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Bounds for the solutions of decomposable form equations

By K. GYŐRY (Debrecen)

Abstract. We give considerable improvements of the previous bounds on the so-
lutions of decomposable form equations. Further, we generalize and make more efficient
our earlier method for solving such equations via unit equations. Some applications are
also presented to polynomials and algebraic integers of given discriminant and to power
integral bases of number fields.

1. Introduction

Many diophantine problems can be reduced to decomposable form
equations, i.e. to equations of the form

(1.1) F (x) = F (x1, . . . , xm) = b in x = (x1, . . . , xm) ∈ Zm,

where b ∈ Z \ {0} and F ∈ Z[X] is a decomposable form (homogeneous
polynomial which factorizes into linear forms with algebraic coefficients);
for references see e.g. [2], [19], [31], [9], [30], [34]. Important classes of such
equations are Thue equations (when m = 2), norm form equations, dis-
criminant form equations and index form equations. In 1968, Baker [1]
gave an explicit upper bound for the solutions of Thue equations by means
of his powerful effective method concerning linear forms in logarithms. The
first explicit bounds on the solutions of discriminant form and index form
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equations were established by the author (cf. [12], [13]). These results were
later extended by Papp and the author [26] to a large class of norm form
equations and, more generally, to so-called triangularly connected decom-
posable form equations (cf. Section 2). In the last twenty years various
generalizations have been published, among others for a shlightly larger
class of equations and for the case when the ground ring is an arbitrary
finitely generated integral domain over Z (for references see [19], [23], [9],
[25]).

In [13], [26] and [18] we first reduced the equation in question to
a system of homogeneous unit equations in three unknowns. Then we
utilized explicit bounds form [13], [17], [16], respectively, on the solutions
of unit equations. These bounds were derived by using Baker’s method.
Denoting by Mi the number field generated by the coefficients of a linear
factor li of F , the final bounds obtained in [13], [26], [18] on the solutions of
decomposable form equations depend on some parameters of the splitting
field of F or of those number fields MiMjMk for which the corresponding
linear factors li, lj , lk are linearly dependent.

Recently, Bugeaud and the author [7] have considerably improved
the previous bounds on the solutions of Thue equations and norm form
equations. This was achieved by using among others some recent results
from [6] on S-units and S-regulators and generalizing an approach of Papp
and the author [27], not involving unit equations.

In the present paper we give significant improvements of the earlier
bounds on the solutions of decomposable form equations of general type
(cf. Theorems 1 and 2). Our results are established over the ring of integers
(and more generally over the ring of T -integers) of an arbitrary number
field. Theorem 1 is a slight generalization and a considerable improvement
of the previously known best result (cf. [22]). It provides a bound for all
integral solutions lying in the splitting field of F . As a consequence, we
improve upon (cf. Theorem 3 and Corollaries 4, 5) our earlier quantitative
results [21], [24] concerning polynomials of given discriminant over number
fields. The improvement in Theorem 1 is mainly due to the use of a
recent theorem (cf. Lemma 1) of Bugeaud and the author [6] which is an
improvement of earlier results of the author [16], [17] on unit equations.

We emphasize the novelty of our Theorem 2 and its proof. In contrast
with the former applications of our method involving unit equations, in
the present proof it suffices to work with parameters of the fields Mi in
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place of those of the fields MiMjMk or of the splitting field of F . This
fact yields significant improvement in Theorem 2 and in its consequences
for discriminant form equations (cf. Theorem 4), index form equations
(cf. Corollary 8) as well as for algebraic integers of given discriminant
(cf. Corollary 6) and power integral bases (cf. Corollary 7). Further, our
Theorem 2 implies (cf. Corollaries 2, 3) the above-mentioned results of [7]
on norm form equations with essentially the same bounds. In the proof of
Theorem 2 a crucial tool is our Lemma 3 which can be regarded as a new,
improved version of Lemma 1 on unit equations in the special case when
at least two of the unknowns are conjugate to each other.

Our new, improved bounds are still large for practical use. Smart
[32], [33] has recently made more efficient our method concerning dis-
criminant form equations and triangularly connected decomposable form
equations, taking into consideration the action of the Galois group of the
splitting field on the unit equations involved in the proof. As he pointed
out, it suffices e.g. to solve only one equation from each Galois orbit of unit
equations under consideration. We hope that a combination of results of
Smart with the present improvement of our method will provide a recent,
efficient algorithm for solving higher degree discriminant form and index
form equations, as well as more general decomposable form equations sat-
isfying the assumptions of Theorem 2.

Most of the results and the method of our paper were presented
(cf. [25]) at the Number Theory Conference held in Eger, Hungary, July
29 – August 2, 1996.

2. Decomposable form equations

Let F (X) = F (X1, . . . , Xm) be a form (homogeneous polynomial) of
degree n ≥ 3 in m ≥ 2 variables, and suppose that F is decomposable into
linear factors over an algebraic number field K. The linear factors of F
are uniquely determined over K up to proportional factors from K. Fix
a factorization of F into linear factors, and denote by LF the system of
these linear factors.

Let S be a finite set of places on K containing the set of infinite
places S∞, and denote by OS the ring of S-intergers in K. For a given
β ∈ K \ {0}, consider the decomposable form equation

(2.1) F (x) = β

to be solved in x = (x1, . . . , xm) ∈ Om
S .
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To obtain finiteness results on (2.1), we have to make some assumption
on LF . For a system L of non-zero linear forms with algebraic coefficients,
we denote by G(L) the graph with vertex set L in which l, l′ ∈ L are
connected by an edge if l, l′ are linearly dependent, or if l, l′ are linearly
independent and λl + λ′l′ + λ′′l′′ = 0 for some l′′ ∈ L and some non-zero
constants λ, λ′, λ′′. When G(L) is connected we say that L is triangularly
connected (cf. [26]). For a partition L1, . . . ,Lk of L into subsystems and
for a finite set L′ of non-zero linear forms with algebraic coefficients, denote
by HL′ = HL′(L1, . . . ,Lk) the graph with vertex set {L1, . . . ,Lk} in which
Li,Lj are connected if there is an lij in L′ which can be expressed as a
linear combination both of the forms in Li and of the forms in Lj .

Suppose that LF , the system of linear factors of F considered above
satisfies the following conditions:

(i) LF has rank m;
(ii) LF can be partitioned into triangularly connected subsys-

tems L1, . . . ,Lk;
(iii) If k > 1, then there exists a finite set L′ of non-zero lin-

ear forms with algebraic coefficients such that the graph
HL′(L1, . . . ,Lk) is connected.

When k = 1, the decomposable form F and equation (2.1) are also
called triangularly connected .

To formulate our Theorem 1 on equation (2.1) we need some further
notation. Let d, r,RK , hK and OK denote the degree, unit rank, regulator,
class number and the ring of integers, respectively, of K. Let s = Card(S),
and denote by P and Q the greatest and the product, respectively, of the
rational primes lying below the finite places of S (with the convention
that P = Q = 1 if S = S∞). Further, let RS denote the S-regulator of K
(for its definition see e.g. [6]). We note that for S = S∞, OS = OK and
RS = RK hold. For α ∈ Q̄, h(α) will denote the (absolute) height of α
(cf. Section 5). Suppose, for convenience, that proportional linear factors
of F are equal, and that the heights of the coefficients of the linear factors
in LF do not exceed A(≥ e). Assume that h(β) ≤ B.

