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A polar-coordinate model of the hyperbolic plane

By TEODORA WIEGAND (Pécs)

K. PRAZMOWSKI in [2] introduced by central projection of Poincaré’s
half-sphere a model of the hyperbolic plane, in which the cycles of the
hyperbolic plane are represented by the conics of the Euclidean plane. On
the basis of this model he developed an axiomatic study of Strambach
planes with a coordinatization where the lines are hyperbolas (cf. [3]).
The purpose of this article is the analytical definition of this model and
the exact metrical description of the configurations of the hyperbolic plane.
The model is suitable for further analytical examinations of the hyperbolic
plane (cf. [4]).

We denote in the following by H? and E? the hyperbolic and Euclidean
planes; the points of H? are A, B, C,...; the points of E? are A, B, C,....
Let XY (resp. XY) be the natural distance of the points X, Y € H? (resp.
X,y e E?).

1. The analytical definition of the model

Let us take two oriented mutually perpendicular lines OX and OY in
H?, let the positive sense of rotation be chosen according to XOY £ = 7
and let us take a rectangular coordinate system OX) in E2.

Suppose that the point O € H? is represented by the Euclidean ori-
gin. Let us assign to a point P # O € H? with polar coordinates (¢, p)

that point P € E? whose polar coordinates are (¢,sh p). This assignment
defines a bijective mapping

.5:1[2—»1':_2, P ¢(P)="P.

Our model is based on the bijection £. “Images” will mean “images
by £” in the sequel (unless otherwise stated).
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2. Transformation of coordinates

Theorem 1. Let OXY and O'X'Y’ be orthogonal coordinate systems

in H?.

(a) Let O' = O. Suppose that the axes OX' and OY"' turn from the axis
OX with angles a, and a; such that a; — az = :l:%, according to the
fact that the transformation preserves the orientation or not. Then
the coordinate-transformation OXY — OX'Y' generates a rotation
of E? by angle w := a;.

(b) If the coordinate-transformation OXY — O'X'Y' is a translation by

the oriented distance t := O'O along the axis OX, then it induces the
transformation

E* - EQ& P(z, y) e ’P’(xrsyf)
given by

' =z-cht+ /1422 +y? sht
y' =vy.
(P and P' are given in the same Euclidean coordinate system.)

PROOF. (a) is obvious by the definition of £.
Proof of (b): for the triangle OO'P (see [1] 24.§,(I), (IV))

sin(180° — )  shp'
sin ¢’ ~ shp
sht - cthp = sin(180° — ¢) - ctg ' + cos(180° — ) - cht

(cotangent rule)

(sine rule)

from which it follows:
y' =shp' -sing' =shp-sinp=y
' =shp'-cosp' =shp'-siny'-ctgy' =
=shp-cosp-cht+chp-sht =

=z -cht+ 41+ 2% + y?-sht. O

3. Lines

a. The image of a hyperbolic line passing through O is such a Eu-
clidean line which passes through O, and the Euclidean angle between the

image line and the axis OX’ is equal to the hyperbolic angle between the
original line and the axis OX.
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b. Let [ be a hyperbolic line non-passing through O. Let P, be the
intersecting point of [ and the line which is perpendicular to [ and passes

through O, and let
XOP@Z =‘I’0, OPO = a.

Then the parameters ®; and a determine the line ! uniquely and we get
the

Theorem 2. The image £ of the line | is that branch of a hyperbola
which passes through Py. The real axis of this hyperbola is the line OP,.
The asymptotes of the hyperbola pass through O and the angles between
the asymptotes and the axis OX are ®, + a, where a is the angle of
parallelism belonging to the distance a. The half-lengths of the real and
imaginary axes are sha and 1, respectively.

PROOF. Let P # P, be any point of [. For the triangle OFP in
Fig. 1
tha =thp- cos(® — @)

from where

chp
sha- = = shp - cos(® — ®).

