \in[23 / 16,3 / 2)$ is fixed then the function f defined on $(0,1)$ by $f(x)=-x^{4}+2 x^{3}-a x^{2}$ is a continuous solution of (1) and f is not concave.
Here, we shall give two generalizations of (i). We say $f: I \rightarrow R$ $(I=(0,1))$ is a Wright-convex function if for each $y>x$ and $\delta>0(y+\delta$, $x \in I)$,

$$
\begin{equation*}
f(x+\delta)-f(x) \leq f(y+\delta)-f(y) \tag{2}
\end{equation*}
$$

f is Wright-concave if the reverse inequality holds in (2). If C is a class of convex functions, and W a class of Wrigh-convex functions, then $C \subset W$, the inclusion being proper.

Using the substitutions: $x \rightarrow x y$, and $\delta \rightarrow x-x y$, we get:
Theorem 1. If $f:(0,1) \rightarrow R$ is a Wright-concave function, then f satisfies (1).
Note that the above proof os shorter than that from [1]. Now, we shall give a multidimensional generalization of Theorem 1.

Let R^{k} denote the k -dimensional vector lattice of points $X=\left(x_{1}, \ldots\right.$, x_{k}), x_{i} real for $i=1, \ldots, k$, with the partial ordering

$$
X=\left(x_{1}, \ldots, x_{k}\right) \leq Y=\left(y_{1}, \ldots, y_{k}\right)
$$

if and only if $x_{i} \leq y_{i}$ for $i=1, \ldots, k$. We shall write

$$
a X+b Y=\left(a x_{1}+b y_{1}, \ldots, a x_{k}+b y_{k}\right), \text { where } a, b \in R, X, Y \in R^{k},
$$

and

$$
X Y=\left(x_{1} y_{1}, \ldots, x_{k} y_{k}\right)
$$

A real-valued function f on an interval $I=(0,1)^{k}$ will be said to have nondecreasing increments if

$$
\begin{equation*}
f(A+H)-f(A) \leq f(B+H)-f(B) \tag{3}
\end{equation*}
$$

whenever $A \in I, B+H \in I, 0=(0, \ldots, 0) \leq H \in R^{k}, A \leq B$.
For some properties of these functions see [2]. Of course, if the reverse inequality in (3) holds then f is a function with nonincreasing increments.

Using the substitutions: $A=X Y, B=Y, H=X-X Y$, we get
Theorem 2. If $f:(0,1)^{k} \rightarrow R$ is a function with nonincreasing increments, then

$$
\begin{equation*}
f(X+Y-X Y)+f(X Y) \leq f(X)+f(Y) \tag{4}
\end{equation*}
$$

In fact, using the Jensen inequality for these functions we have

$$
f(X+Y-X Y)+f(X Y) \leq f(X)+f(Y) \leq 2 f((X+Y) / 2)
$$

References

[1] Gy. Maksa and Zs. Páles, On Hosszú's functional inequality, Publicationes Math. 36 (1989), 187-189.
[2] H. D. Brunk, Integral inequalities for functions with nondecreasing increments, Pacific J. Math. 14 (1964), 783-793.

```
J. E. PEČARIĆ
FACULTY OF TECHNOLOGY
IVE LOLE RIBARA }12
41000 ZAGREB
CROATIA
```

(Received May 14, 1990)

