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1909—1969

On June 14th, 1969, died O1T6 VARGA. We knew that he had been ailing for
some time; nevertheless the news of his untimely death came as a sudden shock,
and inflicted a keen sense of loss and bereavment upon the community of Hun-
garian mathematicians. Otto Varga was much more than an outstanding and highly
sucessful research worker: he was the founder and the leading exponent of
differential geometric research in Hungary.

Otté Varga was born in 1909 at Szepetnek, in what is today Slovakia. He
conducted his secondary studies in the nearby town of Késmark, a picturesque
place of old historic traditions at the foot of the Tatra mountains. He started his
higher studies at the Architectural Department of the Vienna Polytechnic, but
he soon became aware of a certain discrepancy between his individual dispositions
and the kind of studies he was conducting there. Accordingly, after a year he left
the Vienna Polytechnic for Prague’s old Charles University. On concluding his
university studies, he obtained his doctorate and his habilitation at a quite young
age, in 1933 and in 1937, respectively. In the meantime he spent a year of fruitful
research in Hamburg, at the side of W. Blaschke. A few years later, he was entrusted
with leading a department at Charles University. After the occupation of Czechos-
lovakia, he left Prague, and after a short stay in Kolozsvér, he took over the De-
partment of Mathematics at Debrecen University in 1942, During the relatively
short time of less than two decades in which he held the post of director, the De-
partment was transformed — in line with the general upsurge of our country — from
not much more than a one-man institution, consisting of his prominent personality
alone, into a thriving community of mathematicians, a center of research
actively participating in international mathematical life. It was during this time
that this periodical was founded, and Otté Varga took a decisive part in organiz-
ing and directing the policies of the new journal. In 1958 he left Debrecen for Buda-
pest. working during the last decade of his life as professor of the Budapest Poly-
technic and as a member of the Mathematical Research Institute of the Hungarian
Academy of Sciences, actively engaged till the very end in mathematical research.

Under the influence of his eminent teacher at Prague University, Professor
L. BERWALD, the interests of Otté Varga soon turned towards differential geometry,
in particular towards Fincler geometry, then in its early development. This orien-
tation, adopted in youth, remained decisive for the whole of his scientific career,
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and on the basis of his life work we can regard him together with his teacher L.
Berwald and with E. CArRTAN himself the most prominent exponent of Cartan’s
theory of Finsler spaces.

Although the starting point of this geometry is the 1918 thesis of Finsler, its
comprehensive development was largely due to Cartan’s ideas. While in Riemannian
geometry points having the same infinitesimal distance from a fixed point are situ-
ated on an ellipsoid varying with its center, this so called indicatrix surface is re-
placed in Finsler geometry by a differentiable symmetrical convex surface. Cartan
replaced this indicatrix surface in each direction (v) by an ellipsoid osculating the
indicatrix surface in the second order in the direction (v), and thus he turned the
point-space into a more complicated space of line-elements, but he cleared the
way for the application of the apparatus of Riemannian geometry in Finsler geometry.

Ottd Varga started his contributions to Finsler geometry by treating the funda-
mental problem of the introduction of an affine connection into the Finsler space
[1]'). — One can set up a linear mapping between the vectors defined in the different
lineelements by giving an affine transformation. If the functions describing this
linear mapping are linear in the differentials of the coordinates of the point and
direction, then we are given an affinely connected space of the line-elements, where
the vectors ordered to each other by this mapping are called parallel. Cartan en-
forced the euclidean character of the connection, i.e. the equality of lengths in
the Finsler metric of the parallel diplaced vectors by certain formal conditions
imposed on the coefficients determining the affine connection.

In one of his first papers on Finsler spaces [8] O. Varga succeeded in finding
a most elegant and completely geometrical way for introducing the euclidean con-
nection into the Finsler geometry. In order to define the parallel displacement of
the vectors along a one parameter family of line-elements (x(7), v(7)) he considers
the geodesics of the Finsler space tangent to this one parameter family. Then this
set of geodesics will be extended in a neighbourhood B(x) of the curve x(r) to a
field of geodesics. By the tangents of the geodesic field a direction is determined
in every point of B, and the ellipsoids osculating the indicatrixes of the Finsler space
in these directions define an osculating Riemannian space on 8. Varga calls the
vectors of the Finsler space parallel displaced along this set of line-elements if they
are parallel in the constructed Riemannian space. The coefficients of the connection
can easily be calculated from this definition, and they coincide with those, which
are derived from Cartan’s postulates. Thus his method is also an interesting geo-
metrical interpretation of Cartan’s postulates.

