The rolling polyhedra

By NORBERT HEGYVÁRI* (Budapest) and
GERGELY WINTSCHE (Budapest)

Abstract

We consider a convex polyhedron P standing one of its faces on a fixed plane S. We rotate P into another similar position around any of its edges lying on S. We call the trace of P the set of all points of A of S for which A coincides with some vertex of P in some position of P.

We investigate the traces of the Archimedean polyhedra showing if P is not the $(3,6,6)$ then its trace is everywhere dense in S.

1. Introduction

We consider a convex polyhedron P standing with one of its faces on a fixed plane σ. We rotate P into another similar position around any of its edges lying on σ (i.e. after the rotation another face of P will lean on σ). We shall call such a rotation a P-rotation and we perform all possible P-rotations indefinitely.

Let X be a vertex of P. We call the trace of X the set of all points in σ which are occupied by X in some position of P.

Further, the trace of P is the union of the traces of its vertices. The trace of P is denoted by T_{P}.

We assume throughout the paper that $0,1 \in T_{P}$ and there is a position of P where adjacent vertices A_{1} and A_{2} are at 0 at 1 . We call a polyhedron trace-dense if its trace is everywhere dense in σ.

In [3] the first author characterized all trace-dense regular polyhedra and rectangular parallelepipeds. He also established a sufficient condition for a general polyhedron to be trace-dense. It was

Mathematics Subject Classification: 52B05, 52B10.
*Research supported by CEE fund No. CIPA-CT92-4022.

Theorem A. Let x be a vertex of the convex polyhedron P, and denote by $\Sigma(x)$ the sum of all angles which occur at x on the faces. If $\Sigma(x) / \pi$ is irrational for at least one vertex x, then P is trace-dense.

An interesting class of polyhedra for which the condition of Theorem A is not true, i.e. $\forall x, x \in P, \Sigma(x) / \pi$ is rational, is the class of semi-regular or Archimedean polyhedra. In Section 3 we shall investigate the 13 semiregular polyhedra. We prove

Theorem. If P is an Archimedean polihedron and $P \neq(3,6,6)$ then P is trace-dense.

We remark here that it is easy to see (and was mentioned in [3] as Example 1) that if $P=(3,6,6)$ then the trace of P is a lattice of equilateral triangles, so $(3,6,6)$ is not trace-dense.

We merely mention that similar questions were investigated in [2] and [3].

2. Notation

We shall identify σ with the complex plane \mathcal{C}. For α real, put $e(\alpha)=$ $e^{2 \pi i \alpha}$.

Let Q be the set of the rational and Q^{*} the set of the irrational numbers.

Let

$$
U_{\varepsilon}(X)=\{Y: Y \in \mathcal{C} ; d(X, Y)<\varepsilon\}
$$

be the ε-neighbourhood of the point X, where $d(X, Y)$ is the distance of X and Y.

Let x be a point of \mathcal{C} and Y a subset of \mathcal{C}. Write $x+Y=\{x+y: y \in$ $Y\}$. We shall follow the usual notation for Arcimedean polyhedra. Such a polyhedron may be denoted by a symbol giving the numbers of sides of the faces around one vertex, e.g. $(3,4,3,4)$ is the cuboctahedron, $(3,5,3,5)$ is the icosidodecahedron etc. The symbols of the Archimedean polyhedra are $(3,6,3),(3,8,8),(3,10,10),(4,6,6),(4,6,8),(4,6,10),(5,6,6),(3,4,3,4)$, $(3,4,4,4),(3,4,5,4),(3,5,3,5),(3,3,3,3,4),(3,3,3,3,5)$.

Throughout this paper P denotes one of the Archimedean polyhedra.

3. The lemma on the density

In this section we prove a lemma that we shall use in investigating the Archimedean polyhedra.

