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On fixed points in noncomplete metric spaces

By ADRIAN CONSTANTIN (Timişoara)

A common fixed point theorem of a pair of mappings of a metric space
into itself is proved, generalizing the results of K. Iseki [3], R. Kannan
[4] and S. P. Singh [5].

1. In [1] D. Delbosco gives a unified approach for contractive map-
pings considering the set G of all continuous functions g : [0,∞)3 → [0,∞)
satisfying the conditions:

(i) g(1, 1, 1) = h < 1,
(ii) if u, v ∈ [0,∞) are such that u ≤ g(v, v, u) or u ≤ g(u, v, v) or

u ≤ g(v, u, v) then u ≤ hv,
and proving the following

Theorem A. Let S and T be two mappings of a complete metric
space (X, d) into itself satisfying the inequality

d(Sx, Ty) ≤ g(d(x, y), d(x, Sx), d(y, Ty))

for all x, y ∈ X, where g is in G. Then S and T have a unique common
fixed point.

Some fixed point theorems for mappings on noncomplete metric space
were proved by several authors: R. Kannan [4], S. P. Singh [5], M.
Tasković [6].

The aim of this note is to prove a similar result to Delbosco’s result
for mappings defined on a noncomplete metric space (X, d) into itself,
generalizing the results of R. Kannan [4] and S. P. Singh [5].

2. We consider the set L of all continuous functions g : [0,∞)3 →
[0,∞) with the property that if u, v ∈ [0,∞) are such that u < g(v, v, u)
or u < g(v, u, v) or u < g(u, v, v) then u < v.
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Theorem 1. Let S and T be two continuous mappings of a metric

space into itself satisfying the inequality

(1) d(Sx, Ty) < g(d(x, y), d(x, Sx), d(y, Ty))

for all (x, y) ∈ X × X \ {(x, x) | x ∈ Xand Sx = Tx} where g is in L.

If there is a x0 ∈ X such that the sequence {(Ts)nx0} has a subsequence

{(TS)nix0} converging to a point x ∈ X, we have that x is the unique

common fixed point of S and T.

Proof. We consider the sequence {xn} defined by

x2n+1 = S(TS)nx0, x2n = (TS)nx0, n ≥ 0.

We observe that if there is a z ∈ X such that Sz = z then Tz = z. If
Tz 6= z we would obtain that

d(z, Tz) = d(Sz, Tz) < g(0, 0, d(z, Tz))

and since g ∈ L we deduce that d(z, Tz) < 0, contradiction. Analogous
we can prove that if there is a z ∈ X such that Tz = z then Sz = z.

If there is a z ∈ X such that Sz = Tz = z we have that there is no
other point y ∈ X such that Sy = Ty = y since otherwise we would have
that

d(y, z) = d(Sy, Tz) < g(d(y, z), 0, 0)

and since g ∈ L we deduce that d(y, z) < 0, contradiction.
If there is a n ∈ N such that x2n+1 = x2n or x2n+1 = x2n+2 by the

preceding remarks we deduce that (TS)nx0 = x (respectively
S(TS)n x0 = x) and Sx = Tx = x. More then that, x is the unique
common fixed point of S and T.

We suppose that for every n ∈ N we have x2n+1 6= x2n and x2n+1 6=
x2n+2 and we deduce that

d(x2n+1, x2n+2) = d(S(TS)nx0, (TS)n+1x0) <

< g(d((TS)nx0, S(TS)nx0), d((TS)nx0, S(TS)nx0),

d(S(TS)nx0, (TS)n+1x0)) =

= g(d(x2n, x2n+1), d(x2n, x2n+1), d(x2n+1, x2n+2)), n ≥ 0 .

Since g ∈ L we have that d(x2n+1, x2n+2) < d(x2n, x2n+1).
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Analogous we have

d(x2n, x2n+1) = d((TS)nx0, S(TS)nx0) <

< g(d((TS)nx0, S(TS)n−1x0), d((TS)nx0, S(TS)nx0),

d((TS)nx0, S(TS)n−1x0)) =

= g(d(x2n, x2n−1), d(x2n, x2n+1), d(x2n, x2n−1))

and since g ∈ L we deduce that d(x2n, x2n+1) < d(x2n, x2n−1).
We have so proved that the sequence {d(xk, xk+1)} is monotone de-

creasing. We deduce that

d(x2ni , x2ni+1) = d((TS)nix0, S(TS)nix0) > d((TSni+1x0, S(TS)nix0) >

> · · · > d((TS)ni+1x0, S(TS)ni+1x0) , i ≥ 1 .

Since T, S are continuous, letting ni →∞, we deduce that

(2) d(x, Sx) = d(TSx, Sx) .

If Sx = x we deduce that Tx = Sx = x and x is the unique common
fixed point of T and S.

Let us suppose that Sx 6= x. We have that

d(TSx, Sx) < g(d(Sx, x), d(TSx, Sx), d(x, Sx))

and since g ∈ L we deduce that d(TSx, Sx) < d(Sx, x) which contradicts
relation (2).