The osculating Riemannian space was also instrumental in extending and
broadening our knowledge of the geometrical role of more significant quantities of
Finsler geometry.

The curvature R(x, p) of a Riemannian space ¥/, at a point x and plane position
p is the curvature of the twodimensional ¥, consisiting of the geodesics tangent
to p, and this later curvature equals the Gaussian curvature of the surface represent-
ing the ¥V, in the euclidean three-space. This R(x, p) was generalized and transfered
into the Finsler spaces partly on the basis of its formal expression, and partly on
the basis of its role taken in certain variational problems. The result of this gene-

') Numbers in brackets refer to the appended list of the mathematical works of O. Varga.
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ralization, the Riemann—Berwald curvature R(x, v, X) of a Finsler space is defined
at a line-element (x, v) and a vector X defined at this (x, v). O. Varga has shown,
that R(x, v, X) too can be considered as the curvature of a twodimensional sub-
space, similarly to the case of Riemannian geometry. Namely also the geodesics
of the Finsler space F, tangent to the plane position v, X form a surface X,, which
is turned into an F, by the F,. Let us consider in this F, the geodesic C having as
its tangent the direction X at x, and let us consider the Riemannian space of Varga
osculating the F, along C and its tangents. O. Varga has proved [22], that the cur-
vature R(x) of this osculating Riemannian space is equal to R(x, v, X). On the
other hand R(x) is equal to the Finsler-curvature in the direction v of the F,. Thus
R(x, v, X) is likewise the curvature of a subspace tagent to the plane position v, X,
showing a complete analogy to the R(x, p) of a Riemannian space. This result
also provides the R(x, v, X') with a new geometrical content.

Among the Riemannian spaces the spaces of constant curvature, i.e. those
for which R(x, p) is independent of the plane position p play an important part.
In these spaces, according to a theorem of F. Schur, R is independent also of the
point x. These spaces are exactly models for the elliptic, parabolic (euclidean) and
hyperbolic spaces. Thus also the Finsler spaces of constant curvature, i.e. the
spaces in which R(x, v, X) is constant, and the spaces of scalar curvature, i.e.
the spaces in which R depends only on the line-element (x, v) command a well
deserved special interest among the Finsler spaces. O. Varga applied with success
the parallel displacement of line-elements in their investigation. Let us take a sur-
face in the F, having v and X as its tangents at x. Let us consider at x an arbitrary
line-element (x, v,) and let us displace it parallel along a closed curve of the surface
back to its starting point x. O. Varga has shown in [27], that the F, is of scalar cur-
vature iff the difference of v, and of the v, representing the result of the parallel
displacement of v, is a linear combination of v,, v and X for an arbitrary curve on
the surface. If this differencevector is already expressible by the v and X, then F,
is of constant curvature.

Although this later quality is characteristic of the spaces of constant curvature
among the Riemannian spaces as well?), this is not the only possible generalization
of the Riemannian spaces of constant curvature within the Finsler spaces. O. Varga
describes yet another very simple and natural generalization of the Riemannian
spaces of constant curvature completely different from the preceding one [14], and
gives a criterion for a Finsler space to belong to this class [30], [33]. This criterion
is related to the existence of absolute parallel fields of line-elements, and to the
Riemannian spaces induced by them.

Already in his youth had O. Varga studied the hypersurfaces of the Finsler
spaces [9]. Towards the end of his career he resumed this theme achieving a number
of results concerning hypersurfaces. Each of them is a little master piece of Finsler
geometry.

The F, turns any of its hypersurfaces into a Finsler space F,_,, and this Fins-
lerian metric determines on the hypersurface an euclidean connection which Cartan
called intrinsic. But the metric of the F,_, allows another remarkable connection
too, called induced connection, in which the vectors of the F,_, are displaced paral-

) Sce E BortoLOTTI, Ann. di Math. Bologna 1V, 8 (1930), 53—101.



22 L. Tamassy

lel along the curves of the F,_, according to the connection of the F, and at last
the resulting vectors are projected perpendicularly on the F,_;. O. Varga con-
ducted investigations in order to determine the hypersurfaces, for which these two
connections coincide. He found [45], that these hypersurfaces are either totally
geodesic (surfaces on which any geodesic of the surface is a geodesic of the F, too),
or they can be characterized by the vanishing of part of the coefficients of a dif-
ferential form.

