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The rolling polyhedra

By NORBERT HEGYV�ARI∗ (Budapest) and
GERGELY WINTSCHE (Budapest)

Abstract. We consider a convex polyhedron P standing one of its faces on a
fixed plane S. We rotate P into another similar position around any of its edges lying
on S. We call the trace of P the set of all points of A of S for which A coincides with
some vertex of P in some position of P .

We investigate the traces of the Archimedean polyhedra showing if P is not the
(3,6,6) then its trace is everywhere dense in S.

1. Introduction

We consider a convex polyhedron P standing with one of its faces on a
fixed plane σ. We rotate P into another similar position around any of its
edges lying onσ (i.e. after the rotation another face of P will lean on σ).
We shall call such a rotation a P -rotation and we perform all possible
P -rotations indefinitely.

Let X be a vertex of P . We call the trace of X the set of all points
in σ which are occupied by X in some position of P .

Further, the trace of P is the union of the traces of its vertices. The
trace of P is denoted by TP .

We assume throughout the paper that 0, 1 ∈ TP and there is a position
of P where adjacent vertices A1 and A2 are at 0 at 1. We call a polyhedron
trace-dense if its trace is everywhere dense in σ.

In [3] the first author characterized all trace-dense regular polyhedra
and rectangular parallelepipeds. He also established a sufficient condition
for a general polyhedron to be trace-dense. It was
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Theorem A. Let x be a vertex of the convex polyhedron P , and

denote by Σ(x) the sum of all angles which occur at x on the faces. If

Σ(x)/π is irrational for at least one vertex x, then P is trace-dense.

An interesting class of polyhedra for which the condition of Theorem A
is not true, i.e. ∀x, x ∈ P, Σ(x)/π is rational, is the class of semi-regular
or Archimedean polyhedra. In Section 3 we shall investigate the 13 semi-
regular polyhedra. We prove

Theorem. If P is an Archimedean polihedron and P 6= (3, 6, 6) then

P is trace-dense.

We remark here that it is easy to see (and was mentioned in [3] as
Example 1) that if P = (3, 6, 6) then the trace of P is a lattice of equilateral
triangles, so (3, 6, 6) is not trace-dense.

We merely mention that similar questions were investigated in [2]
and [3].

2. Notation

We shall identify σ with the complex plane C. For α real, put e(α) =
e2πiα.

Let Q be the set of the rational and Q∗ the set of the irrational
numbers.

Let
Uε(X) = {Y : Y ∈ C; d(X, Y ) < ε}

be the ε-neighbourhood of the point X, where d(X, Y ) is the distance of
X and Y .

Let x be a point of C and Y a subset of C. Write x+Y = {x+ y : y ∈
Y }. We shall follow the usual notation for Arcimedean polyhedra. Such a
polyhedron may be denoted by a symbol giving the numbers of sides of the
faces around one vertex, e.g. (3, 4, 3, 4) is the cuboctahedron, (3, 5, 3, 5) is
the icosidodecahedron etc. The symbols of the Archimedean polyhedra are
(3, 6, 3), (3, 8, 8), (3, 10, 10), (4, 6, 6), (4, 6, 8), (4, 6, 10), (5, 6, 6), (3, 4, 3, 4),
(3, 4, 4, 4), (3, 4, 5, 4), (3, 5, 3, 5), (3, 3, 3, 3, 4), (3, 3, 3, 3, 5).

Throughout this paper P denotes one of the Archimedean polyhedra.
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3. The lemma on the density

In this section we prove a lemma that we shall use in investigating
the Archimedean polyhedra.

Lemma. Let P be an arbitrary semi-regular polyhedron. Assume
there are lines e and f (e 6= f) for which

e ∩ f = 0 ∈ C
and the sets

(1) e ∩ TP , f ∩ TP

are everywhere dense in e, resp. f .
Then P is trace-dense.

Proof of the Lemma. Let Uε(X) ⊂ C, where ε is fixed positive real
and X is a point in the plane. We seek a point of the trace of P in this
neighbourhood of X. Define the complex numbers u and v by

u + v = X and u ‖ e; v ‖ f.

By (1) there is a point Z of the trace of P for which

Z ∈ e ∩ Uε/2(u).