Applying the identities

thb=thec-cosa
(*) che=cha-chb
tha =shb-tga,

which are valid for any right
triangle in H? (y = 7/2, see

[1] 17.8, (IIT), (IV), (VI)), we

5 5y get in the triangle OF, P:
Figure 1

chp S— sha-ch PP

—— =ch PP hp = ;

cha roty SR cos(® — @)’

so the Euclidean coordinates of the image point P are
z =shp- cos [(@-@g)-{-tbo]:
=sha-chPyP-cos®; —sha-ch PP -tg(® — @) - sin Py,
y =shp-sin [(@-%)+¢0]=
=sha-chPyP-sin®, +sha-chP,P - tg(® — ®o) - cos @.
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Also by (*):
sha:-chPyP - tg(® — &) =sh PP,
therefore
z =sha-chPyP :cos®y — sh PyP - sin Py,
y =sha-chPyP-sin®y + sh PP - cos ®,.

Rotate the coordinate system OAX') by angle ®,. Then the “new” axis
OAX' coincides with the line OP, (Fig. 2); the obtained coordinate system
OX'Y' will be mentioned as the own system of I. The coordinates of P
are the following ones in this system:

1) ' =sha-chPyP >0
y' =sh PP

from where
.'L"z 5
! !
- =1 2'>0.
sh?a g :

This is the equation of the branch z’ > 0 of a hyperbola, whose real axis
is the line OX'. The equations of the asymptotes are
! 1 ! !
y = :tshax =ttga-z,
where a is the angle of parallelism belonging to the distance a (cf. [1]
18.8, (1)). The half-lengths of the real and imaginary axes are sha and 1
respectively (Fig. 2). O

’

We note that the two half-asymptotes of the images of two different
lines cannot coincide.
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4. Parallelism

Theorem 3. The images of the parallel lines in this Euclidean model
are: an oriented line ¢ through O and the family of hyperbola branches
whose half-asymptote is the half-line of £ with initial point O corresponding
to the given orientation of £.

PROOF. Among the lines parallel to a given line there exists a line [
which passes through O. Let i be the angle between [ and the axis OX
and let f be an arbitrary line parallel to [. The line OP is perpendicular
to the line f (Fig. 3a). The angle between the lines OP and [ is the

angle of parallelism a belonging to the distance OP. The angles between
the asymptotes of the image of f and the axis OX" are (a + ¥) + a and
(a+ %) — a =1 (cf. Theorem 2). Thus one of the half-asymptotes of the
image of f is a half-line of £. This half-line is just the image of the half-line
of [ in the direction of parallelism (Fig. 3b). O

a
a

Figure 3

5. Formulas of the distance

We express the signed distance P, P, with the help of the Euclidean
coordinates of the points P; = £(P;) (i = 1,2). There are two cases.

(a) The line P, P, passes through O

Let 0P1 = M, OP‘;D = p2, Opl =n, Opz = To, Then P]Pg =
PO + OP, = —p, + p; = areashr, — areashr; = In(ry + /ry2 + 1) -

+vra?+1
In(r; + vVr12 +1 =In22 .
' ) rn+vrZ+1
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(b) The line P, P, does not pass through O

Let a and ® be the parameters of the line Py P,. The coordinates of
the image points P;, P, are in the own system of the line P; P, (cf. 3§.):

z,' =sha-chPyP,, y,' =shPyPy,
z,' =sha-chPyP;, y;' =shPyPy;

therefore

ChP]P2 =Ch(P1P0+PgP2)=ChP1P0'CthP2+ShP1P0'Sth_-P-g_=
= ChPopl 'ChPc,Pz = ShPOP1 'Sth)Pg -

371' 172' P
2 = — — — .
(2) sha sha nn

shP, P, =sh(P,Py+ PyP;) =shP,Py-chPyP, +chP, P -shPP, =
= —ShPuPl . ChPng +ChP{)P1 'Sh.PoPg =
' . = y 1

o . : G o . -
(3) = -y sha+sha Y2 % (z1'y2' —z2'y1')

6. Equidistant curves

Let ¢ be an equidistant curve and [ be its base line. The distance of
the points of ¢ from [ is constant: d.

a. The base line passes through O

Theorem 4. The image of the equidistant curve e is a line e which is
parallel to the image line of | and their distance is shd, if the base line |
passes through O.