Further, we write throughout the paper log∗ a for max{log a, 1}.
Theorem 1. With the above notation and assumptions, all solutions

x = (x1, . . . , xm) ∈ Om
S of (2.1), with l(x) 6= 0 for l ∈ L′ if k > 1, satisfy

max
1≤i≤m

h(xi) < exp{c1kP dRS(log∗RS)(log∗(PRS)/ log∗ P )(2.2)

×(RK + hK log Q + mn log A + log B)},
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where c1 = m2n ·5s+20 ·d3s+2r+5 ·s5s+10. Further, if in particular S = S∞,

all solutions x = (x1, . . . , xm) ∈ Om
K of (2.1) with l(x) 6= 0 for l ∈ L′ if

k > 1, satisfy

(2.3) max
1≤i≤m

h(xi) < exp{c2kRK(log∗RK)(RK + mn log A + log B)}

where c2 = mn · 327d2r+5(r + 1)6r+20.

Remark 1. In (2.2), the factor log∗(PRS)/ log∗ P can be estimated
from above by 2 log∗RS , and if log∗RS ≤ log∗ P then by 2. Further, if
S ) S∞ and ℘1, . . . , ℘s0 denote the prime ideals associated to the finite
places in S, then we have (cf. [6] or [3])

(2.4) RS ≤ RKhK

s0∏

i=1

log N(℘i).

Remark 2. Theorem 1 generalizes and considerably improves The-
orem 1 of [22]. This theorem in [22] corresponds to the special case
L′ = {Xq} of our Theorem 1, where q is a fixed integer with 1 ≤ q ≤ m.
The improvement arises mainly from the use of our Lemma 1 which gives a
significant improvement of previously known bounds on the solutions of S-
unit equations. We remark that in the first version of the present paper a
proof of Lemma 1 was also included. Independently, Y. Bugeaud obtained
a similar result on S-unit equations, and later we published Lemma 1 and
its proof in our joint paper [6].

For some applications it is important the case when in (2.1) the coeffi-
cients of F and the solutions are contained in a subfield of K. In this case
Theorem 2 below provides in general much better bounds for the solutions.
To state our Theorem 2, we introduce some definitions and notation.

Let again L denote a system of non-zero linear forms with algebraic
coefficients. For a given number field L, consider the subgraph GL(L) of
G(L) with vertex set L in which l, l′ ∈ L are connected if l, l′ are linearly
dependent, or if they are linearly independent and λl + λ′l′ + λ′′l′′ = 0 for
some non-zero constants λ, λ′, λ′′ and some l′′ ∈ L such that at least two
of l, l′ and l′′ are conjugate over L. We say that L is triangularly connected
over L when GL(L) is connected.

Suppose that the decomposable form F (X) = F (X1, . . . , Xm) con-
sidered in (2.1) has its coefficients in a subfield, say L, of K. We may
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assume without loss of generality that for every l ∈ LF , the conjugates
of l over L also belong to LF . Further, we assume that LF satisfies the
assumptions (i) to (iii) above with (ii) replaced by

(ii’) LF can be partitioned into triangularly connected subsys-
tems L1, . . . ,Lk over L.

When k = 1, we say that F and (2.1) are triangularly connected
over L.

Let T be a finite set of places on L, containing the set of infinite places
T∞. Denote by OL, OT the ring of integers and the ring of T -integers in L.
Let P, Q denote the greatest and the product, respectively, of the rational
primes lying below the finite places of T (with P = Q = 1 if T = T∞).
For li ∈ LF , denote by Mi the number field generated by the coefficients
of li over L, and by Vi the set of all extensions to Mi of the places in T .
Denote by v an upper bound for the cardinalities of the Vi, and by r,R, h

and RV upper bounds for the unit ranks, regulators, class numbers and
Vi-regulators, respectively, of the number fields Mi. Further, denote by d3

the maximum of the degrees of those number fields MiMjMp for which
li, lj , lp are pairwise non-proportional and form a triangle in GL(L).

Theorem 2. Under the above assumptions, all solutions

x = (x1, . . . , xm) ∈ Om
T of (2.1), with l(x) 6= 0 for l ∈ L′ if k > 1, satisfy

max
1≤i≤m

h(xi) < exp{c3kP d3RV (log∗RV )(log∗(PRV )/ log∗ P )(2.5)

×(R + h log Q + mn log A + log B)},

where c3 = m2n · 32v+29 · d4v+5
3 · v5v+11. Further, if T = T∞, all solutions

x = (x1, . . . , xm) ∈ Om
L of (2.1), with l(x) 6= 0 for l ∈ L′ if k > 1, satisfy

(2.6) max
1≤i≤m

h(xi) < exp{c4kR(log∗R)(R + mn log A + log B)},

where c4 = mn · 3r+29 · d3r+5
3 (r + 1)6r+18.

Theorem 2 gives a significant sharpening and generalization of Theo-
rem 1 of [26] which was established in the case when T = T∞ and G(LF )
is connected. The upper bound in [26] depends on parameters of the num-
ber fields MiMjMp involved which are in general larger than those of the
fields Mi considered in Theorem 2. Similarly, the parameters of the field
K which occur in (2.2) and (2.3) are, in general, much larger than those
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of the Mi, appearing in (2.5) and (2.6). Hence, in most cases, Theorem 2
gives much better bounds for the solutions than Theorem 1 or Theorem 1
of [26]. This improvement is a consequence of the use of our Lemma 3
which is a new, improved version of Lemma 1 on unit equations.

Our Theorems 1 and 2 can be compared with effective, but non-
explicit results of Evertse and Győry [9] on equation (2.1).

We now present some consequences of Theorems 1 and 2. Let K, S and
β be as in Theorem 1, with the parameters specified there. Let F (X1, X2)
denote a binary form of degree n which factorizes into linear factors over K.
Suppose that among the linear factors of F at least three are pairwise non-
proportional, and that the heights of the coefficients of F do not exceed
A(≥ e).

The next corollary is a significant improvement of Corollary 1.1 of [22].
It follows from Theorem 1 above in the same way as Corollary 1.1 from
Theorem 1 in [22].

Corollary 1. All solutions (x1, x2) ∈ O2
S of the Thue equation

(2.7) F (x1, x2) = β

satisfy (2.2), and for S = S∞ (2.3), with m, k, c1 and c2 replaced by

2, 1, c1(8d2n)3 and c2(8d2n)3, respectively.

For m = 2, S = S∞, Theorem 1 with k = 1 gives also an improvement
of Corollary 1.1 of [26].

Of particular importance is the case when the coefficients of F and
the solutions x1, x2 are contained in a subfield L of K. When F is ir-
reducuble over L, the best known bounds for the solutions have recently
been established by Bugeaud and Győry [7] without using unit equa-
tions. We remark that similar bounds can be derived from our Theorem 2
with the choice m = 2, k = 1, provided that F has at least three pairwise
non-proportional linear factors over K. These estimates can be compared
with a recent bound of Bombieri [4] derived by a different method.

Let L, T and β be as in Theorem 2, with the parameters specified
there. Further, let M denote an extension of degree n ≥ 3 of L, and let
α1 = 1, α2, . . . , αm be linearly indepent elements of M over L with m ≥ 2
and with heights ≤ A. Let V denote the set of extensions to M of the
places in T , and let v be the cardinality of V and RV the V -regulator of M .
Denote by d, r,R, h the degree, unit rank, regulator and class number of
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M , respectively. Further, let d3 denote the maximum of the degrees of the
fields M (i)M (j)M (p), where M (i),M (j),M (p) denote arbitrary conjugates
of M over L. If in particular M/L is a normal extension then clearly
d3 = d. Consider the norm form equation

(2.8) NM/L(α1x1 + · · ·+ αmxm) = β

in (x1, . . . , xm) ∈ Om
T . Under the assumptions of Corollaries 2 or 3 below,

equation (2.8) has only finitely many solutions. In these cases the best
known bounds on the solutions have recently been obtained by Bugeaud

and Győry [7] without using unit equations. From Theorem 2 we deduce
similar bounds for the solutions. We shall show in Section 5 that the
norm form involved on the left-hand side of (2.8) satisfies the conditions
concerning F of Theorem 2.

