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On the theory of multiplier operators
in a Banach-module

By L. MÁTÉ

1. Introduction

If A is an algebra and W is an A-module, then a (left) multiplier from
A into W is a linear operator T with the property

(∗) Tab = aTb a, b ∈ A;

i.e. a (left) multiplier is a linear operator commuting with left multipli-
cations. Similarly, a right multiplier is a linear operator commuting with
right multiplication. The (left) multipliers from A into W from a Banach
spaceM(A,W ) (in the case of W = A they form a Banach algebraM(A)).

Every w ∈ W represents a multiplier operator by

Twa := aw a ∈ A

called inner multiplier since, according to the module axioms, (ba)w =
b(aw) for b, a ∈ A and w ∈ W . One of our main objects in this paper is
to find conditions for every multiplier to be inner.

M(A, W ) resp. M(A) is a fine module resp. algebra extension of W
resp. A. The property (∗) can be expressed also as

TRba = RTba b, a ∈ A

where the indexed R means the right multiplication operator. HenceM(A)
is the left idealizer of {Ra; a ∈ A} and M(A,W ) sends {Ra; a ∈ A} into
{Tw; w ∈ W} by the left multiplication.

To find the multiplier extension of a Banach-module resp. Banach
algebra is called multiplier problem.

Moreover, M(A) is included in {Ra; a ∈ A}′′, the second commutant
of {Ra; a ∈ A}. In fact M(A) = {La; a ∈ A}′ by definition, where
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the indexed L means the left multiplication operator, and if T̂ is a right
multiplier, then

T̂ Tab = T̂ [aTb] = T̂ a. T b

and
T T̂ab = T [T̂ a]b = T̂ a. T b a, b ∈ A.

Hence, if {ab; a, b ∈ A} span the Banach algebra A, then every right
multiplier belongs to the second commutant {La; a ∈ A}′′. Similarly
M(A) ⊆ {Ra; a ∈ A}′′.

A similar observation is valid for M(A,W ).
The most general representation theorems for multiplier operators

are in Mate [4], [5] and Rieffel [7] p. 461–77. After having analysed the
main ingredient of these tensor product like representations in section 2, in
section 3 we obtain conditions for multiplier operators to be represented by
elements of a dual Banach space possibly different from the tensor product
like representations.

Finally, in section 4, we find conditions for every multiplier being
inner.

2. Preliminary results

If A has an identity i.e. A is a unital algebra, then there is no multiplier
problem.

Proposition 1. If A has a (right) identity e, then every (left) multi-
plier is inner.

Proof. In this case

(∗) Tb = Tbe = bTe

for every b ∈ A.
For the case of non-unital A the usual extension to a unital algebra

Ae does not help. In fact, if we can define Te ∈ W so that (∗) is satisfied,
then

T [b + λe][a + µe] = [b + λe]T [a + µe] λ, µ ∈ Ω

and hence
Tb = bTe b ∈ A

by an easy calculation and so T is inner. Otherwise there is no multiplier
extension of T onto Ae. In this latter case, to extend W by elements
{Te; T ∈M(A,W )} is not an adequate solution.
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Example. Let A = W = C0(−∞,+∞) be the usual Banach space of
continuous functions tending to zero at infinity. C0 is also a Banach algeb-
ra with pointwise multiplication and the multiplication by any bounded
continuous function is a multiplier operator. E.g.

Ty := y(t) sin t y ∈ C0

is a multiplier operator which cannot be extended onto the linear space
{y + λ1; y ∈ C0, λ ∈ Ω and 1 is the y = 1 function}. In fact

sin t 6= 1 + g(t) g ∈ C0

and hence T is not inner.
However, there is a more powerful extension than Ae. Namely, this is

the second dual A∗∗ with the Arens product.
For a ∈ A and a∗ ∈ A∗ define aa∗ ∈ A∗ as

(a∗a | c) := (a∗ | ac) c ∈ A;

then A∗ is a (right) Banach A-module and similarly A∗∗ is a (left) Ba-
nach A-module with the bidual of the left multiplication operator in A.
Moreover, we have the same definition for w∗a (w∗ ∈ W ∗, a ∈ A) resp.
aw∗∗ (w∗∗ ∈ W, a ∈ A). In this case the dual operator T ∗ of a left
multiplier T is a right multiplier. In fact, for every c ∈ A

(T ∗w∗a | c) = (w∗a | Tc) = (w∗ | aTc) = (w∗ | Tac) =

= (T ∗w∗ | ac) = ([T ∗w∗]a | c)
and hence

T ∗w∗a = [T ∗w∗]a w∗ ∈ W ∗ a ∈ A.

We conclude

Proposition 2. If T is a multiplier operator, then T ∗∗ is a multiplier
extension of T . More precisely, if T ∈M(A,W ) then T ∗∗ ∈M(A∗∗,W ∗∗)
so that the restriction of T ∗∗ to A is T .