Lemma. Let P be an arbitrary semi-regular polyhedron. Assume there are lines e and $f(e \neq f)$ for which

$$
e \cap f=0 \in \mathcal{C}
$$

and the sets

$$
\begin{equation*}
e \cap T_{P}, \quad f \cap T_{P} \tag{1}
\end{equation*}
$$

are everywhere dense in e, resp. f.
Then P is trace-dense.
Proof of the Lemma. Let $U_{\varepsilon}(X) \subset \mathcal{C}$, where ε is fixed positive real and X is a point in the plane. We seek a point of the trace of P in this neighbourhood of X. Define the complex numbers u and v by

$$
u+v=X \quad \text { and } \quad u\|e ; \quad v\| f
$$

By (1) there is a point Z of the trace of P for which

$$
Z \in e \cap U_{\varepsilon / 2}(u)
$$

Since P is a semi-regular polyhedron we see that there is a line f^{\prime} for which $f^{\prime} \| f ; Z \in f^{\prime}$ and $T_{P} \cap f^{\prime}$ is everywhere dense in f^{\prime} (indeed we only have to repeat the rotations starting from Z which were used starting from 0 and clearly the position of P at Z and at 0 differ by a translation). This implies that there is a point V in the trace of P for which

$$
V \in f^{\prime} \cap U_{\varepsilon / 2}(Z+v)
$$

But then

$$
V \in U_{\varepsilon}(u+v)
$$

as we wanted.
Remark. Let us note if $u, v, w \in T_{P}$ then $u-v+w \in T_{P}$ holds. This means that T_{P} is a free abelian group. Thus by the Lemma we conclude that if there are lines e, f

$$
0, A, B \in e \quad \text { and } \quad d(0, A) \in Q, \quad d(0, B) \in Q^{*}
$$

(and $0, A^{\prime}, B^{\prime} \in f$ and the same conlusions hold) then T_{P} is everywhere dense.
4. The Archimedean polyhedra $(4,6,6) ;(4,6,8) ;(4,6,10)$
4.1 The case $(4,6,6)$, truncated octahedron

In this case if A_{1} is a vertex of $(4,6,6)$ then

$$
\Sigma\left(A_{1}\right)=\frac{\pi}{2}+2 \frac{2 \pi}{3}=\frac{11}{6} \pi
$$

Thus considering those P-rotations that leave A_{1} fixed we get

$$
\{e(k / 12): k=0, \ldots, 11\} \subset T_{(4,6,6)} .
$$

On the other hand there is a regular hexagon containing the vertex A_{1} and $A_{1} A_{3}$ is a diagonal with $d\left(A_{1}, A_{3}\right)=\sqrt{3}$ and $\angle A_{2} A_{1} A_{3}=\frac{\pi}{6}$. T_{P} is invariant under those P-rotations that leave A_{1} fixed. The existence of a dense line implies the existence of another one. So $(4,6,6)$ is trace-dense.

In the next two cases, if A is a vertex of P then there is a regular hexagon containing A and so, as we have seen in the above mentioned case, we only have to check

$$
\Sigma(A)=\frac{m}{6 q} \pi
$$

4.2 The case $(4,6,8)$, the great rhombicuboctahedron and the case $(4,6,10)$, the great rhombicosidodecahedron

For every vertex A of $(4,6,8)$

$$
\Sigma(A)=\frac{\pi}{2}+\frac{2 \pi}{3}+\frac{3 \pi}{4}=\frac{23}{12} \pi .
$$

For every vertex A of $(4,6,10)$

$$
\Sigma(A)=\frac{\pi}{2}+\frac{2 \pi}{3}+\frac{4 \pi}{5}=\frac{59}{30} \pi .
$$

Thus $(4,6,8)$ and $(4,6,10)$ are trace-dense.
5. The Archimedean polyhedra (3, 8, 8); (3, 4, 3, 4);
($3,3,3,3,4$); (3, 4, 4, 4) (see Fig. 2)
5.1. The case $(3,8,8)$, the truncated cube

The situation in this case is slightly different.

First let us note if $A_{1}, A_{2}, \ldots, A_{8}$ is the set of consecutive vertices of a regular octagon then, with $d\left(A_{1}, A_{2}\right)=1$,

$$
\begin{align*}
d\left(A_{1}, A_{4}\right) & =1+\sqrt{2} \tag{5.1}\\
\angle\left(A_{2} A_{1} A_{4}\right) & =\pi / 4 .
\end{align*}
$$

Furthermore, for every vertex A of $(3,8,8) \Sigma(A)=11 \pi / 6$ holds. Thus

$$
\begin{equation*}
\{e(k / 12): k=0, \ldots, 11\} \subset T_{(3,8,8)} . \tag{5.2}
\end{equation*}
$$

Also by (5.1) and (5.2) $\{e(k / 24): k=0, \ldots, 23\} \subset T_{(3,8,8)}$ and thus $0,1,1+\sqrt{2} \in T_{(3,8,8)}$.
T_{P} is invariant under those P-rotations that leave A_{1} fixed. The existence of a dense line implies the existence of another one. So $(3,8,8)$ is trace-dense.

