

Title: Sharp inequalities for sine polynomials

Author(s): Horst Alzer and Man Kam Kwong

Let
$$F_n(x) = \sum_{k=1}^n \frac{\sin(kx)}{k}$$
 and $C_n(x) = \sum_{k=1}^n \frac{\sin((2k-1)x)}{2k-1}$.

The classical inequalities

$$0 < F_n(x) < \int_0^\pi \frac{\sin(t)}{t} dt = 1.85193...$$
 and $0 < C_n(x) \le 1$

are valid for all $n \ge 1$ and $x \in (0, \pi)$. All constant bounds are sharp. We present the following refinements of the lower bound for $F_n(x)$ and the upper bound for $C_n(x)$.

- (i) Let $\mu \ge 1$. The inequality $\frac{\sin(x)}{\mu \cos(x)} < F_n(x)$ holds for all odd $n \ge 1$ and $x \in (0, \pi)$ if and only if $\mu \ge 2$.
- (ii) For all $n \ge 2$ and $x \in [0, \pi]$, we have $C_n(x) \le 1 \lambda \sin(x)$ with the best possible constant factor $\lambda = \sqrt[3]{9} 2$.

Moreover, we offer a companion to the inequality $C_n(x) > 0$.

(iii) Let $n \ge 1$. The inequality $0 \le \sum_{k=1}^{n} (\delta(n) - (k-1)k) \sin((2k-1)x)$ holds for all $x \in [0, \pi]$ if and only if $\delta(n) \ge (n^2 - 1)/2$.

This extends a result of Dimitrov and Merlo, who proved the inequality for the special case $\delta(n) = n(n+1)$. The following inequality for the Chebyshev polynomials of the second kind plays a key role in our proof of (iii).

(iv) Let $m \ge 0$. For all $t \in \mathbb{R}$, we have $(m^2(1-t^2)-1)U_m^2(t)+(m+1)U_{2m}(t) \le m(m+1)$. The upper bound is sharp.

Address:

Horst Alzer Morsbacher Straße 10 51545 Waldbröl Germany **Address:** Man Kam Kwong The Polytechnic University of Hong Kong Hunghom Hong Kong