

Sharp inequalities for sine polynomials

By HORST ALZER (Waldbröhl) and MAN KAM KWONG (Hong Kong)

Abstract. Let $F_n(x) = \sum_{k=1}^n \frac{\sin(kx)}{k}$ and $C_n(x) = \sum_{k=1}^n \frac{\sin((2k-1)x)}{2k-1}$.

The classical inequalities

$$0 < F_n(x) < \int_0^\pi \frac{\sin(t)}{t} dt = 1.85193 \dots \quad \text{and} \quad 0 < C_n(x) \leq 1$$

are valid for all $n \geq 1$ and $x \in (0, \pi)$. All constant bounds are sharp. We present the following refinements of the lower bound for $F_n(x)$ and the upper bound for $C_n(x)$.

- (i) Let $\mu \geq 1$. The inequality $\frac{\sin(x)}{\mu - \cos(x)} < F_n(x)$ holds for all odd $n \geq 1$ and $x \in (0, \pi)$ if and only if $\mu \geq 2$.
- (ii) For all $n \geq 2$ and $x \in [0, \pi]$, we have $C_n(x) \leq 1 - \lambda \sin(x)$ with the best possible constant factor $\lambda = \sqrt[3]{9} - 2$.

Moreover, we offer a companion to the inequality $C_n(x) > 0$.

- (iii) Let $n \geq 1$. The inequality $0 \leq \sum_{k=1}^n (\delta(n) - (k-1)k) \sin((2k-1)x)$ holds for all $x \in [0, \pi]$ if and only if $\delta(n) \geq (n^2 - 1)/2$.

This extends a result of Dimitrov and Merlo, who proved the inequality for the special case $\delta(n) = n(n+1)$. The following inequality for the Chebyshev polynomials of the second kind plays a key role in our proof of (iii).

- (iv) Let $m \geq 0$. For all $t \in \mathbb{R}$, we have $(m^2(1-t^2) - 1) U_m^2(t) + (m+1)U_{2m}(t) \leq m(m+1)$. The upper bound is sharp.

HORST ALZER
MORSBACHER STRASSE 10
51545 WALDBRÖL
GERMANY

MAN KAM KWONG
THE POLYTECHNIC UNIVERSITY
OF HONG KONG
HUNGKONG
HONG KONG

Mathematics Subject Classification: 26D05, 33B10, 33C45, 41A44.

Key words and phrases: inequalities, sine polynomials, Chebyshev polynomials.