Thus by the Lemma we get that $(3,8,8)$ is trace-dense.
5.2 The case (3, 4, 3, 4), the cuboctahedron

We claim that

$$
\begin{equation*}
\{e(k / 12): k=0, \ldots, 11\} \subset T_{(3,4,3,4)} . \tag{5.3}
\end{equation*}
$$

Let us consider a face of $(3,4,3,4)$ which is the square $A_{1} A_{2} A_{3} A_{4}$, and assume A_{1}, A_{2} occupy the points 0 and 1 . Since the four faces adjacent to the vertex A_{1} are square-triangle-square-triangle we get

$$
\left\{e\left(n\left(\frac{\pi}{2}+\frac{\pi}{3}\right)\right)\right\} \subset T_{(3,4,3,4)}
$$

which implies (5.3).
Now let us consider the equilateral triangle $A_{1} A_{4} B_{1}$. Then $A_{4} B_{1} C_{1} C_{2}$ is a square and $C_{1} C_{2} C_{3}$ is an equilateral triangle with faces of $(3,4,3,4)$ (see Fig. 2, here we use the following notation: if A is a vertex of P then \tilde{A} is the trace of it).

Thus if A_{4} and B_{1} occupy the points $e\left(\frac{k}{12}\right)$ and $e\left(\frac{k+4}{12}\right)$ then rotating ($3,4,3,4$) around $A_{4} B_{1}$ and thereafter around $C_{1} C_{2}$ we get that C_{3} occupies the point $(1+\sqrt{3}) e\left(\frac{k+2}{12}\right)$. So we get

$$
0,1,1+\sqrt{3} \in T_{(3,4,3,4)} .
$$

Thus ($3,4,3,4$) is trace dense.
5.3 The cases $(3,3,3,3,4)$, the snub cube, and $(3,4,4,4)$, the small rhombicuboctahedron

We can treat these two cases simultaneously. If A is a vertex of $(3,3,3,3,4)$ or $(3,4,4,4)$ then

$$
\Sigma(A)=4 \frac{\pi}{3}+\frac{\pi}{2}=\frac{11}{6} \pi
$$

or

$$
\Sigma(A)=\frac{\pi}{3}+3 \frac{\pi}{2}=\frac{11}{6} \pi
$$

As we have seen in the previous cases we get

$$
\begin{equation*}
\{e(k / 12): k=0, \ldots, 11\} \subset T_{P} \tag{5.6}
\end{equation*}
$$

if P is $(3,3,3,3,4)$ or $(3,4,4,4)$.
If $A_{1} A_{2} A_{3}$ is an equilateral triangle (one face of $(3,3,3,3,4)$ or $(3,4,4,4))$ and A_{1}, resp. A_{2} occupies 0 , resp. 1 then A_{3} occupies the point $e(1 / 6)$. Assume that $A_{1} A_{2} A_{3}$ is a face of $(3,3,3,3,4)$ (or $(3,4,4,4)$) for which there is a vertex A_{4} of P and $A_{2} A_{4} A_{3}$ is an equilateral face of P. So we get that $\sqrt{3} e(1 / 12)$ is in the trace of A_{4} hence by (5.6) and the Lemma the polyhedra $(3,3,3,3,4)$ and $(3,4,4,4)$ are trace-dense.
6. The Archimedean polyhedra $(3,3,3,3,5),(3,4,5,4)$, $(3,5,3,5),(5,6,6)$ and $(3,10,10)$ (see Fig. 3)

In the next five cases we shall use the following idea: we are going to show that

$$
\begin{equation*}
A_{0}=\{e(k / 5): k=0, \ldots, 4\} \subset T_{P} \tag{6.1}
\end{equation*}
$$