Remark. Let â be the copy of a ∈ A in the natural embedding of A
into A∗∗, then it can be verified that

aa∗∗ = âa∗∗ a ∈ A, a∗∗ ∈ A∗∗

where the left hand side product is the bidual of the left multiplication in
A by a ∈ A and the product on the right side is the Arens product (see
e.g. [2] p. 224).

It may happen, that A∗∗ has an identity however A is nonunital:
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Theorem 1. ([1], [2] p. 224) Let A be a Banach algebra. Then A has
bounded (right) approximate identity if and only if the Banach algebra
A∗∗ has a (right) identity.

Proposition 1 and 2 and Theorem 1 together imply

Proposition 3. Let A be a Banach algebra with bounded approximate
identity. Then M(A,W ) ⊆ W ∗∗ in the sense that for every T ∈M(A,W )
there exists w∗∗ ∈ W ∗∗ so that

(∗) Ta = aw∗∗ a ∈ A.

Moreover, based on [3] VI.4.2, M(A,W ) = W in the sense of (∗) if and
only if

w ⇒ aw

is a weakly compact operator for every a ∈ A.

Corollary. If A has bounded approximate identity and W is a reflexive
Banach space, then every T ∈M(A,W ) is inner.

Example. If A = L1(G), W = Lp(G) for 1 < p < ∞ where G is a
locally compact group and the module operation is the convolution, then
M(L1, Lp) = Lp in the sense of (∗).

3. The fundamental model

Now we turn to the case when there is no identity in A∗∗ i.e. there is
no bounded approximate identity in A by Theorem 1.

We begin with two simple observations:

I. A characteristic property of the identity e in A∗∗ is

(e | aa∗) = (a∗ | a).

In fact
(e | a∗a) = (ae | a∗) = (â | a∗) = (a∗ | a)

and conversely, if e′ ∈ A∗∗ with the property (e′ | a∗a) = (a∗ | a) then
ae′ = â for a ∈ A and this is sufficient for the representation of M(A,W )
by W ∗∗ via Proposition 3.

II. If ess W ∗ is the linear space spanned by

{w∗a; w ∈ W ∗, a ∈ A}
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and, viewing A∗ as a (right) Banach A-module with the dual action, essA∗

is the linear space spanned by

{a∗a; a∗ ∈ A∗, a ∈ A}
then, by the considerations preceding Proposition 2, T ∗, the dual operator
of T ∈M(A, W ), maps ess W ∗ into essA∗.

Based on the above observations I. and II. we suppose that there is a
norm ‖ ‖τ resp. ‖ ‖τA

in ess W ∗ resp. ess A∗, possibly different from the
original ones, so that

T ∗ : ess W ∗, τ) ⇒ (ess A∗, τA)

is continuous and there exists I ∈ (ess A∗, τA)∗ so that

(I | a∗a) = (a∗ | a).

Our main object in this section is a description of M(A,W ), under
the above conditions, if W is the dual of a (right) Banach A-module M .

Let ess M be the linear space spanned by

{ma; m ∈ M, a ∈ A}
and let us consider the linear spaces ess M resp. ess A∗ with norm ‖ . ‖τ

resp. ‖ . ‖τA possibly different from the original norms but also

‖ma‖τ ≤ ‖m‖ ‖a‖ m ∈ M, a ∈ A

‖a∗a‖τA ≤ ‖a∗‖ ‖a‖ a∗ ∈ A∗, a ∈ A

For F ∈ [ess M ; τ ]∗, let

(F | ma) m ∈ M, a ∈ A

be the value of F at ma. Then the formula (F | ma) can be viewed both
as

m ⇒ (F | ma) and as a ⇒ (F | ma)

and both are continuous linear functionals.

Theorem 2. [6] Let F ∈ [ess M, τ ]∗ and we define the operator F¦
from M into A∗ as

(F ¦m | a) = (F | ma)

and the operator ¦F from A into W as

(a ¦ F | m) = (F | ma).
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Then F¦ is a right multiplier, ¦F is a left multipler, both are contin-

uous, and

F¦ = (¦F )∗ restricted to M.

Proof.

(ca ¦ F | m) = (F | m[ca]) = (F | [mc]a) =

= (a ¦ F | mc) = (c[a ¦ F ] | m)

for every m ∈ M and hence ¦F is a left multiplier.
For the continuity of ¦F we have

|(a ¦ F | m) = |(F | ma)| ≤ ‖F‖ ‖ma‖τ ≤ ‖F‖ ‖m‖ ‖a‖
and hence

‖a ¦ F‖ ≤ ‖F‖ ‖a‖.

The connection between ¦F and F¦ follows from the definition and hence,
the remaining part of the theorem follows from the considerations pre-
ceding Proposition 2., namely that the dual of a left multiplier is a right
multiplier.

We can prove similarly

Theorem 2∼. Let G ∈ [ess A∗, τA]∗ and define the operator G¦ of A∗

as

(G ¦ a∗ | a) = (G | a∗a)

and the operator ¦G from A into A∗∗ as

(a ¦G | a∗) = (G | a∗a).