In these investigations the method of the repére mobile plays an important
part. According to this method the absolute differentials of the tangents of a hyper-
surface are decomposed according to the tangents and the normal cevtor of the
hypersurface, the coefficients being differential forms. If in such a decomposition
the coefficients of the normal vector are A4,,dx*+ B,,dv’, then the above criterion
is the vanishing of B,;. — O. Varga has shown [46] that if through any hyperplane
position a totally geodesic hypersurface can be laid, then the Finsler space is of
constant curvature. This quality characterizes the Finsler spaces of constant curva-
ture. — It through any hyperplane position a hypersurface can be still laid for
which B,;=0, then F, is a Riemannian space [53].

O. Varga took a special interest in the relation of the Finsler spaces to the
simpler Minkowski spaces. Minkowski spaces are those specializations of the Finsler
spaces, in which the convex indicatrix is the same at every point. In [11] he pre-
sents a very clever and fully geometrical derivation of the euclidean connection
in the Minkowskian geometry with the aid of the osculating euclidean metrics
attached to the different directions, making no use of the roundabout way of Finsler
geometry. — Also within Minkowskian geometry he paid special attention to the
hypersurfaces. It is well known, that if a hypersurface in euclidean three-space
has constant normalcurvature in every direction, then it is a Riemannian space of
constant curvature. O. Varga has shown [50], that if a hypersurface in the Min-
kowski-space has constant normalcurvature in every line-element, then the geometry
of the hypersurface induced by the Minkowski space on it is a Finsler geometry
of constant curvature with respect to the induced connection. He studied the case,
when a Finsler space induces a Minkowskian geometry on its hypersurface. He
has proved [51], [53], that this is the case only if the induced and the intrinsic con-
nections coincide, and the geometry of the hypersurface is a Minkowskian one,
exactly when a certain vector explicitly expressed by him is proportional to the
normal vector along the hypersurface.

One of his significant achievements is related to the angular metric. By making
correspond to each point of the indicatrix the intersection of the tangent plane
of the indicatrix and of the eillpsoid osculating the indicatrix surface in second
order at the point considered the indicatrix surface becomes a Riemannian space.
By the angle of two neighbouring directions starting from one point is meant the
distance of the points on the indicatrix corresponding to these directions and meas-
ured in the Riemannian geometry of the indicatrix. O. Varga [36] succeeded in
proving that the curvature tensor of this Riemannian geometry is in a very close
and simple relation to the curvature tensor S of the Finsler space. He has proved,
that this Riemannian geometry is then, and only then, of constant curvature, if
also a certain scalar made up in a simple way from S is constant, and this curvature
has value 1 iff S =0. These results are of great importance not only since they revealed
the connection between the tensor S and the angular metric, but also because,
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previously we have had a relatively scarce knowledge about the geometrical role
of the tensor S as compared with the other two curvature tensors of the Cartanian
theory of the Finsler spaces.

In one of his last papers [56] O. Varga has investigated also the hypersurfaces
of a Finsler space from the point of view of the angular metric, and he has determined
the effect of the coincidence of the induced and the intrinsic connection on the
angular metric of the hypersurface.

O. Varga contributed to the devlopment of nearly all branches of Finsler geo-
metry. He obtained new results concerning the mapping on each other of two Finsler
spaces [21], the decomposition of a Finsler space into the product of two others
[42], and concerning the metrizability of affinely connected spaces of line-elements
[31]). We cannot discuss here each of his achievements. Nevertheless, we must touch
upon his results concerning the possibility of introducing normal coordinates and
concerning a complete set of invariants, as well as the notion of the quasigeodesic
[24].