Corollary 2. Suppose that αm is of degree ≥ 3 over L(α1, . . . , αm−1).
Then all solutions (x1, . . . , xm) ∈ Om

T of (2.8) with xm 6= 0 satisfy (2.5),
and for T = T∞ (2.6).

This implies the following.

Corollary 3. Suppose that αi+1 is of degrre ≥ 3 over L(α1, . . . , αi)
for i = 1, . . . , m − 1. Then all solutions of (2.8) satisfy (2.5), and for

T = T∞ (2.6).

Similar bounds can be deduced from Theorem 1 for those solutions
which are contained in the normal closure of M over L and are integral
over OT .

Remark 3. We note that our results above can be applied to equations
of Mahler-type (cf. Remark 2 in [22]). Further, they can be easily applied
to equations of the form (2.1) with F replaced by F ·G, where G is a given
polynomial in X = (X1, . . . , Xm) with coefficients in L (or K). Indeed,
if x is a solution, by Lemma 2 there is a unit ε such that F (εx) = β1

with some β1 of bounded height. If F satisfies e.g. the assumptions of
Theorem 2 (or 1), we get a bound for h(xi/xj) and so, from the equation,
for maxi h(xi), too.
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3. Applications to polynomials of given discriminant

We keep the notation of Section 2. Let L denote an algebraic number
field with degree l and discriminant DL, and T a finite set of places on L

containing the set of infinite places T∞. Suppose that K is a finite normal
extension of L with the parameters d, r,RK , hK specified above, and that
S is the set of extensions to K of the places in T . Let s, P, Q and RS have
the same meaning as in Theorem 1.

If f is a polynomial with coefficients in OT , the ring of T -integers of
L, and f∗(X) = f(X + a) with some a ∈ OT , then their discriminants
D(f), D(f∗) coincide. Such polynomials f, f∗ ∈ OT [X] are called OT -
equivalent (and, for T = T∞, OL-equivalent). For a monic polynomial f ∈
OT [X], f0 will denote its monic polynomial divisor of maximal degree over
L with non-zero discriminant. Clearly f0 ∈ OT [X]. Further, if D(f) 6= 0
then f0 = f . For linear f0 let D(f0) = 1.

For f ∈ L[X], we denote by h(f) the maximum of the heights of the
coefficients of f . Let β ∈ OT \ {0} with height not exceeding B(≥ e).

From Theorem 1 we deduce the following.

Theorem 3. If f ∈ OT [X] is a monic polynomial with deg(f) = n,

deg(f0) = m, D(f0) = β and with roots in K, then f is OT -equivalent to

a polynomial f∗ for which

h(f∗) < |DL|n/2 exp{c5P
dRS(log∗RS)2(3.1)

×(RK + hK log Q + log B + m3)}

where c5 = mc1 with the c1 specified in Theorem 1. Further, if T = T∞
(i.e. if OT = OL), then this bound can be replaced by

(3.2) |DL|n/2 exp{c6RK(log∗RK)(RK + log B + m3)}

where c6 = m2c2 with the c2 occuring in Theorem 1.

Theorem 3 and its Corollaries 4 and 5 below give significant improve-
ments of the main results of our papers [14], [15], [21] and, in the number
field case, [24]. The other results in these articles can also be consider-
ably improved by applying Theorem 3 and Corollaries 4, 5 instead of their
earlier versions.
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Under the assumptions of Theorem 3, m = deg(f0) can be estimated
from above (cf. [8]), Theorem 2) by an explicit bound which depends only
on d, s and the number of distinct prime ideal divisors of β.

Let ℘1, . . . , ℘t (t ≥ 0) be distinct prime ideals in L, and P,Q the
largest and the product, respectively, of the rational primes lying below
℘1, . . . , ℘t. Let W denote the product of the logarithms of the primes
under consideration. Further, denote by T the set of integers in L which
are not divisible by prime ideals different from ℘1, . . . , ℘t. Finally, let β
denote a non-zero integer in L with |NL/Q(β)| ≤ b, and let [K : L] = d0.

Corollary 4. If f ∈ OL[X] is a monic polynomial with deg(f) = n,
deg(f0) = m, D(f0) ∈ βT and with roots in K, then f is OL-equivalent
to a polynomial of the form ηnf∗(η−1X), where η ∈ T , f∗ ∈ OL[X] and

h(f∗) < |DL|n/2 exp{m6n(c7(t + 1))5d0(t+1)P dW d0+1RKhK(3.3)

×(log∗RKhK)2(RK + hK log Q + log∗ b)}
with an effectively computable positive constant c7 = c7(d) which depends
only on d.

Denote by wL(P ) the number of distinct irreducible factors over L of
a polynomial P ∈ L[X].

Corollary 5. If f ∈ OL[X] is a monic polynomial with deg(f) = n,
deg(f0) = m ≥ 2, wL(f0) = w and with D(f0) ∈ βT , then f is OL-
equivalent to a polynomial of the form ηnf∗(η−1X), where η ∈ T , f∗ ∈
OL[X] and

(3.4) h(f∗) < exp{n[(c8(t + 1))5(t+1)(P (b|DL|mQl(m+1))w)l]m!}
with an effectively computable positive constant c8 = c8(l, m) which de-
pends only on l and m.

Corollaries 4 and 5 have immediate consequence (cf. [21]) for algebraic
numbers with discriminants contained in βT .

Remark 4. Clearly, we have P ≤ Q and W < Q. Further, using
well-known estimates from prime number theory (cf. [29]) one can easily
show that if c9, c10 are effectively computable constants depending only on
d (respectively, on l,m) then (c9(t + 1))c10(t+1) ≤ (c11Q)c12 with effective
constants c11, c12 depending on d (respectively, on l, m). Hence the bounds
in (3.3) and (3.4) can be replaced by bounds which depend on Q, but not
on P,W and t.
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4. Bounds for the solutions of discriminant
form and index form equations

We keep the notation of Section 2, used in the statements of Theorem 2
and Corollaries 2, 3. Let L be an algebraic number field of degree l, T a
finite set of places on L containing T∞, t the cardinality of T , P, Q as in
Theorem 2, and W the product of the logarithms of the primes considered
in Q. Let M be an extension of degree n ≥ 3 over L with discriminant DM

over Q, and 1, α1, . . . , αm ∈ M linearly independent numbers over L with
heights at most A(≥ e), such that M = L(α1, . . . , αm). For k = 2 and 3,
denote by nk the maximum of the degrees of the fields M (i1) . . . M (ik)

over L, where M (i1), . . . , M (ik) denote arbitrary conjugates of M over L.
Let K denote the normal closure of M over L, and let β ∈ L \ {0} with
height ≤ B.

Consider the discriminant form equation

(4.1) DM/L(α1x1 + · · ·+ αmxm) = β

in (x1, . . . , xm) ∈ Om
T . It is known (see [26]) that the discriminant form

involved on the left-hand side of (4.1) is triangularly connected. Hence
Theorem 1 gives explicit upper bounds for those solutions in K which are
integral over OT . These bounds provide a considerable improvement of
Corollary 4.1 of [22]. In Section 7 we show that much better bounds can
be derived if K is “large” with respect to M . Namely, if n3 > n2 then the
above discriminant form satisfies the conditions of Theorem 2 as well. In
this case Theorem 2 can be applied, while if n3 = n2, Theorem 1 applies
to (4.1) to prove the following.

Theorem 4. All solutions (x1, . . . , xm) ∈ Om
T of (4.1) satisfy

max
1≤i≤m

h(xi) < exp{c13P
ln3Wn1+1|Dm|n2/n(4.2)

×(log |DM |)2ln2(|DM |n2/n + log(AB))}

where c13 = 32tn2+29(ln3)7tn2+5(tn2)5tn2+11. Further, if T = T∞, then all
solutions (x1, . . . , xm) ∈ Om

L of (4.1) satisfy

max
1≤i≤m

h(xi) < exp{c14|DM |n2/n(log |DM |)2ln2−1(4.3)

×(|DM |n2/n + log(AB))}

where c14 = 3ln2+28(ln3)9ln2+14.
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If in particular M (i1)M (i2)/L is normal for some i1, i2, then we may
take n3 = n2. Further, if M/L is normal then n3 = n2 = n and, as will be
clear from the proof, |DM |n2/n may be replaced by |DM |1/2.

