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Split extension in Moufang loops

By FOOK LEONG (Pulau Pinang) and ANDREW RAJAH (Pulau Pinang)

Abstract. In this paper, we prove the following:
1. Let G be a Moufang loop of order pαm, (p, m) = 1, (p− 1, pαm) = 1 and p is

a prime. Suppose G has an element of order pα. Then G = P oK, a split extension of
a normal subloop K of order m with a subloop P order pα.

2. Let G be a Moufang loop of odd order p2m, (p, m) = 1, and p is the smallest
prime dividing |G|. Then a similar result holds as in (1) with α = 2.

I. Introduction

Let G be a group of order pαm, (p, m) = 1, (p − 1, pαm) = 1 and
suppose G has an element x of order pα. Then G = 〈x〉 o K, a split
extension of a normal subgroup K of order m with the subgroup 〈x〉 [4].
To prove an analogous result on a Moufang loop G, we need a normal
subloop K so that we can use induction on G/K. In other words, G has
to be nonsimple. By Liebeck [8], every simple nonassociative Moufang
loop is isomorphic to one of the Paige’s loop M∗(q). Considering the
orders of elements in each of the conjugate classes of M∗(q), as examined
by Bannai and Song [2], we find that a Moufang loop G with the given
properties stated above cannot be simple. Then G has a normal subloop
K, and so induction will be possible.

Let G be a group of order, p2m, (p,m) = 1, and p is the smallest
prime dividing |G|. Then G = P o K, a split extension of a normal
subgroup K of order m with the subgroup P of order p2 [11]. We prove
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also an analogous result on a Moufang loop G by using repeatedly several
theorems of Glauberman [5].

There exist nonassociative Moufang loops of order pq3 with
q = 1 (mod p) [10]. Moufang loops of odd order p2q3 can be similarly
constructed. Hence our two splitting theorems are very useful in studying
the structure of such finite Moufang loops.

II. Definitions

1. A binary system 〈G, · 〉, in which specification of any two of the
elements x, y, z in the equation x · y = z uniquely determines the third
element, is called a quasigroup. If it further contains an identity element,
then it is called a loop. Clearly, a group is a loop. But there are loops
which are not associative.

2. A loop 〈G, · 〉 is a Moufang loop if xy · zx = (x · yz)x for all x, y,
z in G. From now on, G is defined as a finite Moufang loop.

3. Define zR(x, y) = (zx · y)(xy)−1,
zL(x, y) = (yx)−1(y · xz) and

zT (x) = x−1 · zx.
I(G) = 〈R(x, y), L(x, y), T (x) | x, y ∈ G〉 is called the inner mapping

group of G.

4. Let x and y be elements of G. x and y are conjugate if there exists
θ ∈ I(G) such that xθ = y.

5. Let H be a subloop of G and π a set of primes.

(i) H is a normal subloop of G, (H / G), if Hθ = H for all θ ∈ I(G)
where Hθ = {hθ | h ∈ H}.

(ii) H is a π-loop if the order of every element of H is a π-number.
(A positive integer n is a π-number if every prime divisor of n lies in π).

(iii) H is a Hall π-subloop of G if |H| is the largest π-number divid-
ing |L|.

6. Ga, the associator subloop of G, is the subloop generated by all
the associators (x, y, z) where (x, y, z) = (x · yz)−1 · (xy · z). Write Ga =
(G,G, G) also.
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7. Gc, the commutator subloop of G, is the subloop generated by all
the commutators [x, y] where [x, y] = (yx)−1 · (xy).

8. N = N(L), the nucleus of L, is the subloops generated by all n in
L where (n, x, y) = (x, n, y) = (x, y, n) = 1 for all x, y in L.

9. Z = Z(L), the centre of L, is the subloop generated by all z in N

such that [z, x] = 1 for all x in L.

III. Known results with Mounfang loops

Let G be a finite Moufang loop.