Furthermore it is easy to see that

$$
\begin{equation*}
A_{0}+(e(0)-e(1 / 5)) \subset T_{P} \tag{6.2}
\end{equation*}
$$

and by symmetry

$$
\begin{equation*}
A_{0}+\{e(0)-e(1 / 5)\}+\{e(1 / 5)-e(4 / 5)\} \subset T_{P} \tag{6.3}
\end{equation*}
$$

is also true. Let

$$
A_{k}=A_{k-1}+(e(0)-e(4 / 5)) \quad(k \in Z)
$$

Now using (6.2) and (6.3) we get

$$
\begin{equation*}
A_{k} \subset T_{P} \tag{6.4}
\end{equation*}
$$

and so for every integer k

$$
\begin{equation*}
A_{0}+k \cdot(e(0)-e(4 / 5)) \subset T_{P} \tag{6.5}
\end{equation*}
$$

Furthermore by symmetry using a similar idea we get that for every integer m

$$
\begin{equation*}
P_{(m)}:=A_{0}+m \cdot(e(1)-e(3 / 5)) \subset T_{P} . \tag{6.6}
\end{equation*}
$$

(see Fig. 4)
Thus by (6.5) and (6.6)

$$
A_{0}+k \cdot(e(0)-e(4 / 5))+m \cdot(e(1)-e(3 / 5)) \subset T_{P}
$$

Let us observe that the vectors $(e(0)-e(4 / 5)$ and $e(1 / 5)-e(3 / 5)$ are parallel and the ratio of their lengths is $(\sqrt{5}+1) / 2$.

Thus if e is a line containig the points $e(3 / 5)$ and $e(1 / 5)$ then we get that $e \cap T_{P}$ is everywhere dense in e. Clearly we can find a line $f, e \neq f$; $e \cap f=0$, for which $e \cap T_{P}$ is everywhere dense in f. So by the Lemma we get that P is trace-dense.
6.1 The case (3, 3, 3, 3, 5), the snub dodecahedron

In this case for every vertex A

$$
\Sigma(A)=4 \frac{\pi}{3}+\frac{3 \pi}{5}=\frac{29}{15} \pi
$$

so

$$
\{e(k / 30): k=0, \ldots, 29\} \subset T_{(3,3,3,3,5)} .
$$

6.2 The case $(3,4,5,4)$, the small rhombicosadodecahedron For every vertex A

$$
\Sigma(A)=\frac{\pi}{3}+2 \frac{\pi}{2}+\frac{3 \pi}{5}=\frac{29}{15} \pi
$$

so

$$
\{e(k / 30): k=0, \ldots, 29\} \subset T_{(3,4,5,4)} .
$$

6.3 The case $(3,5,3,5)$, the icosidodecahedron

In this case

$$
\Sigma(A)=2 \frac{\pi}{3}+2 \frac{3 \pi}{5}=\frac{28}{15} \pi
$$

and so

$$
\{e(k / 30): k=0, \ldots, 29\} \subset T_{(3,5,3,5)} .
$$

6.4 The case $(5,6,6)$, the truncated icosahedron

In this case

$$
\Sigma(A)=\frac{3 \pi}{5}+2 \frac{4 \pi}{6}=\frac{29}{15} \pi
$$

as we stated.
6.5 The case $(3,10,10)$, the truncated dodecahedron

For every vertex A

$$
\Sigma(A)=\frac{\pi}{3}+2 \frac{8 \pi}{10}=\frac{29}{15} \pi
$$

In the Cases $4-6$ we discussed all Archimedean polyhedra $\neq(3,6,6)$.
This completes the theorem.

Figure 1.

Figure 2.

Figure 3.

Figure 4.
Acknowledgement. We wish to thank the referee for the helpful comments and suggestions.

References

[1] S. Wagon, The Banach-Tarski Paradox, Chap. 5, Cambridge University Press, 1986, 69.
[2] T. J. Dekker, On reflections in Euclidean spaces generating free products, Nieuw Arc. Wisk (3) 7 (1959), 57-60.
[3] N. Hegyvári, On the Trace of Polyhedra, Geometriae Deadicata 55 (1995), 71-74.

NORBERT HEGYVÁRI
ELTE TFK, EÖTVÖS UNIVERSITY
DEPARTMENT OF MATHEMATICS
BUDAPEST, H-1055 MARKÓ U. 29.
HUNGARY
E-mail: norb@ludens.elte.hu

GERGELY WINTSCHE
ELTE TFK, EÖTVÖS UNIVERSITY
DEPARTMENT OF MATHEMATICS
BUDAPEST, H-1055 MARKÓ U. 29.
HUNGARY
E-mail: wgerg@ludens.elte.hu
(Received November 30, 1995; revised May 14, 1997)