Theorem 4 is a significant improvement of our earlier bounds (cf. [13],
[26], [19], [22]) on the solutions of (4.1).

We present some consequences of Theorem 4. For simplicity, we re-
strict ourselves here to some special cases. General versions can be deduced
from Theorem 4 in a similar way.

First consider the equation

(4.4) DM/L(α) = β in α ∈ OM .

The elements α, α∗ ∈ OM are called OL-equivalent if α−α∗ ∈ OL. In this
case their discriminants DM/L(α), DM/L(α∗) coincide. From Theorem 4
we deduce the following.

Corollary 6. Every solution α of (4.4) is OL-equivalent to a solution

α∗ for which

(4.5) h(α∗) < exp{c15|DM |n2/n(log |DM |)2ln2−1(|DM |n2/n + log B)}

where c15 = n4c14 with the c14 occurring in Theorem 4.

If OM = OL[α] for some α ∈ OM , then OM = OL[εα + a] for all
ε ∈ O∗L and all a ∈ OL. We deduce from Corollary 6 the following.

Corollary 7. Suppose that OM = OL[α] for some α ∈ OM . Then α

is OL-equivalent to an algebraic integer of the form εα∗, where ε is a unit

in L and

h(α∗) < exp{c16|DM |2n2/n(log |DM |)2ln2−1}
where c16 = 3l3n2c15 with the c15 specified in Corollary 6.

Corollaries 6 and 7 considerably improve the corresponding earlier
results of the author [13], [14].

If in particular M/L is normal, then in Corollaries 6 and 7 |DM |n2/n

may be replaced by |DM |1/2. From Theorem 4 one can easily deduce in
a similar way more general results, for the solutions α ∈ OS of (4.4) and
for the elements α ∈ OS with OS = OT [α], where OS denotes the integral
closure of OT in M .
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Finally, we present a further consequence of Theorem 4 for index form
equations. For simplicity, we restrict ourselves to the important special
case L = Q. In the general case, a similar consequence can be easily
deduced from Theorem 4.

Let M be an algebraic number field of degree n ≥ 3 with discrimi-
nant DM over Q, and let n2, n3 have the same meaning as before. Let
{1, w2, . . . , wn} be an integral basis for M over Q with max2≤k≤n h(wk) ≤
H (H ≥ e), and let F (X2, . . . , Xn) denote the index form of this basis. As
is known, F has its coefficients in Z and satisfies

(4.6) DM/Q(w2X2 + · · ·+ wnXn) = F 2(X2, . . . , Xn)DM .

Let a denote a non-zero rational integer, and consider the index form
equation

(4.7) F (x2, . . . , xn) = ±a in x2, . . . , xn ∈ Z.

Corollary 8. All solutions of (4.7) satisfy

max
2≤k≤n

|xk| < exp{c17|DM |n2/n(log |DM |)2n2−1(|DM |n2/n(4.8)

+ log(H · |a|))}

where c17 = 3n2+29 · n9n2+15
3 .

We note that if M/Q is normal then, in (4.8), n3 = n2 = n and
|DM |n2/n may be replaced by |DM |1/2.

Corollary 8 is a significant improvement of earlier bounds of the au-
thor [13], [14].

5. Proofs of Theorems 1, 2 and Corollaries 2, 3

We adopt the notation of Sections 2 and 3. We recall that K denotes
an algebraic number field of degree d with unit rank r, regulator RK , class
number hK and ring of integers OK . Denote by MK the set of places
on K. Assume that for every v ∈ MK , the valuation | · |v is normalized
as in [6]. Then the (absolute) height of an algebraic number α contained
in K is defined by

h(α) =

( ∏

v∈MK

max(1, |α|v)

)1/d

.
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This height is independent of the choice of K. For α ∈ K, the denomi-
nator of α is at most h(α)d. If in particular α is an integer in K, then
h(α) ≤ α ≤ (h(α))d where α denotes the maximum absolute value of
the conjugates of α. Further, |NK/Q(α)| ≤ (h(α))d. Finally, it will be
frequently used that h(α−1) = h(α) for α ∈ K \ {0}, and

h(α1 + · · ·+ αm) ≤ mh(α1) . . . h(αm), h(α1 . . . αm) ≤ h(α1) . . . h(αm)

for α1, . . . , αm ∈ K.
There exists a positive constant δK , depending only on K, such that

for every α ∈ K\{0} which is not a root of unity, we have log h(α) ≥ δK/d.
For d = 1 we may take δK = log 2. Recently Voutier (cf. [37] and the
references given there) has shown that one can take

(5.1) δK = 2(log(3d))−3 for d ≥ 2.

Let S denote a finite subset of MK with S ⊇ S∞ and with cardinal-
ity s. Further, denote by OS the ring of S-integers, by O∗S the group of
S-units and by RS the S-regulator of K (see e.g. [6]). NS(α) denotes the
S-norm of α ∈ K (see also e.g. [6]). Let P, Q have the same meaning as in
Theorem 1. Consider the equation

(5.2) α1x1 + α2x2 + α3x3 = 0 in x1, x2, x2 ∈ O∗S

where α1, α2, α3 ∈ K \ {0} with max1≤i≤3 h(αi) ≤ H (H ≥ e).

Lemma 1. For every solution x1, x2, x3 of (5.2), we have

(5.3) max
i,j

h

(
xi

xj

)
< exp{c18P

dRS(log∗RS)(log∗(PRS)/ log∗ P ) log H}

where c18 = 326(9d2/δK)s+1s5s+10. Further, if S = S∞, then the bound
in (5.3) can be replaced by

exp{c19RK(log∗RK) log H}

where c19 = 3r+28(r + 1)5r+17d3δ
−(r+1)
K .

Proof. This is an immediate consequence of the Theorem in [6]. As
was remarked before, the proof of this lemma (with slightly different values
of c18 and c19) had been also included in the first version of this paper.

¤
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Lemma 2. For every α ∈ OS \ {0} and every integer n ≥ 1 there

exists an ε ∈ O∗S such that

(5.4) h(εnα) < (NS(α))1/d exp{n(c20RK + hK log Q)}

where c20 = rr+1(log(3d))3(r−1)/2r.

Proof. This is Lemma 2 of [6] with δK replaced by (5.1) and s0 log P

replaced by log Q, where s0 denotes the number of finite places in S. The
proof of Lemma 2 in [6] is based on the proofs of Lemmas 9 and 10 of [10].
In the proofs of these lemmas or [6] and [10] Q can be taken everywhere
in place or P s0 , and (5.4) immediately follows. ¤

Proof of Theorem 1. We prove Theorem 1 by means of Lemma 1
and some arguments used in [19], [20], [22]. Hence we shall only sketch
the proof.

After multiplying (2.1) by the product of the denominators of the
coefficients of the linear factors of F , (2.1) can be written in the form

(2.1’)
n∏

i=1

li(x) = β

where the solutions x are taken from OS , the linear forms li(X) have
already integral coefficients in K with heights at most A1 = Amd and β is
of height at most B1 = AmndB. Then we may assume that β ∈ OS , since
otherwise (2.1’) is not solvable.

Let now x ∈ Om
S be a solution of (2.1’), with l(x) 6= 0 for l ∈ L′ if

k > 1. Put li(x) = βi for i = 1, . . . , n. Using βi ∈ OS and properties of the
S-form (see e.g. [9]), we get NS(βi) ≤ NS(β) ≤ Bd

1 . Further, by Lemma 2
we can write βi = γiεi with εi ∈ O∗S , γi ∈ OS , i = 1, . . . , n, such that

(5.5) h(γi) < B1 exp{c20RK + hK log Q} := E1.