Since P is a semi-regular polyhedron we see that there is a line f ′ for which
f ′ ‖ f ; Z ∈ f ′ and TP ∩ f ′ is everywhere dense in f ′ (indeed we only have
to repeat the rotations starting from Z which were used starting from 0
and clearly the position of P at Z and at 0 differ by a translation). This
implies that there is a point V in the trace of P for which

V ∈ f ′ ∩ Uε/2(Z + v).

But then
V ∈ Uε(u + v)

as we wanted.

Remark. Let us note if u, v, w ∈ TP then u− v + w ∈ TP holds. This
means that TP is a free abelian group. Thus by the Lemma we conclude
that if there are lines e, f

0, A, B ∈ e and d(0, A) ∈ Q, d(0, B) ∈ Q∗

(and 0, A′, B′ ∈ f and the same conlusions hold) then TP is everywhere
dense.
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4. The Archimedean polyhedra (4, 6, 6); (4, 6, 8); (4, 6, 10)

4.1 The case (4, 6, 6), truncated octahedron
In this case if A1 is a vertex of (4, 6, 6) then

Σ(A1) =
π

2
+ 2

2π

3
=

11
6

π.

Thus considering those P -rotations that leave A1 fixed we get

{e(k/12) : k = 0, . . . , 11} ⊂ T(4,6,6).

On the other hand there is a regular hexagon containing the vertex A1

and A1A3 is a diagonal with d(A1, A3) =
√

3 and ∠A2A1A3 = π
6 . TP is

invariant under those P -rotations that leave A1 fixed. The existence of a
dense line implies the existence of another one. So (4, 6, 6) is trace-dense.

In the next two cases, if A is a vertex of P then there is a regular
hexagon containing A and so, as we have seen in the above mentioned
case, we only have to check

Σ(A) =
m

6q
π.

4.2 The case (4, 6, 8), the great rhombicuboctahedron and the case (4, 6, 10),
the great rhombicosidodecahedron

For every vertex A of (4, 6, 8)

Σ(A) =
π

2
+

2π

3
+

3π

4
=

23
12

π.

For every vertex A of (4, 6, 10)

Σ(A) =
π

2
+

2π

3
+

4π

5
=

59
30

π.

Thus (4, 6, 8) and (4, 6, 10) are trace-dense.

5. The Archimedean polyhedra (3, 8, 8); (3, 4, 3, 4);
(3, 3, 3, 3, 4); (3, 4, 4, 4) (see Fig. 2)

5.1. The case (3, 8, 8), the truncated cube
The situation in this case is slightly different.
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First let us note if A1, A2, . . . , A8 is the set of consecutive vertices of a
regular octagon then, with d(A1, A2) = 1,

(5.1)
d(A1, A4) = 1 +

√
2

∠(A2A1A4) = π/4.

Furthermore, for every vertex A of (3, 8, 8) Σ(A) = 11π/6 holds. Thus

(5.2) {e(k/12) : k = 0, . . . , 11} ⊂ T(3,8,8).

Also by (5.1) and (5.2) {e(k/24) : k = 0, . . . , 23} ⊂ T(3,8,8) and thus
0, 1, 1 +

√
2 ∈ T(3,8,8).

TP is invariant under those P -rotations that leave A1 fixed. The
existence of a dense line implies the existence of another one. So (3, 8, 8)
is trace-dense.

Thus by the Lemma we get that (3, 8, 8) is trace-dense.

5.2 The case (3, 4, 3, 4), the cuboctahedron
We claim that

(5.3) {e(k/12) : k = 0, . . . , 11} ⊂ T(3,4,3,4).

Let us consider a face of (3, 4, 3, 4) which is the square A1A2A3A4, and
assume A1, A2 occupy the points 0 and 1. Since the four faces adjacent to
the vertex A1 are square-triangle-square-triangle we get

{
e
(
n

(π

2
+

π

3

))}
⊂ T(3,4,3,4)

which implies (5.3).
Now let us consider the equilateral triangle A1A4B1. Then A4B1C1C2

is a square and C1C2C3 is an equilateral triangle with faces of (3, 4, 3, 4)
(see Fig. 2, here we use the following notation: if A is a vertex of P then
Ã is the trace of it).

Thus if A4 and B1 occupy the points e
(

k
12

)
and e

(
k+4
12

)
then rotat-

ing (3, 4, 3, 4) around A4B1 and thereafter around C1C2 we get that C3

occupies the point
(
1 +

√
3
)
e
(

k+2
12

)
. So we get

0, 1, 1 +
√

3 ∈ T(3,4,3,4).