Normal coordinates are the ones, which may be introduced by analytical trans-
formations and in which the equations of the geodesics starting from a fixed point
are linear. Their importance stems from the fact that by them normal affinors and
throuhg a replacement theorem a complete set of invariants may be obtained in
point spaces, that is, such invariants may be gained, by which any other invariant
of the space is expressible. J. DouGLAs®) proved, that normally such a coordinate
system does not exist in line-element spaces. Thus it seemed, that insurmountable
obstacles stood in the way of employing this succesful method for the determination
of a complete set of invariants, a task of fundamental importance from a theoretical
point of view. O. Varga was able to surmount these difficulties by showing that
the negative result in the case of line-element spaces was not due to this method,
but to the inappropriate manner of carrying over the notion of geodesics. For
there exists even in line-element spaces a coordinate system in which the equation
of the quasigeodesics starting from a fixed point is linear. The quasigeodesic intro-
duced by O. Varga is a curve, whose tangents are parallel displaced with respect
to a field of line-elements parallel displaced along the curve so, that the field has a
prefixed direction in the center of the coordinatensystem. This notion reduces in
point spaces to the notion of a common geodesic. O. Varga managed to show,
that this coordinate system can be used in affinelly connected line-element spaces
for the determination of a complete system of invariants in the same way as the
normal coordinate system constructed with the aid of the geodesics could be in
affinely connected pointspaces. According to this result the coefficients determining
the affine connection, the main curvature tensor, their partial derivatives and the
covariant derivatives of these form a complete set of invariants of an affinely con-
nected line-element space. A. RAPcsAKk?) extended this method to Cartan spaces,
and later O. Varga extended it to Kawaguchi spaces and to their affine generali-
zations [38], [39].

The main field of Varga’s scientific activity was Finsler geometry, but he obtained
notable results concerning the Riemannian spaces of constant curvature too. It was
known for long, that if through any hyperplane position of a Riemannian space

" 3) J. DouGLAs, Ann. Math., 29 (1928), 143—168. Esp. p. 163.
1) A. RarpcsAk, Publ. Math. Debrecen, 4 (1956), 276—293.
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a totally geodesic hypersurface can be laid, i.e. if the axion of plane is fullfiled,
then the space is of constant curvature. But this criterion-like quality, does not
separate the spaces of constant negative and constant positive curvature. O. Varga
managed to characterize these spaces separately by subtler qualities. He proved
[34], [43], that the spaces of constant negative curvature may be characterized among
the Riemannian spaces by the quality that through any hyperplane position two
hypersurfaces can be laid so that the geometry induced on them by the Riemannian
space is euclidean (the hypersurfaces are paraspheres), and the spaces of constant
positive curvature may be characterized by the condition, that through any hyper-
plane position a totally geodesic hypersurface can be laid, which is turned by the
embedding space into a Riemannian space of constant positive curvature.

Let us finish by mentioning his earliest works. They come last not as if they
were of lesser value, but because their subject lies beyond Finsler geometry, strictly
speaking even beyond differential geometry. These are works in integral geometry
and they are the products of the years 1934—35 spent in Hamburg with W.
BLASCHKE. These were the years of rapid development in integral geometry. O.
Varga found parameter transformation and motion invariant measures, so called
geometrical densities, on different sets of geometrical configurations, and by dis-
closing the relations existing between them, i.e. with the aid of the Crofton formulae
he established relations between integral invariants [2], [3], [4], [5], [6].

As it can be seen even from this brief survey, Otté Varga was always intent
on seizing and putting into relief the geometric meaning behind the often rather
complicated formalism of Finsler geometry. This is perhaps the most characteristic
feature of his whole scientific work. His mathematical thinking, for which pro-
fundity was rather more characteristic than quickness, was always guided by simple
geometric intuition, in his hand formalism remained a means of expressing geometric
ideas. The clarity and straightforwardness of his mathematical thinking was reflec-
ted by the purity of style and the crystal-clear structure of his papers. The decisive
influence Otté Varga had upon a number of young mathematicians, who as success-
ful geometers of today gladly acknowledge their great debt to him, is certainly not
the less imoprtant aspect of his scientific activity. With his objective and unbiased
evaluation of mathematical achievements he exercised a far-reaching and bene-
volent influence on the whole of Hungarian mathematical life. His outstanding
qualities earned him many distinctions. At forty he became corresponding member
of the Hungarian Academy of Sciences, promoted latter to ordinary membership.
In 1952 he was awarded Kossuth prize. These and other marks of esteem. however,
did not make him self-satisfied : he remained an active, creative and devoted scientist
setting for himself in everything the highest standards throughout his life.

Lajos Tamassy



L 1

. A review of the ,,Appendix

Ott6 Varga In memoriam 25

Mathematical works of Otté Varga

. Beitriige zur Theorie der Finslerschen Rdume und der affinzusammenhéngenden Réume von

Linienelcmenten. Lotos, Prag 84 (1936), 1—4.

. Integralgeometrie 3. Croftons Formeln fir den Raum. Marh. Z. 40 (1935), 384—405.
. Integralgeometrie 8. Uber Masse von Paaren lincarer Mannigfaltigkeiten im projektiven Raum

P.. Rev. Math. Hispano-Americana (1935), 241—279.