If li1 , li2 in LF is an edge of G(LF ) and li1 , li2 are linearly independent,
then there are li1,2 ∈ LF and non-zero integers λi1 , λi2 , λi1,2 in K with
heights at most A2 = 2A4

1 such that λi1 li1 + λi2 li2 + λi1,2 li1,2 = 0. If
li1 , li2 are linearly dependent then, by our assumption made in Section 2,
li1 = li2 . In the first case put αi = λiγi; then h(αi) ≤ E1A2 = H for
each i in question. Further, we have

(5.6) αi1εi1 + αi2εi2 + αi1,2εi1,2 = 0.
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By applying Lemma 1 to this equation in εi1 , εi2 , εi1,2 we infer that

max
q=1,2

h(εiq/εi1,2) ≤ E2

where E2 denotes the upper bound occurring in the estimate (5.3) of
Lemma 1. With the choice ε = ε−1

i1,2
we deduce that

max
q=1,2

h(εβiq ) ≤ E1E2 = E3.

By (5.5) it is clear that this holds in the second case, too.
If now li2 , li3 is an edge in G(LF ) then we obtain in the same way

that for some ε′ ∈ O∗S , maxq=2,3 h(ε′βiq ) ≤ E3. But ε/ε′ = (εβi2)/(ε′βi2),
whence we deduce that

max
1≤q≤3

h(εβiq ) ≤ E2
3 .

For j = 1, . . . , k, let Ij denote the set of i with li ∈ Lj . Using assump-
tion (ii) made on the linear factors of F and repeating the above procedure
by induction, we infer that for each j with 1 ≤ j ≤ k there is an ηj ∈ O∗S
such that

(5.7) h(ηjβi) ≤ E2n
3 if i ∈ Ij .

Suppose that k > 1. Then, by assumption (iii) concerning F , the
graph HL′(L1, . . . ,Lk) is connected for some fixed finite set L′ of non-zero
linear forms with algebraic coefficients. Assume, for convenience, that L1

and L2 are connected by an edge in this graph. Then there is an l1,2 ∈ L′
such that

(5.8) l1,2 =
∑

i∈I1

′
λili =

∑

i∈I2

′
λili

where the
∑′ means that we consider only linearly independent li both

from L1 and from L2 with non-zero λi from Q. Then, up to a proportional
factor, these λi provide a uniquely determined solution of the system of
linear equation ∑

i∈I1

′
λili(X)−

∑

i∈I2

′
λili(X) = 0.
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in λi with i ∈ I1∪I2. By using the size it is easy to see that there is a non-
zero λ1,2 in K such that λ1,2l1,2 can be expressed in the form (5.8) with
non-zero λi ∈ K for which h(λi) ≤ m!Am

1 . For the solution x considered
above, we deduce by (5.7) that for q = 1, 2

h(ηqλ1,2l1,2(x)) ≤ m(m!Am
1 E2n

3 )m = E4

whence, in view of l1,2(x) 6= 0, we infer that h(η1/η2) ≤ E2
4 and so

h(η1βi) ≤ E2n
3 E2

4 for i ∈ I1 ∪ I2.

Using the fact that HL, (L1, . . . ,Lk) is connected and repeating this argu-
ment by induction, we infer that

(5.9) h(η1βi) ≤ E2n
3 · E2(k−1)

4 = E5 for i = 1, . . . , n.

It follows from (2.1’) that ηn
1 = (η1β1) . . . (η1βn)/β and so h(η1) ≤

B
1/n
1 E5. Together with (5.9) this yields

(5.10) h(βi) < B
1/n
1 E2

5 = E6, i = 1, . . . , n.

Finally, taking into consideration assumption (i) on the linear factors of F ,
we can derive from li(x) = βi, i = 1, . . . , n, a bound for the heights of the
x1, . . . , xm. To do so we assume that l1, . . . , lm are linearly independent.
Then using both h( ) and , we infer that there are algebraic integers
ρi, µj such that ρiXi =

∑m
j=1 µj lj(X) and h(ρi), h(µj) ≤ m!Am

1 . Together
with (5.10) this gives

max
1≤i≤m

h(xi) < m(m!Am
1 )2mEm

6

whence, using also (5.1), (2.2) follows.
If S = S∞, the second part of Lemma 1 can be applied, and the second

assertion of Theorem 1 follows. ¤

Recently Voutier [36] (for S = S∞) and Bugeaud [5] (for arbitrary
S) established an improved version of Lemma 1 in the special case when
the solutions x1, x2 in (5.2) are contained in some subfields K1 and K2

of K, respectively. To prove our Theorem 2 we shall give a sharpening of
these results in the further special case when, in (5.2), both the subfields
K1,K2 and the solutions x1, x2 are conjugate to each other.
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Let K, S and H be as in Lemma 1, with the parameters specified there.
Let K1 be a subfield of K with degree d1, unit rank r1 and regulator RK1 .
Denote by S1 the set of restrictions to K1 of the places in S, and by
RS1 the S1-regulator of K1. Put s1 = Card(S1). Assume that for some
Q-isomorphism σ of K1, σ(K1) is a subfield of K.

Lemma 3. All solutions x1, x2, x3 of (5.2) with x1 ∈ K1, x2 = σ(x1)
satisfy

max h(xi/xj)(5.11)

< exp
{

c21
P d

log∗ P
RS1 log∗(RS1) log H log

(
log h(x1)

log H

)}

provided that h(x1) ≥ exp{c22RS1 log H}, where c21 = 325(9d4/d1)s1+1 ·
s5s1+10
1 and c22 = (ds2

1)
2s1 . Further, if in particular S = S∞, the bound

in (5.11) can be replaced by

(5.12) exp
{

c23RK1 log H log
(

log h(x1)
log H

)}
,

provided that h(x1) ≥ exp{c24 log H}, where c23 = 3r1+27d2r1+5(r1 +
1)5r1+17 and c24 = d3(r1 + 1)2(r1+1).

Proof. Let x1, x2, x3 be an arbitrary but fixed solution of (5.2) with
x2 = σ(x1). The cases x2 = x1 and s1 = 1 being trivial, we assume that
x2 6= x1 and s1 > 1. Then x1/x2, x3/x2 is a solution of the equation

(5.13)
(
−α1

α2

)
x +

(
−α3

α2

)
y = 1 in x, y ∈ O∗

S .

We follow the proof of the Theorem of [6] concerning this equation. Only
those steps will be detailed which differ from the corersponding arguments
of [6].

Let {ε1, . . . , εs1−1} be a fundamental system of S1-units in K1 with
the properties specified in Lemma 1 of [6]. Then x1 = ζεb1

1 . . . ε
bs1−1

s1−1 with
a root of unity ζ in K1 and with rational integers b1, . . . , bs1−1. It follows
as in [6] that

(5.14) B ≤ c25 log h(x1)
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where B = max{|b1|, . . . , |bs1−1|, 3} and c25 = d1((s1 − 1)!)2/(ss1−3δK1).
Put S = {v1, . . . , vs}, and let v ∈ S for which |x3/x2|v is minimal. Setting
βs1 = −α1ζ/(α2σ(ζ)) and ηi = εi/σ(εi) for i = 1, . . . , s1 − 1 we deduce
from (5.13) that

(5.15)
∣∣∣∣
α3x3

α2x2

∣∣∣∣
v

= |ηb1
1 . . . η

bs1−1

s1−1 βs1 − 1|v.

We shall derive a lower bound for |(α3x3)/(α2x2)|v. We have h(βs1) ≤
H2. Further, by h(ηi) ≤ h2(εi), i = 1, . . . , s1 − 1 and Lemma 1 of [6] we
infer that

(5.16) log h(η1) . . . log h(ηs1−1) ≤ c26RS1

where c26 = 2((s1 − 1)!)2/ds1−1
1 .