Thus (3, 4, 3, 4) is trace dense.
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5.3 The cases (3, 3, 3, 3, 4), the snub cube, and (3, 4, 4, 4), the small rhom-
bicuboctahedron

We can treat these two cases simultaneously. If A is a vertex of
(3, 3, 3, 3, 4) or (3, 4, 4, 4) then

Σ(A) = 4
π

3
+

π

2
=

11
6

π

or

Σ(A) =
π

3
+ 3

π

2
=

11
6

π.

As we have seen in the previous cases we get

(5.6) {e(k/12) : k = 0, . . . , 11} ⊂ TP .

if P is (3, 3, 3, 3, 4) or (3, 4, 4, 4).
If A1A2A3 is an equilateral triangle (one face of (3, 3, 3, 3, 4) or

(3, 4, 4, 4)) and A1, resp. A2 occupies 0, resp. 1 then A3 occupies the point
e(1/6). Assume that A1A2A3 is a face of (3, 3, 3, 3, 4) (or (3, 4, 4, 4)) for
which there is a vertex A4 of P and A2A4A3 is an equilateral face of P . So
we get that

√
3e(1/12) is in the trace of A4 hence by (5.6) and the Lemma

the polyhedra (3, 3, 3, 3, 4) and (3, 4, 4, 4) are trace-dense.

6. The Archimedean polyhedra (3, 3, 3, 3, 5), (3, 4, 5, 4),
(3, 5, 3, 5), (5, 6, 6) and (3, 10, 10) (see Fig. 3)

In the next five cases we shall use the following idea: we are going to
show that

(6.1) A0 = {e(k/5) : k = 0, . . . , 4} ⊂ TP .

Furthermore it is easy to see that

(6.2) A0 + (e(0)− e(1/5)) ⊂ TP

and by symmetry

(6.3) A0 + {e(0)− e(1/5)}+ {e(1/5)− e(4/5)} ⊂ TP

is also true. Let

Ak = Ak−1 + (e(0)− e(4/5)) (k ∈ Z).
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Now using (6.2) and (6.3) we get

(6.4) Ak ⊂ TP

and so for every integer k

(6.5) A0 + k · (e(0)− e(4/5)) ⊂ TP .

Furthermore by symmetry using a similar idea we get that for every inte-
ger m

(6.6) P(m) := A0 + m · (e(1)− e(3/5)) ⊂ TP .

(see Fig. 4)
Thus by (6.5) and (6.6)

A0 + k · (e(0)− e(4/5)) + m · (e(1)− e(3/5)) ⊂ TP .

Let us observe that the vectors (e(0) − e(4/5) and e(1/5) − e(3/5) are
parallel and the ratio of their lengths is

(√
5 + 1

)
/2.

Thus if e is a line containig the points e(3/5) and e(1/5) then we get
that e ∩ TP is everywhere dense in e. Clearly we can find a line f , e 6= f ;
e ∩ f = 0, for which e ∩ TP is everywhere dense in f . So by the Lemma
we get that P is trace-dense.

6.1 The case (3, 3, 3, 3, 5), the snub dodecahedron
In this case for every vertex A

Σ(A) = 4
π

3
+

3π

5
=

29
15

π

so

{e(k/30) : k = 0, . . . , 29} ⊂ T(3,3,3,3,5).

6.2 The case (3, 4, 5, 4), the small rhombicosadodecahedron
For every vertex A

Σ(A) =
π

3
+ 2

π

2
+

3π

5
=

29
15

π

so

{e(k/30) : k = 0, . . . , 29} ⊂ T(3,4,5,4).
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6.3 The case (3, 5, 3, 5), the icosidodecahedron
In this case

Σ(A) = 2
π

3
+ 2

3π

5
=

28
15

π

and so

{e(k/30) : k = 0, . . . , 29} ⊂ T(3,5,3,5).

6.4 The case (5, 6, 6), the truncated icosahedron
In this case

Σ(A) =
3π

5
+ 2

4π

6
=

29
15

π

as we stated.

6.5 The case (3, 10, 10), the truncated dodecahedron
For every vertex A

Σ(A) =
π

3
+ 2

8π

10
=

29
15

π

In the Cases 4–6 we discussed all Archimedean polyhedra 6= (3, 6, 6).
This completes the theorem.
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Figure 1.
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Figure 2.
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Figure 3.
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Figure 4.
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