Then G¦ is a right multiplier, ¦G is a left multiplier, both are continuous,

and

¦G = (G¦)∗ restricted to A.

Now, let T be a continuous (left) multiplier from A into W . Then
T ∗ maps ess M ⊆ ess W ∗ into ess A∗ and if T ∗ is continuous also in the
τ -topologies (i.e. as [ess M, τ ] ⇒ [ess A∗, τA] operator) then we can define
T ?\ from [ess A∗, τA]∗ into [ess M, τ ]∗ as the dual of T ∗. Then we have
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Theorem 3. If there exists a τ -topology in essM and a τA-topology
in essA∗ so that

I. T ∗ is continuous;

II. There exists I ∈ [ess A∗, τA]∗ defined by

(I | a∗a) = (a∗ | a);

Then there is a unique F ∈ [ess M, τ ]∗ so that

T ∗m = F ¦m and Ta = a ¦ F

where F = T ?\I.

Proof. The dual T ?\ of T ∗ restricted to ess M maps [ess A∗, τA]∗
into [ess M, τ ]∗ since T ∗ maps ess M into essA∗ and T ∗ is continuous. In
particular, for I ∈ [ess A∗, τA]∗ we have

(T ?\I | ma) = (I | T ∗ma) = (I | [T ∗m]a) = (T ∗m | a) = (m | Ta)
a ∈ A, m ∈ M.

On the other hand

(T ?\I | ma) := (a ¦ [T ∗/I] | m) a ∈ A, m ∈ M

and hence Ta = a ¦ [T ?\I] for every a ∈ A.

We have established till now, that the operator ¦F is a multiplier
for every F ∈ (ess M, τ)∗ and if T ∈ M(A,W ) satisfies the conditions of
Theorem 3. then T = ¦F with F = T ?\I. However, the following problems
remain open:

a) When are the conditions of Theorem 3. satisfied for the inner mul-
tipliers ?

b) When are the conditions of Theorem 3. satisfied for every multi-
plier ?

Obviously, if ‖ ‖τ and ‖ ‖τA
are equivalent to the original norm then

the answere is “yes” to both questions. Moreover, this is the case also
when for h ∈ ess M resp. ess A∗

‖h‖τ := inf

{
n∑

k:=1

‖mk‖ ‖ak‖ : h =
n∑

k:=1

mkak

}

resp.

‖h‖τA
:= inf

{
n∑

k:=1

‖a∗k‖ ‖ak‖ : h =
n∑

k:=1

a∗k

}

which is similar to the tensor product type norms in [4] and [7] but not
the same.
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3. When is every multiplier inner ?

Renember that “every multiplier from A into W is inner” means that
every T ∈M(A,W ) has the form

Twa = aw a ∈ A.

M(A, W ) is a closed linear subspace of B(A,W ), the Banach space of
bounded linear operators from A into W , and obviously ‖Tw‖ ≤ ‖w‖.
Hence, it follows from the Banach Homomorphism Theorem that if every
multiplier is inner then the original and the operator norm are equivalent
in W , i.e. there exists c > 0 such that

(∗) c‖w‖ ≤ ‖Tw‖ ≤ ‖w‖.
We shall show that, under the conditions of Theorem 3, (∗) is also

sufficient for every multiplier to be inner.

Theorem 4. If

I. ess M is dense in M ;

II. (Fw | ma) := (w | ma) defines a continuous linear functional also
in ‖ ‖τ for every w ∈ W ;

III. there exists c > 0 so that c‖w‖ ≤ ‖Tw‖; then

(ess M ; τ)∗ = M∗ = W.

Proof. {Fw; w ∈ W} is weak∗-dense in (ess M ; τ)∗ since if m0 ∈
essM and (w | m0) = 0 for every w ∈ W then m0 = 0, obviously.

Let S∗ be the unit sphere in (ess M ; τ)∗. We claim that

{Fw; w ∈ W} ∩ λS∗

is weak∗-closed for every λ > 0. If it is so, then it follows from the
Krein-Shmulian theorem ([3] V.5.7) that {Fw; w ∈ W} is weak∗-closed in
(ess M ; τ)∗ and hence (ess M ; τ)∗ = W .

In fact, if Fwa ∈ λS∗ and {Fwa} tends to F in the weak∗-topology,
then

(wa | ma) ⇒ (F | ma) m ∈ M, a ∈ A

and F ∈ λS∗ by the Alaoglu theorem ([3], V.4.2).
Since ‖Fwa‖ ≤ λ and

c‖w‖ ≤ ‖Tw‖ := ‖ ¦ Fw‖ ≤ ‖Fw‖
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it follows
‖wa‖ <

λ

c

and hence by the Banach-Steinhaus theorem, there is w ∈ W so that
wa ⇒ w in the weak∗-topology in W . In particular

(wa | ma) ⇒ (w | ma) m ∈ M, a ∈ A

and we conclude
F = Fw.

Corollary. If I ∈ (ess M ; τ)∗ besides I-III, then M(A, W ) = W i.e.
every multiplier is inner.
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