First assume that v is infinite. Then applying (5.16) and an estimate
of Waldschmidt [38] (cf. [6], Proposition 1), and working with the ηi in
place of εi, we obtain as in [6] that

(5.17) |ηb1
1 . . . η

bs1−1

s1−1 βs1 − 1|v > exp
{
−c27RS1 log H log

(
c28B

log H

)}

where c27 = 2c29(s1)c26d
s1+22−s1+1δ−s1

K , c29(s1) = 1500 · 38s1+1(s1 +
1)3s1+9 and c28 = 2sδK . Since |x3/x2|v is minimal, we have h(x2/x3) ≤
|x2/x3|s/d and, by (5.17), (5.15), (5.14) and (5.1), we deduce first for
h(x2/x3) and then, by (5.13), for each h(xi/xj) that

(5.18) max
i,j

h(xi/xj) < exp
{

c30RS1 log H log
(

log h(x1)
log H

)}
,

provided that h(x1) ≥ exp{c31 log H}, where c30 = 3s1+26d2s1+3s5s1+12
1

and c31 = d3s2s1
1 . For S = S∞, (5.18) proves the second part of our

Lemma 3.
Next assume that v is finite. Putting

log Ai = δ−1
K log h(ηi) + log∗ P, i = 1, . . . , s1 − 1,

log As1 = δ−1
K log H + log∗ P,

and using (5.16), we deduce as in [6] that

(5.19) log A1 . . . log As1−1 ≤ 2c32RS1(log∗ P )s1−2
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where c32 = c26s1d
s1−2δ

−(s1−1)
K . Let

(5.20) Φ = c33
P d

(log∗ P )s1+1
log A1 . . . log As1 log(10s1d log A)

with A defined later, and with c33 = c34(s1)(d2/ log 2)s1+1, where c34(s1) =
22000(9.5(s1 + 1))2(s1+1).

We distinguish two cases. First assume that log H < c35RS1 where
c35 = c25(δK/d)2−s1 . Then we get as in [6] that

(5.21) log A := max
1≤i≤s1

log Ai ≤ c36RS1

with c36 = c27δ
−1
K + (0, 2 · log 2)−1. Further, using an estimate of Kunrui

Yu [39] (cf. [6], Proposition 2) it follows that

(5.22) h(x2/x3) ≤ exp{2s(log∗ P )Φ log(c37 log h(x1))}

with c37 = dc25.
Next assume that log H ≥ c35RS1 . Then we deduce again (5.21).

Further, using again the estimate of [39] and following the argument of [6],
we infer that

(5.23) h(x2/x3) ≤ exp
{

2s(log∗ P )Φ log
(

c38RS1 log h(x1)
log∗ P log As1

)}

with c38 = c25 · c27.
It follows from (5.1), (5.2) and (5.19) to (5.23) that in both cases

(5.24) h(xi/xj) < exp
{

c39
P d

log∗ P
RS1 log∗(RS1) log H log

(
log h(x1)

log H

)}

for each i 6= j, subject to the condition that h(x1) ≥ exp{c40RS1 log H}
where c39 = 325(9d4/d1)s1+1s5s1+10

1 and c40 = (ds2
1)

2s1 . We recall that by
Lemma 3 of [6], RS1 ≥ 0, 1. Now (5.18) and (5.24) prove the first part of
Lemma 3. ¤

Proof of Theorem 2. We use the notation and follow the arguments
of the proof of Theorem 1, and apply Lemma 3 instead of Lemma 1. We can
write again (2.1) in the form (2.1’), where li has now integral coefficients
in Mi with heights ≤ A1, β ∈ OT and h(β) ≤ B1. Denote by OVi , O∗Vi

the
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ring of Vi-integers and its unit group in Mi for i = 1, . . . , n. Let x ∈ Om
T

be a solution of (2.1’), with l(x) 6= 0 for l ∈ L′ if k > 1. Putting li(x) = βi,
we deduce that βi = γiεi with εi ∈ O∗

Vi
, γi ∈ OVi and

h(γi) ≤ B1 exp{c20R + h log Q} = E7

where c20 denotes the constant occurring in Lemma 2 with d replaced by
d3. Denote by ε that εi for which h(εi) is maximal. First consider the case
when h(ε) ≥ exp{c41RV log H} with c41 = (d3v

2)2v and with H defined
below. Suppose that li1 , li2 is an edge in GL(LF ). If li1 , li2 are linearly
independent then there is an li1,2 ∈ LF such that two of li1 , li2 , li1,2 are
conjugate over L. Further denote by K the composite of Mi1 , Mi2 ,Mi1,2 .
There are non-zero integers λi1 , λi2 , λi1,2 in K with heights at most A2 such
that putting αi = λiγi, we have h(αi) ≤ A2E7 = H for i ∈ {i1, i2, i1,2}
and (5.6) holds. On applying Lemma 3 to (5.6) we deduce that

h(εi1/εi2) < exp
{

c42
P d3

log∗ P
RV (log∗RV )(log H) log

(
log h(ε)
log H

)}
= E8,

where c42 = 325(9d4
3/d)v+1v5v+10. It is clear that this holds in that case,

too, when li1 , li2 are linearly dependent. If now li2 , li3 is an edge in GL(LF )
then we obtain in the same way that h(εi2/εi3) ≤ E8, whence h(εi1/εi3) ≤
E2

8 . By using assumption (ii’) on LF and repeating the above procedure
we deduce that for each j with 1 ≤ j ≤ k, there is an ηj (namely, one can
choose ηj = ε−1

i for an i ∈ Ij) such that

(5.25) h(ηjβi) ≤ En
8 for i ∈ Ij .

We may assume that η1 = ε−1.
Suppose that k > 1. Then following the corresponding arguments of

the proof of Theorem 1 we infer that

(5.26) h(η1βi) ≤ E9 for i = 1, . . . , n,

where
E9 = En

8 (m!Am
1 En

8 )2m(k−1).

We deduce from (5.26) and ηn
1 = (η1β1) . . . (η1βn)/β that h(η1) ≤ B

1/n
1 E9

and so, using the shape of E9 and H, we get

h(η1) < exp{c43P
d3RV (log∗RV )(log∗(PRV )/ log∗ P ) log H}(5.27)

= E10
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where c43 = 4mnkc42 log(2mnkc41). For η1=ε−1, this obviously holds for
the case h(ε)< exp{c41RV log H}, too. (5.26) and (5.27) imply that

(5.28) h(βi) ≤ E2
10, i = 1, . . . , n.

Now we can follow again the corresponding arguments of the proof of
Theorem 1, and after some calculations we arrive at (2.5) and (2.6). ¤

Proof of Corollary 2. Put M ′ = L(α1, . . . , αm), and denote by L
the set of the conjugates of the linear form l(X) = α1X1 + · · · + αmXm

with respect to M ′/L. Partition the linear forms in L into subsets so that
l′, l′′ belong to the same subset if the coefficients of X1, . . . , Xm−1 in l′, l′′

coincide. Then we get a partition L1, . . . ,Lk with k denoting the degree of
L(α1, . . . , αm−1) over L, and it is easily seen that each of the L1, . . . ,Lk is
triangularly connected over L. Further, L has the properties (i), (iii) with
L′ = {Xm}. Now Corollary 2 immediately follows from Theorem 2. ¤

Proof of Corollary 3. Let x1, . . . , xm be a solution of (2.8), and
denote by m′ the greatest integer with xm′ 6= 0. If m′ ≥ 2, Corollary 2
applies with m′ instead of m, while for m′ = 1 the assertion is trivial. ¤