. Integralgeometrie 9. Uber Mittelwerte an Eikorpern, Mathematica 12 (1936), 65—80 (with

W. BLASCHKE).

. Integralgeometrie 19. Mittelwerte an dem Durchschnitt bewegter Flichen. Marh. Z. 41 (1936),

768—-784.

. Integralgeometrie 24. Uber die Schiebungen im Raum. Marh. Z. 42 (1937), 710—736.
. Uber die Integralinvarianten die zu einer Kurve in der Hermiteschen Geometrie gehoren.

Acta Sci. Math. Szeged 9 (1939), 88—102.

. Zur Herleitung des invarianten DiflTerentials in Finslerschen Rdumen. Monatshefte f. Math. und

Phys. 50 (1941), 165—175.

. Zur Differentialgeometrie der Hyperfiichen in Finslerschen Réumen. Deutsche Math. 6 (1941),

192—212.

. The establishment of the invariant differential in Finsler spaces. (Hungarian) Matematikai és

Fizikai Lapok 48 (1941), 165—175.

. Zur Begrindung der Minkowskischen Geometrie. Acra Sei. Math. 10 (1943), 149—163.
. The construction of Finsler geometry with the aid of the osculating Minkowski metric. (Hun-

garian) Martematikai és Természettudomdnyi Ertesitd 61 (1942), 14—21.

. On a way of characterizing the Riemannian spaces of constant curvature. (Hungarian) Maremati-

kai és Fizikai Lapok 50 (1943), 34—39,

. Uber eine Klasse von Finslerschen Riumen, die die nichteuklidischen verallgemeinern. Comm.

Marh. Hele. 19 (1946), 367—380.

. Linienelementriume, deren Zusammenhang durch eine beliebige Transformationsgruppe bestimmt

ist. Acta Sci. Math. Szeged 11 (1946), 55—62.

. Uber die Losung differentialgeometrischer Fragen in der nichteuklidischen Geometrie unter

gleichzeitiger Verwendung homogener und inhomogener Koordinaten. Hung. Acta Math. 1
(1947), 35—52.

. Vektorfelder, deren kovariante Ableitung ldngs einer vorgegebenen Kurve verschwindet. Hung.

Acta Math. 4 (1949) 1—3,

. Uber affinzusammenhingende Mannigfaltigkeiten von Linienelementen insbesondere deren

Aquivalenz. Publ. Math. Debrecen 1 (1949), 1—17.

. Bemerkung zur Arbeit des Herrn A. Dinghas ,,Zur Metrik nichteuklidischer Ridume”. Math.

Nachrichten 2 (1949), 386—388.

. Affinzusammenhiingende Mannigfaltigkeiten von Linienlementen, die ein InhaltsmalB besitzen.

Proc. Acad. Amsterdam 52 (1949), 316—322.

. Uber den Zusammenhang der Kriimmungsaffinoren in zwei eindeutig aufeinander abgebildeten

Finslerschen Rédumen. Acta Sci. Math. Szeged 12 (1950), 132—135.

. Uber das KriimmungsmaB in Finslerschen Rédumen. Publ. Math. Debrecen 1 (1950), 116—122.
. The applications of integral geometry in geometrical optics. (Hungarian) A Magyar Tudomdnyos

Akadémia 111, Osztdalydanak Kizleményei 1 (1951), 192—201.

. Normalkoordinaten in allgemeinen Rdumen und ihre Verwendung zur Bestimmung sdmtlicher

Differentialinvarianten. Comptes Rendus de 1. Congrés des Math. Hongrois, Budapest (1950),
147—162.

. Anwendung von p-Vektoren auf derivierte Matrizen. Publ. Math. Debrecen 2 (1951), 137—145.

(with B. GYIRES)

. Soviet results in differential geometry. (Hungarian) Matematikai Lapok 2 (1951), 190—218.
. Eine geometrische Charakterisierung der Finslerschen Riume skalarer und konstanter Kriim-

mung. Acta Math. Acad. Sei. Hung, 2 (1951), 281—283,
"'s new edition. (Hungarian) Magyar Tudomdnyos Akadémia I11,
Oszrdlyanak Kézleményei 3 (1953), 281—283.

29. The effect of the geometry of Bolyai—Lobatschevsky on the development of geometry. (Hunga-

rian) A Magyar Tudomdnyos Akadémia 111. Osztdlydnak Kozleményei 3 (1953), 151—171.