R1. (a) x ∈ G ⇒ |x| ∣∣ |G|. [1, p. 92, Thm. 1.2].

(b) G is disassociative. [1, p. 117, Moufang’s Theorem].

(c) x ∈ G and θ ∈ I(G) ⇒ xnθ = (xθ)n for any integer n. [1, p. 120,
(4.1) and p. 117, Lemma 3.2].

R2. N and Z are normal subloops of G. [1, p. 114, Thm. 2.1 and
p. 60, Lemma 1.1]. In fact N and Z are associative by their definitions.

R3. Let H be a normal subloop of G such that H ⊂ N . Then

(a) G/CG(H) < Aut H where CG(H) = {g | g ∈ G, gh = hg

for all h ∈ H}.
(b) CG(H) ∩H = Z(H), the centre of H. If H = N , then

Ga ⊂ CG(N). [7, p. 33, Thm. 3].

R4. G is a 2-loop if and only if |G| = 2m for some positive integer m.
[6, p. 415, Thm.].

R5. Suppose |G| is odd and K is a normal subloop of G.

(a) If K is minimal normal in G, then K is an elementary Abelian
group and (K, K,G) = 1. [5, p. 402, Thm. 7].

(b) If (K, K, G) = 1 and (|K|, |G/K|) = 1, then K ⊂ N . [5, p. 405,
Thm. 10].

(c) G is solvable. [5, p. 413, Thm. 16].

(d) G contains a Hall π-subloop, π a set of primes. [5, p. 409, Thm. 12.]

(e) If H < G then |H| ∣∣ |G|. [5, p. 359, Thm. 2].
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R6. If H is a subloop of G, x ∈ G and d is the smallest positive
integer such that xd ∈ H, then |〈H, x〉| ≥ |H|d. [3, p. 5, Lemma 0].

R7. There exist simple nonassociative Moufang loops M∗(pn) with
|M∗(pn)| = p3n(p4n − 1)/d(p) where d(2) = 1 and d(p) = 2 if p is an odd
prime. [9, p. 474, Thm. 4.1].

R8. G is a nonassociative simple Moufang loop ⇐⇒ G is isomorphic
with M∗(pn) for some prime p. [8, p. 33, Theorem].

R9. The conjugacy classes of M∗(pn) contain elements whose orders
are 1, p, divisors of pn− 1 or divisors of pn + 1. [2, p. 224, Thm. 2.1.1 and
p. 227, Thm. 2.1.2].

IV. Moufang loops of order pαm

Lemma 1. Let G be a simple nonassociative Moufang loop of order

2αm, (2,m) = 1. Then G has no element of order 2α.

Proof. By R7 and R8, G is isomorphic to M∗(q) for some q where
q = pn and p is a prime. Let x be any 2-element of M∗(q).

Case 1: p ≥ 3. Let q − 1 = 2β1m1 and q + 1 = 2β2m2, where m1 and
m2 are odd. Suppose β = max{β1, β2}. By R9, |x|

∣∣ 2β .

|M∗(q)| = q3(q4 − 1)
2

=
q3(q2 + 1)

2
(q − 1)(q + 1)

=
q3(q2 + 1)

2
2(β1+β2)m1m2 = 2αm.

Since q is odd, 2 | (q2 + 1). So β1 + β2 ≤ α. Thus |x| ≤ 2β < 2β1+β2 ≤ 2α

as β1 > 0 and β2 > 0.

Case 2: p = 2. As q−1 and q+1 are odd, 2 - (q−1)(q+1). So by R9,
|x| = 2. Now |M∗(2n)| = 23n(24n−1) = 2αm. So 2α = 23n ≥ 23 > 2 = |x|.
Thus G has no element of order 2α.

Lemma 2. Let G be a Moufang loop and M a normal subloop of G.

Suppose H is a normal Hall π-subloop of M . Then H is normal in G in

each of the following two cases:

(a) G is of odd order;
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(b) |M | = 2rm where m is odd, |H| = m and there exists an element

of order 2r in M .