6. Proofs of Theorem 3 and Corollaries 4, 5

Proof of Theorem 3. Suppose that f ∈ OT [X] is a monic polynomial
with deg(f) = n, deg(f0) = m, D(f0) = β and with roots in K. Denote by
α1, . . . , αn the roots of f . Assume, for convenience, that α1, . . . , αm are the
roots of f0. The case m = 1 being trivial, we assume that m ≥ 2. Denote
by OS the ring of S-integers in K. Putting xi = αi − α1 for i = 1, . . . , m,
we have αi ∈ OS and xi ∈ OS . Further, with the notation

F (X2, . . . , Xm) = X2 · · ·Xm

∏

2≤i<j≤m

(Xj −Xi)

D(f0) = β can be written in the form

(6.1) F (x2, . . . , xm) = ±β0 with x2, . . . , xm ∈ OS ,

where β0 ∈ OS\{0} and β2
0 = β. We have h(β0) ≤ B1/2. It is easy to verify

that the decomposable form F satisfies the assumptions of Theorem 1 with
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k = 1. Hence, by Theorem 1 we deduce from (6.1) that

max
2≤i≤m

h(xi) < exp{c1m(m− 1)P dRS(log∗RS)2(6.2)

× (RK + hK log Q + log B + m3)}

with the c1 specified in Theorem 1. Further, if T = T∞, this bound can
be replaced by

exp{c2m(m− 1)RK(log∗RK)(RK + log B + m3)}

with the c2 occurring in Theorem 1.
The sum a0 = α1 + · · ·+ αm is contained in QT . Putting θ = −(x1 +

· · · + xm), it follows from (6.2) that h(θ) ≤ mEm−1
11 where E11 denotes

the upper bound obtained in (6.2). Further, we have mα1 − a0 = θ.
By Lemma 6 of [10], there is an a1 ∈ OL such that a1 ≡ a0 (mod m)
in OT and h(a1) ≤ lm|DL|1/2. Set α∗1 = (θ + a1)/m. Then h(α∗1) ≤
3lm3|DL|1/2Em−1

11 and α1 = a + α∗1 with some a ∈ OT . Further, we have
α∗1 ∈ OS . Finally, with the notation α∗i = xi + α∗1 it follows that

(6.3) αi = a + α∗i

and

(6.4) h(α∗i ) ≤ 6lm3|DL|1/2Em
11, i = 1, . . . , m.

Since each αi, i > m, is equal to one of the αi, 1 ≤ i ≤ m, (6.3) and (6.4)
are valid for each i with 1 ≤ i ≤ n. Now (3.1) and (3.2) easily follow
from (6.4). ¤

Proof of Corollary 4. Let f ∈ OL[X] be a monic polynomial with
deg(f) = n, deg(f0) = m, D(f0) ∈ βT and with roots is K. Let S

denote the subset of places on K which consists of the infinite places and
of those finite places which are extensions of the places on L, associated
to the prime ideals ℘1, . . . , ℘t. Let s and RS be as in Section 3. Then it
follows from Theorem 3 in the same way as Theorem 9 was deduced from
Theorem 7 in [24] that f is OL-equivalent to a polynomial of the form
ηnf∗(η−1X), where η ∈ T , f∗ ∈ OL[X] and

h(f∗) < |DL|n/2 exp{m6n(c44s)5sP dRs(log∗RS)2(6.5)

× (RK + hK log Q + log∗ b + RL + hL log Q)}.
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Here RL, hL denote the regulator and class number of L, and c44 is an
effectively computable positive constant which depend only on d.

We have ld0 = d and s ≤ d0(l + t). Further, RL ≤ c45RK , hL ≤
c46hK , where c45, c46 are effectively computable positive constants which
depend only on l (see e.g. [7], Lemma 4). Finally, in view of (2.4) we
have RS ≤ RKhK(dtW )d0 . Using these estimates, (3.3) follows at once
from (6.5). ¤

Proof of Corollary 5. Corollary 5 follows from Corollary 4 in the
same way as we deduced Theorem 2 from Theorem 1 in [21], except the
following modification. The above-mentioned deduction in [21] involved
some arguments from the proof of Theorem 1 of ([15], p. 188). At the end of
the proof of this theorem of [15] we can work with p1, . . . , ps in place of P s

and hence, in (21) of [21], P s(lk−1) can also be replaced, with our present
notation, by Qlk−1. Now, after some calculations, the estimate (3.4) of
the present paper follows from (3.3) in our Corollary 4. ¤

7. Proofs of Theorem 4 and Corollaries 6, 7, 8

We keep the notation of Section 4. Let σ1 = id, σ2, . . . , σn be the
distinct L-isomorphisms of M , and denote by M (i) = σi(M) and by
l(i)(X) = σi(l(X)) = X0 + σi(α1)X1 + · · · + σi(αm)Xm the conjugates
of M and l(X) = X0 + α1X1 + · · ·+ αmXm, respectively, with respect to
M/L. Because of the assumption M = L(α1, . . . , αm), the linear forms l(i)

are pairwise non-proportional. Putting lij(X) = l(i)(X)− l(j)(X) we have

(7.1) DM/L(α1X1 + · · ·+ αmXm) =
∏

1≤i,j≤n
i 6=j

lij(X).

Denote by L the system of linear forms lij . For distinct u, v, w ∈ {1, . . . , n},
we have luv + lvw + lwu = 0, hence any two of luv, lvw, lwu are connected by
edge in the graph G(L). This implies that G(L) is triangularly connected.
In order to apply Theorem 2 to discriminant form equation (4.1), we must
prove that if the normal closure of M over L, denoted by K, is “large”
with respect to M then L satisfies the assumptions (i), (ii’), (iii) made
in Theorem 2. It is known that rankL = m. Hence there remain the
cases (ii’), (iii).
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Define the subgraph G∗L(L) of GL(L) in the following way. G∗L(L) has
vertex set L, and any two of the above luv, lvw, lwu are connected by edge
in G∗L(L) if there is a permutation iu, iv, iw of u, v, w and σ ∈ Gal(K/L),
such that σ(l(iu)) = l(iu), σ(l(iv)) = l(iw). In this case σ(liuiv ) = liuiw ,
hence any two of luv, lvw, lwu form an edge in GL(L).

Lemma 4. Suppose that M (i)M (j)/L is not normal for any i, j with

1 ≤ i, j ≤ n, and that G∗L(L) is not connected. Let L1, . . . ,Lk denote

the vertex sets of the connected components of G∗L(L). Then the graph

HL(L1, . . . ,Lk) is connected.

This implies that if M (i)M (J)/L is not normal for any i, j then L
satisfies the assumptions made in Theorem 2.

Proof. It suffices to show that if lu,v ∈ Li, lu′,v′ ∈ Lj and u = u′

or v = v′ then Li and Lj is connected in H = HL(L1, . . . ,Lk) by a path.
For simplicity we consider L1 and L2, and we assume that l1,2 ∈ L1 and
l1,v ∈ L2 for some v > 2.

Any σ ∈ Gal(K/L) permutes the linear factors l(1), . . . , l(n). Denote
by σ(u) the index u′, 1 ≤ u′ ≤ n, for which σ(l(u)) = l(u

′), u = 1, . . . , n.
By assumption M (1)M (2)/L is not normal, hence there is a σ ∈ Gal(K/L),
σ 6= id, such that σ(1) = 1 and σ(2) = 2. If σ(v) 6= v, then σ(v) 6= 1, 2 and
l1,v + lv,σ(v) − l1,σ(v) = 0, l2,v + lv,σ(v) − l2,σ(v) = 0. Since σ(l1,v) = l1,σ(v)

and σ(l2,v) = l2,σ(v), if follows that l1,v and l2,v are connected in G∗L(L) by
a path, i.e. l2,v ∈ L2. Further, l1,2 = l1,v − l2,v which proves that L1 and
L2 is connected in H by an edge.