Corollary 1. (S. P. Singh [5]). Let T be a continuous mapping of a

metric space into itself satisfying the inequality

(3) d(Tx, Ty) <
1
2
(d(x, Tx) + d(y, Ty))

for all x 6= y. If there is a x0 ∈ X such that sequence {Tnx0} has a

subsequence {Tnix0} converging to a point x ∈ X then x is the unique

fixed point of T.

Proof. We take g : [0,∞)3 → [0,∞), g(x1, x2, x3) = 1
2 (x2 +x3) and

T = S in Theorem 1.
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Corollary 2. Let T be a continuous mapping of a metric space into

itself satisfying the inequality

(4) d(Tx, Ty) < g(d(x, y), d(x, Tx), d(y, Ty))

for all x 6= y where g ∈ L. If there is a x0 ∈ X such that the sequence

{Tnx0} has a subsequence {Tnix0} converging to a point x ∈ X then x is

the unique fixed point of T.

Proof. We take T = S in Theorem 1.

Corollary 3. (K. Iseki [3]). Let (X, d) be a metric space and S a

continuous mapping of X into itself satisfying

d(Sx, Sy) ≤ αd(x, y)

for all x, y ∈ X where 0 < α < 1. If for some x0 ∈ X, the sequence

x1 = Sx0, x2 = Sx1, x3 = Sx2, . . . contains s convergent subsequence

which converges to some x ∈ X, then x is the unique fixed point of S.

Proof. If the sequence {S2nx0} contains a subsequence converging
to x we can apply our theorem with g : [0,∞)3 → [0,∞),
g(x1, x2, x3) = αx1.

Let us suppose that the sequence {S2n+1x0} contains a subsequence
converging to x. Since d(Sn+1x0, S

nx0) ≤ αnd(Sx0, x0) we deduce that
the sequence {S2nx0} contains a subsequence converging to x and so we
obtain the result.

3. We prove now, by mean of an example, that Corollary 2 is stronger
than the result of S. P. Singh [5]:

Example 1. Consider the mapping T : [0, 1) → [0, 1
3 ), Tx = x

3 and let
d be the euclidean metric. We have that

d(Tx, Ty) =
|x− y|

3
1
2
(d(x, Tx) + d(y, Ty)) =

x + y

3

and for y = 0 < x we do not have that

d(Tx, Ty) <
1
2
(d(x, Tx) + d(y, Ty))

so that we can not apply Corollary 1.
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If we consider the mapping g : [0,∞)3 → [0,∞), g(x1, x2, x3) =
1
4 (x1 + x2 + x3) we have that g ∈ L and

d(Tx, Ty) < g(d(x, y), d(x, Tx), d(y, Ty))

if x 6= y since
|x− y|

3
<

1
4

(
|x− y|+ 2x

3
+

2y

3

)

if (x, y) 6= (0, 0). We can so apply Corollary 2 to this function.

4. To compare Theorem 1 with the theorem of Delbosco we see that
we have omitted the completeness of the metric space (X, d) and instead we
have assumed other conditions on the mappings S and T . These conditions
do not guarantae the completeness of the space:

Example 2. Let X = [0, 1] ∩ Q, g : [0,∞)3 → [0,∞), g(x1, x2, x3) =
α(x2 + x3) with 1

3 < α < 1
2 and T, S : X → X, Tx = x

4 , Sx = x
5 and let

d be the euclidean metric. Both S, T are continuous and since TSx = x
20

we can take x0 = 0 and then the existence of a convergent subsequence of
the sequence {(TS)nx0} is evident. We have also that

d(Sx, Ty) =
∣∣∣x
5
− y

4

∣∣∣
Sx = Tx if and only if x = 0 ,

g(d(x, y), d(x, Sx), d(y, Ty)) = α(d(x, Sx) + d(y, Ty)) = α

(
4x

5
+

3y

4

)

and because α > 1
3 we have that

α

(
4x

5
+

3y

4

)
= α

(
16x + 15y

20

)
>

4x + 5y

20
≥ |5y − 4x|

20

if (x, y) ∈ X ×X \ {(0, 0)}.
5. Examples 3. Let us consider X = [0, 1) with the euclidean metric

and let S : [0, 1) → [0, 1), Sx = x
2 for x ∈ (0, 1) and S(0) = 1

2 . We have
that the function g : [0,∞)3 → [0,∞), g(x1, x2, x3) = max{x1, x2, x3} is
in L and

d(Sx, Sy) < g(d(x, y), d(x, Sx), d(y, Sy))

for (x, y) ∈ X ×X \ {(x, x), x ∈ X} since if x 6= 0, y 6= 0, x 6= y, then

d(Sx, Sy) =
|x− y|

2
< |x− y| ≤ g

(
|x− y|, x

2
,
y

2

)
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and if x = 0, y 6= 0 then

d(Sx, Sy) =
∣∣∣∣
1
2
− y

2

∣∣∣∣ <
1
2
≤ g

(
y,

1
2
,
y

2

)
.

The function S has no fixed point although it satisfies condition (1)
and S2n(0) → 0 as n →∞. This shows that the result may be not true if
we drop the hypothesis that S, T are continuous.
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