Proof. Suppose H 6 G. Then there exists θ ∈ I(G) such that
Hθ 6= H. Since any inner mapping θ is a permutation of G, Hθ −H 6= ∅.

Let hθ ∈ Hθ −H. Since H / M / G, Hθ ⊂ Mθ = M . Since H and
〈hθ〉 are both subloops of M with H / M , clearly H〈hθ〉 is a subloop of
M . Now by R1(c), (hθ)|h| =

(
h|h|

)
θ = 1θ = 1. So |hθ| ∣∣ |h|. By R1(a),

|h|
∣∣ |H|.
So |hθ| ∣∣ |H|. Also |H〈hθ〉| = |H| |〈hθ〉|

|H∩〈hθ〉| .

(a) Suppose G is of odd order. Since |hθ|
∣∣ |H|, H〈hθ〉 is a π-loop in

M strictly containing the Hall π-subloop H. So |H〈hθ〉| - |M |. This is a
contradicition by R5(e).

So H / G if G is of odd order.

(b) Suppose |M | = 2rm where m is odd, |H| = m and there exists
an element x of order 2r in M . Since |hθ|

∣∣ |H|, |H〈hθ〉| is odd. Also
|H〈hθ〉| > m as hθ /∈ H. Now by R1(a), xd /∈ H〈hθ〉 for each 0 < d < 2r.
But x2r

= 1 ∈ H〈hθ〉. Thus |〈H〈hθ〉, x〉| ≥ |H〈hθ〉|2r by R6 > m2r = |M |.
This is a contradiction as 〈H〈hθ〉, x〉 ⊂ M . Hence H / G in this case

also.

Lemma 3. Suppose G is a Moufang loop of order pαm, (p,m) = 1; K

is a normal subloop of G such that |G/K| = pβm0, m0 | m. Suppose there

exists an element x of order pα in G. Then xK is an element of order pβ

in G/K.

Proof. (xK)pα

= xpα

K = 1K ⇒ |xK| ∣∣ pα ⇒ xK is a p-element
in G/K ⇒ |xK|

∣∣ pβ by R1(a). So |xK| = pγ , γ ≤ β. Then (xK)pγ

=
xpγ

K = 1K and xpγ ∈ K. Since |K| = pα−βm/m0 and xpγ

is a p-element

in K,
∣∣xpγ ∣∣

∣∣∣ pα−β by R1(a). Thus
(
xpγ )pα−β

= 1 or xpα+γ−β

= 1. So

α + γ − β ≥ α. Then γ ≥ β. Hence γ = β. So |xK| = pβ .

Lemma 4. Let G be a Moufang loop of order 2αm, (2, m) = 1. Sup-

pose G has an element x of order 2α. Then G = 〈x〉oK, i.e., G is a split

extension of a cyclic group 〈x〉 of order 2α with a normal subloop K of

order m.

Proof. If G is a group, we are through by [4, p. 14, Problem 2.16].
So we assume that G is nonassociative. By Lemma 1, we know that G is
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nonsimple. Let K be a maximal normal subloop of G. Let |G/K| = 2βm0,
0 ≤ β ≤ α, m0 | m.

Case 1: 1 < m0 < m : |G/K| = 2βm0.

1 (a) : β = 0. Then |G/K| = m0 and |K| = 2α(m/m0). By Lemma 3,
|xK| = 1. Hence x ∈ K. By induction, there exists a subloop K0 of order
m/m0 normal in K. By Lemma 2, K0 / G. Now |G/K0| = 2αm0 and
xK0 is an element of order 2α in G/K0 by Lemma 3. By induction, there
exists a subloop K1/K0 of order m0 normal in G/K0. Then K1 / G and
|K1| = |K0|m0 = m. So G = 〈x〉oK1.

1 (b) : β ≥ 1. By Lemma 3, xK is an element of order 2β in G/K.
By induction, there exists a subloop K1/K of order m0 normal in G/K.
Thus K1 /G and |K1| = |K|m0 > |K|, contradicting the maximality of K.