Next consider the case when σ(v) = v. By the assumption made
on M (1)M (2) there is a w, 1 ≤ w ≤ n, different from 1, 2, v for which
σ(w) 6= w. If l1,w ∈ Li for some i then it follows as above that L1 and Li

are connected in H by an edge. Further,

l1,w + lw,σ(w) − l1,σ(w) = 0, lv,w + lw,σ(w) − lv,σ(w) = 0

where σ(l1,w) = l1,σ(w) and σ(lv,w) = lv,σ(w). This implies that lv,w ∈ Li.
However, we have l1,w + lw,v = l1,v, hence Li and L2 are connected in H
by an edge. This proves that L1 and L2 are connected in H by a path
which completes the proof. ¤

We shall also need the following two lemmas.
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Lemma 5. Let N be an algebraic number field of degree k ≥ 2 with

discriminant DN , regulator RN and class number hN and with q complex

places on N . Then

RNhN ≤ ∆(log ∆)k−1−q(k − 1 + log ∆)q/(k − 1)!

where

∆ = (2/π)q|DN |1/2.

Proof. This is an explicit version of a well-known theorem. For the
proof of Lemma 5, see [28]. ¤

Lemma 6. Let N1, . . . , Np and N = N1 . . . Np be algebraic number

fields with degrees k1, . . . , kp and k, and discriminants DN1 , . . . , DNp and

DN , respectively, over Q. Then

DN

∣∣
p∏

i=1

D
k/ki

Ni
.

Proof. See [35]. ¤

Proof of Theorem 4. Using the above notation and relation (7.1),
equation (4.1) can be written in the form

(7.2)
∏

1≤i<j≤n
i 6=j

lij(x) = β in x ∈ Om
T .

We distinguish two cases. Assume first that for some i 6= j, M (i)M (j)/L

is a normal extension. Putting K = M (i)M (j), K is the normal closure
of M over L. We apply Theorem 1 to (7.2). For this purpose we have to
introduce some further notation.

Let d, r, RK , hK and OK denote the degree, unit rank, regulator,
class number and the ring of integers of K, respectively. Let S be the
set of extensions to K of the places of T on L, let s = Card(S) and RS

the S-regulator of K. The system L of linear forms lij considered above
satisfies the assumptions (i), (ii) of Theorem 1 with k = 1 (see e.g. [26]).
Hence, by Theorem 1, all solutions x = (x1, . . . , xm) ∈ Om

T of (7.2) satisfy

(7.3) max
1≤i≤m

h(xi) < E11



Bounds for the solutions of decomposable form equations 27

and, if T = T∞,

(7.4) max
1≤i≤m

h(xi) < E12,

where E11 and E12 denote the upper bounds occurring in (2.2) and (2.3),
respectively, with n, A, Q replaced by n2

2, 2A2, Qn2 .
We now estimate from above the paremeters of K and S under con-

sideration in terms of the parameters involved in Theorem 4. We have
d = ln2, r ≤ ln2 − 1, s ≤ tn2. Using (2.4) and the definition of W , one
can easily see that

RS ≤ RKhK(ln2)t0n2Wn2 ,

where t0 = Card(T \ T∞). By Lemma 5 and RK > 0, 2 (cf. [11]), RKhK ,
RK and hK can be estimated from above in terms of |DK | and ln2,
where DK denotes the discriminant of K. Further, by Lemma 6, |DK | ≤
|DM |2n2/n. After some calculations we deduce from (7.3) and (7.4) the
estimates (4.2) and (4.3).

Next consider the case when M (i)M (j)/L is not normal for any i, j,
1 ≤ i, j ≤ n. Denote by L1, . . . ,Lk, k ≥ 1, the vertex sets of the connected
components of G∗L(L). Then L1, . . . ,Lk are triangularly connected over L.
By Lemma 4 the graph HL(L1, . . . ,Lk) is connected. Further, l(x) 6= 0
for all l ∈ L and all solutions x of (7.2). Hence Theorem 2 can be applied
to equation (7.2). Put Mij = M (i)M (j) and denote by RMij , hMij the
regulator and class number of Mij . Let Vij denote the set of extensions
to Mij of the places in T , and RVij the Vij-regulator of Mij . Denote by v

the maximum of the cardinalities of the Vij , and by r, R, h and RV the
maximums of the unit ranks, regulators, class numbers and Vij-regulators,
respectively, of the number fields Mij . Then by Theorem 2, it follows that
all solutions of (7.2) satisfy

(7.5) max
1≤i≤m

h(xi) < E13

and, if T = T∞,

(7.6) max
1≤i≤m

h(xi) < E14

where E13, E14 denote the upper bounds occurring in (2.5) and (2.6), re-
spectively, with k, n, A, Q replaced by n, n2

2, 2A2 and Qn2 .
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We have to estimate from above some parameters in E13, E14. We
have v ≤ tn2. Further,

RVij ≤ RMij hMij (ln2)t0n2Wn2 .

Using again Lemma 5, RMij hMij , RMij and hMij , and hence RV , R and h

can be estimated from above in terms of maxi,j |DMij | and ln2, where DMij

denotes the discriminant of Mij . Further, by Lemma 6, maxi,j |DMij | ≤
|DM |2n2/n. After some calculations it is easy to deduce now from (7.5)
and (7.6) the estimates (4.2) and (4.3), respectively. ¤

Proof of Corollary 6. There is a primitive integral element γ in M

such that γ ≤ |DM |1/2. Then M = L(γ) and

h(DM/L(γ)) ≤ (2|DM |1/2)n(n−1).

Let α be a solution of (4.4). Then it can be represented in the form

α = y0 + y1γ + · · ·+ yn−1γ
n−1

with yi ∈ L for i = 0, . . . , n−1. By taking conjugates with respect to M/L

and using Cramer’s rule we deduce that y2
i = κi/DM/L(γ), where κi ∈ OL,

i = 0, . . . , n−1. Since DM/L(γ) ∈ OL, it follows that (yiDM/L(γ))2 ∈ OL.
Hence, putting y′i = yiDM/L(γ) we infer that y′i ∈ OL for i = 0, . . . , n− 1.
Set β′ = β(DM/L(γ))n(n−1). Then we deduce from (4.4) that

(7.7) DM/L(y′1γ + · · ·+ y′n−1γ
n−1) = β′.

By Theorem 4, we obtain

max
1≤i≤n−1

h(y′i) < exp{c14|DM |n2/n(log |DM |)2ln2−1(7.8)

× (|DM |n2/n + n4 log |DM |+ log B)}=E15

with the c14 occurring in Theorem 4.
We infer that

(7.9) αDM/L(γ) = y′0 + τ,
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where τ ∈ OM with h(τ) ≤ 2n|DM |n2/4En−1
15 . By Lemma 6 of [10] there

are ρ, a ∈ OL such that

(7.10) y′0 = ρ + aDM/L(γ)

and

(7.11) h(ρ) ≤ l|DL|1/2 · |NL/Q(DM/L(γ))|1/l.

With the notation α∗ = (ρ+ τ)/DM/L(γ), (7.9), (7.10), (7.11) and |DL| ≤
|DM | imply that α = a + α∗, where a ∈ OL, h(α∗) ≤ En

15 and (4.5)
immediately follows. ¤

Proof of Corollary 7. Corollary 7 can be deduced from Corollary 6
in the same way as we obtained Corollaries 3.2 and 3.3 in [14] from Theo-
rem 3B of [14]. ¤

Proof of Corollary 8. Let x1, . . . , xn be a solution of (4.7). Then it
follows from (4.6) that

DM/Q(w2x2 + · · ·+ wnxn)a2DM .

By applying now Theorem 4 to this equation, the assertion immediately
follows. ¤
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bres algébriques, Canad. J. Math. 45 (1993), 176–224.

[39] K. Yu, Linear forms in p-adic logarithms III, Composito Math. 91 (1994), 241–276.
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