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Characterization of additive functions
with values in a compact Ahelian group

By BUI MINH PHONG (Budapest)

1. Let G be an additively written, metrically compact Abelian topo-
logical group, the one-dimensional torus. Let N denote the set of all
positive integers. A function ¢ : N -~ G is caUed completely additive, if

P (nm) —p(n) + p(m)

holds for each couple n, 7i GN. Let 4~ be the class of completely additive

functions.
Let A > 0, B be fixed integers. We shall say that an infinite sequence

{~"}"1 in G is of property D/A,B] if for any convergent subsequence
{"n)n"=i the sequence {x0Ilmt+e!é=\ has a limit, too. We say that it is
of property E[A,B] if for any convergent subsequence {xxVnt+e}*=| "he
sequence {xUk}*=[ is convergent. We shall say that an infinite sequence
{xv}~"L\ 1l G Is °f property A [AIB} if {xAv+e —xI/}{L1 is convergent.

Let A"(D[A,i?]), A*G(E[A,B]) and A"(A[A,J3]) be the classes of
those ¢ G A4*Q for which {x,, = ¢(u)}&= is of property D[A,B], E[A,B]
and A[A,iJ], respectively.

It is obvious that

A*c(A{A,B])CA*c(D{A,B])

and
A*c(A[A,B))CA*c(E[A,B]).

Z. DAROCZY and I. KATAI [1] proved in the case 4 = B = 1 that
Ab(A[LI]) = (D [L1]).

By using an unpublished result due to E. WIRSING [7] which asserts that
¢ GA™A[L,1]) if and only if

@m) = rlogn (modl) (Vn GN)
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for some real number r, Z. DAROCZY and 1. KATAI [2] deduced the fol-
lowing assertion: If ¢ G A™N(A[1,1]) = AG(D/1,1]), then there exists a
continuous homomorphism ¢ : Rx * Gywhere R x denotes the multiplica-
tive group of the positive reals, such that ¢is a restriction of ¢ on the set

N, i.e.
b)) = gme) (Vn GN).

For the case 4 = 2 and B = —1 the complete characterization of
AG(D/[2,-1]) and AG(A[2,-1]) has been given by Z. DAROCZY and I
KATAI [3], [4. The basic idea of their proof is to reduce the condition
@ G AG(D[2,-1]) to the relation

dCn+ 1) —@p(2n—1)"~ 0 as n " oo

and apply a modification of Wirsing’s theorem.

Our main purpose in this paper is to give a complete determination
of AG(E[AyB]) and of A G(A[AyB]). We shail prove the following

Theorem 1. For any fixed integers A > 0 and B ¢ 0, we have
Ab(E[A<B]) = A*a(A[A,B]).
Theorem 2. Let A > 0, B ¢ 0 be fixed integers. If

ded*a(E[A,B]) = A*a(A[A,B})

then there exists a continuous homomorphism ¢ : Rx ~ Gy where Rx

denotes the multiplicative group of the positive realsy such that ¢ is a
restriction of ¢ on the set N, i.e.

S =®(n)

for all n GN.
Converselyy let ¢ : Rx ~> G be an arbitrary continuous homomor-
phism. Then the function

@(n) == ¢n) (n=1,2,...)
belongs to AYG(E[AyB)) = A*G(A[AyB}).

2. PROOF OF THEOREM 1.
Assume that 4 > 0 and B ¢ 0 are integers.

Let ¢ G AG(E[AyB]). Let X denote the set of limit points of {p(n) |
n GN}, ie. g GX if there exists a sequence

Ul< ... <nv< ... {nv GN),

for which ¢p(nv) ~ o. Let X| (C X) be the set ofUmit points of {<*(An+]) |
n G N}. Since N and the natural numbers m = l(modA) form semigroups,
therefore X and Xi are semigroups as well. Thus, X and Xi are closed
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semigroups in G, so by a known theorem (see [6], Theorem (9.16)) they
are compact groups. Since 0 G Xi C X, we have

2.1 @(m) EX and ¢(An + 1) GXi for each n GN.

Let X6 denote the set of limit points of {¢p(dn + B) |n G N}. If
g G X#, then there is a sequence {n")" i such that ¢p(Anu+ B) —*g. Since
¢ GAG(E[A, B]), the sequence {@(niy;¢ 1 is convergent. Let ¢h(nu) ~> g’
It is obvious that gvis determined by g, and so the correspondence F : g ~>
g' is a function, furthermore F(XfB) = X. For the proof of these simple
assertions see [1].