Case 2: m0 = 1 : |G/K| = 2β .

2 (a) : β = 0. |G/K| = 1 ⇒ G = K, a contradiction.

2 (b) : 0 < β < α. |K| = 2α−βm. Since xK ∈ G/K, (xK)2
β

= 1K and
x2β ∈ K. Clearly

∣∣x2β ∣∣ = 2α−β . By induction, K has a normal subloop
K0 of order m. Thus K0 / G by Lemma 2(b). So G = 〈x〉oK0.

2 (c) : β = α. |K| = m and G = 〈x〉oK.

Case 3: m0 = m : |G/K| = 2βm.

3 (a) : β = 0. |G/K| = m. Suppose m is not a prime. Then G/K is
solvable by R5(c). So it has proper normal subloop K1/K. Then K1 / G

and |K| < |K1| < |G|. This contradicts that K is a maximal normal
subloop of L. So m = p, an odd prime. Now |G| = 2αp. By R1(a), there
exists w ∈ G sucht that |w| = p as otherwise, G would be a 2-loop, which
is impossible by R4. Now by R6, G = 〈x, w〉 is a group by diassociativity,
a contradiction.

3 (b) : 0 < β < α. By Lemma 3, xK is an element of order 2β in G/K.
By induction, there exists a subloop K1/K of order m normal in G/K.
Then K1 / G and |K1| = m|K| > |K|, a contradiction.

3 (c) : β = α. Then |K| = 1, a contradiction since K is a maximal
normal subloop of G.
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Theorem 1. Let G be a finite Moufang loop of order pαm, (p, m) = 1,

(p − 1, pαm) = 1. Suppose G has an element x of order pα. Then G =
〈x〉oK, i.e., G is a split extension of a cyclic group 〈x〉 of order pα and a

normal subloop K of order m.

Proof. By Lemma 4, we can assume that p is an odd prime. Since
(p − 1, pαm) = 1, G is of odd order. By R5(c), G is solvable. Let K be
a minimal normal subloop of G. By R5(a), K is an elementary abelian
q-group (where q is a prime).

Case 1: q = p. K < 〈x〉. Otherwise, K〈x〉 is a p-subloop of G whose
order is bigger than pα, contradicting R5(e). As 〈x〉 is cyclic, K is cyclic.
So K = Cp as it is an elementary abelian group.

1 (a) : K � 〈x〉. Then α ≥ 2, |G/K| = pα−1m and xK is an element
of order pα−1 by Lemma 3. By induction, there exists a subloop K1/K

of order m normal in G/K. Then K1 / G and |K1| = pm. Now xpα−1
is

an element of order p in K1. By induction, there exists a subloop K2 of
order m normal in K1. Now K2 is a normal Hall subloop in K1 and K1 /G

implies that K2 / G by Lemma 2(a). Thus G = 〈x〉oK2.

1 (b) : K = 〈x〉 = Cp. Now (K,K, G)=1 by R5(a) and (|K|, |G/K|)=1
⇒ K ⊂ N , the nucleus of G, by R5(b). By R3(a), G/CG(K) ≤ AutK. As
the order of the group of automorphisms of Cp is p − 1,

∣∣ G
CG(K)

∣∣
∣∣∣ p − 1.

As (p− 1, |G|) = (p− 1, pαm) = 1, G = CG(K). Thus K ⊂ Z, the centre
of G. By R5(d), there exists a Hall subloop H of order m in G. Then
G = HZ.

Ga = (G,G, G) = (HZ, HZ,HZ) = (H,H, H) ⊂ H; andNow

Gc = [G,G] = [HZ, HZ] = [H, H] ⊂ H.

Let h ∈ H, x, y ∈ G.

hT (x) = x−1hx = hh−1x−1hx = h[h, x] andThen

hL(x, y) = hR(x−1, y−1), by [1, p. 124, Lemma 5.4, (5.13)]

= h(h, y, x)−1, by [1, p. 124, Lemma 5.4, (5.16)].