. Eine Charakterisierung der Finslerschen Riume mit absolutem Parallelismus der Linienelemen-

te. Archiv der Math. 5 (1953), 128—131.
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Bedingungen fur die Metrisierbarkeit von affinzusammenhingenden Linienelementmannigfal-
tigkeiten. Acta Math. Acad. Sci. Hung. § (1954), 7—16.

. Bemerkung zur Cayley-Kleinscher Malbestimmung. Publ. Math. Debrecen 4 (1955), 3—15.

(with J. AczivL)
A characterization of Finsler spaces having an absolute parallelism of the line elements. (Hun-
rian) Acta Univ. Debrecen 1 (1954), 105—108,
ber Riemannsche Raume die freie Beweglichkeit besitzen. Schriftenreihe des Forschungsinsti-
tuts fiir Math. der Deutschen Akademie aer Wissenschaften zu Berlin. 1 (1957), 124—130.
L’influence de la géométrie de Bolyai—Lobatschevsky sur le développement de la géométrie.
Acta Math. Acad. Sci. Hung. § (1954), 71—94.
Die Kriimmung der Eichfliche des Minkowskischen Raumes und die geometrische Deutung des
einen Krimmungstensors des Finslerschen Raumes. Abh. Math. Sem. Univ. Hamburg 20 (1955),
41-—-51.
Eine Characterisierung der Kawaguchischen Rdume metrischer Klasse mittels eines Satzes liber
derivierte Matrizen. Publ. Math. Debrecen 4 (1956), 418—430.
Normalkoordinaten in Kawaguchischen Rdumen und seinen affinen Verallgemeinerungen sowie
eine Anwendung derselben zur Bestimmung von Differentialinvarianten. Math. Nachrichten
18 (1958), 141—151.
Ein elementargeometrischer Beweis des Sylvester-Frankeschen Determinantensatzes. [zvesfija
zofia 3 (1959), 105—107.

. Verallgemeinerte Riemannsche Normalkoordinaten und einige Anwendungen derselben. [zves-

tija Szofia 4 (1959), 61—69,

Hilbertsche verallgemeinerte nicht-euklidische Geometrie und Zusammenhang derselben mit
der Minkowskischen Geometrie. Internat. Congress of Math. Abstracts, Edinburgh (1958), 111.
Uber die Zerlegbarkeit von Finslerschen Ridume. Acta Math. Hung. 11 (1960), 197—203.
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mung. Annali di Math. 53 (1961), 105—117.
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Uber den inneren und induzierten Zusammenhang fiir Hyperflichen in Finslerschen Riumen.
Publ. Math. Debrecen 8 (1961), 208—217.

. Uber eine Characterisierung der Finslerschen Ridume konstanter Krimmung. Monatshefte fiir

Math. 65 (1961), 277—286.

Zur Begriindung der Hilbertschen Verallgemeinerung der nichteuklidischen Geometrie. Monats-
hefte fiir Math. 66 (1962), 265—275.

Herleitung des Cartanschen euklidischen Zusammenhanges in Finslerrdumen mit Hilfe der
Riemannschen Geometrie. Acta Physica et Chimica Debrecind 8 (1962), 121—124.

Eine einfache Herleitung der Cartanschen Ubertragung der Finslergeometrie. Math. Notae 18
(1962), 185—196.

Uber Hyperflichen konstanter Normalkriimmung in Minkowskischen Ridumen. Tensor N. S. 13
(1963), 246—250.

Hyperflichen mit Minkowskischer MaBbestimmung in Finslerrdumen. Publ. Math. Debrecen 11
(1964), 301—309.

Zur sphirischen Abbildung in Riemannschen Ridumen. Annales de I' Univ. de Jassy 11 B (1965),
507—517.

Die Methode des beweglichen n-Beines in der Finsler-Geometrie. Acta Math. Sci. Hung. 18
(1967), 207—215.

. F. Kirteszi is 60 years old. (Hungarian) Matematikai Lapok 18 (1967), 273—282. (with J.
55,
56.

MERZA)

Hyperflichen konstanter Normalkrimmung in Finslerschen Rdumen. Math. Nachrichten 38
(1968), 47—52.

Zur Invarianz des Krimmungsmales der Winkelmetrik in Finsler-Rdumen bei Einbettungen.
Math. Nachrichten 43 (1969), 11—18.

Beziehung der ebenen verallgemeinerten nichteuklidischen Geometrie zu gewissen Flichen im
pseudominkowskischen Raum. Aequariones Math. 3 (1969), 112—117.