Lemma 1. We have
F(g) = g
for every g GXH#.

PROOF. Since Xi is a subgroup in G, we have 0 G X1i, and so there
exists a sequence

Ni< .. <Ny<.. (Nv GN)

for which ¢(AXu+ 1) ~ 0. Since G is sequentiaHy compact, therefore
{®D(X1); ¢ =1 contains at least one limit point. Let

(2.2) D(KVi) N m

Let g GX¢ be an arbitrary element. By using (2.1) we have ¢p(4) G X.
Since g G X# C X and X is a group, we have g —¢p(4) G X. Thus, it
follows from F{Xf3) = X that there exists an element 42 G X#, for which

(2.3) E(h) =g - @(4).
From the definition of X/ it is clear that there exists a sequence
Mi < ... < My < ... (My GN)

for which ¢(AMu+ B) "™ h
Let us consider the sequence

{P(A2MViK k +B)}?=I,

where Vk is determined in (2.2). Since G is sequentialy compact, therefore
the above sequence contains at least one limit point. Let

(2.4) D(4:MVk N*+ B)G

From the definition of Kifollows by (2.2) and (2.3) that
(2.5) F(h') =+ r.
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Applying the following relation
(A42mn + B)(An + 1)= An[Am(An + 1)+ B] + B
with m = Mukj,n = Nut' and using the definition of F and (2.4), we have
<b{ANyh [AMVij (ANuj + 1)+ B] + B} ™ ti,
G[AMuk' (ANulj + 1)+ B] ~ F(Ht) - t,
and so
(2.6) F(h) = F[F(h')-r}.
FinaUy, from (2.3), (2.5) and (2.6) we get that
F(g) =g- @(4).

So we have proved Lemma 1.

We now prove Theorem 1.

Let ¢ E AQ(E[A,B]). Let S denote the set oflimit points of {¢(4n +
B)—¢gm) —@(A4) In E N}. It is obvious that § ¢ 0. We shall prove that
5=1°).

Let 6 E S. Then there exists a sequence {n”}"" for which

2.7) G(Anu+ B) —p(nu) —p(4) ~ .

Since G is sequentially compact, therefore we can choose a suitable con-
vergent subsequence of ¢p(Anu + B). Let

(2.8) @(Anui + B) "o (e X B).
From (2.7) and (2.8) we have

g- F(g) - ) = &

which, using Lemma 1, implies that s — 0. Thus, we have proved that
S = {0}, and so

¢(An + B) —¢(n) —p(4) ~ 0as n ™ oo.
This shows that ¢ E A®(A[A,J5]), consequently
Ab(E[A,B]) = AU*[A,B]).
The proof of Theorem 1 is finished.

3. PROOF OF THEOREM 2. Let A > 0, B > 0 be fixed integers.
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Assume that ¢ G A*(A[A,R]), i.e. there is an element £ G G such
that

3.1) G(An + B) —d(n) —E ~>0 as n —» 00.

Let X : G ~ T be any continuous character, where 7 denotes the unit
circle, i.e. the set of all complex-numbers of modulus 1. Let

V(n) :=x(<"n)) forall n GN

and

C:=x(E) (61).
Then, by (3.1), we have

(3.2) V(An +  B)(CV(ny)- =X[D(An+

In [5] (Theorem 3) we have proved that if ¥ : N ~ T is a completely
multiplicative function and it satisfies the relation

ViAn + B)(CV(ny)-1 " 1

for some positive integers 4:B and a non-zero complex-number C: then
there exists a real-number r such that V(n) = ntT for all n GN.
From (3.2) and by using this result we get immediately

Vin) =  x(D(n=

for some real r. Thus, by using an argument based on the proof of Theorem
1 of Z. DAROCZY and 1. KATAI [2], we deduce immediately that there exists
a continuous homomorphism @ : Rx —¥»G: such that ®(n) = @(n) for all

n GN.
Assume now that 4 > 0 and B < 0. In this case our Theorem 2 also
holds, since it is easily seen that

JTELALBCIb(A,-1])

and

AMIA[A,-TDCANIOTA, 1],

So we have proved the first assertion of Theorem 2. The proof of the
converse assertion is obvious. Thus completes the proof of Theorem 2.
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