Since Ga ⊂ H and Gc ⊂ H, hθ ∈ H for all θ ∈ I(G). Thus H / G and
G = 〈x〉 / H.
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Case 2: q 6= p. Let |K| = qγ . Then |G/K| = pα m
qγ where qγ

∣∣ m.

2 (a) : m > qγ . By Lemma 3, xK is an element of order pα in G/K.
By induction, there exists a normal subloop K1/K of order m/qγ in G/K.
Therefore K1 / G and |K1| = |K|m

qγ = m. Thus G = 〈x〉oK1.

2 (b) : m = qγ . Then G = 〈x〉oK as required.

Corollary 1. Let G be a Moufang loop of order pαm, (p,m) = 1,

(p − 1, pαm) = 1 and suppose G has an element of order pα. Then G is

solvable.

Proof. Case 1: p = 2. Then by Theorem 1, G = C2α o K with
|K| = m which is odd. So G/K is isomorphic to C2α which is solvable.
By R5(c), K is solvable. Thus G is solvable.

Case 2: p 6= 2. Then |G| is odd as (p − 1, pαm) = 1. Thus G is
solvable by R5(c).

V. Moufang loops of odd order p2m

Theorem 2. Let G be a Moufang loop of odd order p2m, (p, m) = 1,

p the smallest prime dividing |G|. Then there exist subloops M and P

in G with |P | = p2, |M | = m, M / G such that G = P oM .

Proof. If G is a group, we are through by [10, p. 141, 6.3.16]. By
R5(c), G is solvable. Let K be a minimal normal subloop of G. By R5(a),
K is elementary abelian. Let |K| = qα. Existence of P is guaranteed by
R5(d).

Case 1: q 6= p. If |K| = m, then K = M and we are through.
If |K| < m, then |G/K| = p2

(
m
/
qα

)
. By induction, there exists a nor-

mal subloop M/K in G/K with |M/K| = m
qα . Then M / G and |M | =

m
qα |K| = m.

Case 2: q = p. Then by R5(e), α = 1 or 2.

2 (a): α = 1 : |K| = p. By R5(d), we can get an element xK of order
p in G/K. |G/K| = pm. So by Theorem 1, there exists a normal subloop
M̂/K of order m in G/K. Then M̂ /G and |M̂ | = pm. Similarly by R5(d)
and by Theorem 1, there exists a subloop M of order m normal in M̂ . By
Lemma 2(a), M / G.
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2 (b): α = 2 : |K| = p2. By R5(a) and R5(b), K ⊂ N . Since K is an
elementary abelian group, K = Cp × Cp.

Now by R3(a), |G/CG(K)|
∣∣ |Aut K| = (p + 1)p(p − 1)2 using [10,

p. 141, 6.3.15]. Since K ⊂ CG(K), and p is the smallest prime dividing
|G|, |G/CG(K)|

∣∣ (p + 1). As p is odd and 2 does not divide the order
of G, G = CG(K). Thus K ⊂ Z.

By R5(d), there exists a subloop M of order m in G. As G = KM =
ZM , it can be shown in a similar way as before (see the proof of Theorem 1,
Case 1(b)) that M / G.

Corollary 2. Let G be a Moufang loop of odd order pα1
1 pα2

2 . . . pαm
m

where p1 < p2 < · · · < pm and 1 ≤ αi ≤ 2. Then there exists a subloop of

order pαm
m normal in G.

Proof. For α1 = 1, R5(d) guarantees the existence of an element of
order p1 in G. So by Theorem 1 or Theorem 2, there exists M1, a normal
subloop in G with |M1| = pα2

2 . . . pαm
m . Again there exists a subloop M2 of

order pα3
3 . . . pαm

m normal in M1. By Lemma 2(a), M2 /G. By this process,
we get a subloop Mm−1 of order pαm

m normal in G.
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