PROOF. Let P be any point of ¢ and let f be the line through P
perpendicular to I. Let T be the intersecting point of [ and f (Fig. 4).

The same own system belongs to each f in E? (cf. 3§.): namely the axis
OX' is the line ¢ (the image of ). In this system the coordinates of P are

(z',y'), the coordinates of T are (sha, Q), where a = OT is the parameter
of f

Applying (2) to the distance TP = d, we get

z' -sha

sh?a

¢chTP = chd =

?

from where

z' = chd-sha.
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The point P lies on f, thus for its coordinates

2
sh” a

Replacing z' we get: y'> = sh®d, from where y' = shd or y' = —shd, ac-
cording to the fact that ¢ is in one or in the other half-plane of | (Fig. 4). O

" 84
P
d
.T .
r'e a
o \X
1

Figure 4

b. The base line does not pass through O

Theorem 5. The image of the equidistant curve ¢ is a branch e of a
hyperbola if the base line | does not pass through O. The asymptotes of e
are paralle] to the asymptotes of the image hyperbola ¢ of I, the distance
between the parallel asymptotes is shd. One of the two angle-domains
containing e and ¢ is within the other (Fig. 6). The half-lengths of the
real and imaginary axes are chd-|sht| and chd respectively, where t is the
distance of O from .

PROOF. In consequence of Theorem 1(a) it is sufficient to deal with
the case when the base line [ is perpendicular to the axis OX.

Let OXY be such a coordinate system in H? whose QY axis coincides
with the base line . Then the image of the equidistant curve ¢ is the line
with the equation z = shd (¢f. Theorem 4).

We consider the coordinate transformation in H? described in Theo-
rem 1(b). In this coordinate system O'XY" the line [ is perpendicular to
the axis O'X. The image of | corresponding to O'XY" is a hyperbola ¢;
the angles between the asymptotes of ¢ and the axis OX are +7, where 7
is the angle of parallelism belonging to the distance t (Fig. 5).
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o' ¢ ad X o | &

Figure 5

The Euclidean coordinates of the image of any point P € ¢ corres-
ponding to O' XY are

:1:'=shd-cht+\/1+sh2d+y2-sht,
y' =y

from where the equation of the image e of the equidistant curve corres-

ponding to O'XY"' is

(z' —shd-cht)?  y" "
(4) ch®d-sh®t ch?d 7’

z' —shd-cht 20, when t 20.

Thus e is a branch of hyperbola for which
— the half real-axis is chd - | sht|, the half imaginary-axis is chd;
— the intersecting point of the asymptotes is the point (shd - cht,0)

|
which lies on the axis OX’; the slopes of the asymptotes are :L-—E =ttgr,
that is the asymptotes are parallel with the asymptotes of ¢ and their .
distance is shd.

Condition (4) means that one of the two angle-domains including e
and £ is within the other (Fig. 5).

The general case is illustrated by Fig. 6. O

The distance d between an equidistant curve and its base line gives
the distance shd between the asymptotes of their images.
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Figure 6.

7. Circles

Theorem 6. The image of a circle k is an ellipse whose major axis is
the line OC, where C is the centre of the circle. The half-lengths of the
major and minor axes are shr - cht and shr, where r is the radius of k,

= O,

PROOF. The image of the circle with origin O and radius r is the
circle with origin O and radius shr. If C # O then it is sufficient to deal
with the case when C lies on the axis OX.

Let us take first a coordinate system with origin C' in H?, then the
coordinates of the image of any point P € k are

x =shr-cosb,
y=shr-sinf (0<6<2m).

We consider the transformation of coordinates in H? given in Theorem
1(b). In this coordinate system O'XY"' the image point of C' is the point
(sht,0). For the Euclidean coordinates of the image of P corresponding
to O'XY' we get
(5) z' =shr-cos@+cht+ V1+sh®r-sht,

(6) y' =shr -sinf.

From (5)
z' —chr-sht =shr-cos@-cht.
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Squaring and replacing (6), we obtain
(' —chr-sht)? = sh?r.ch®t — y'2 -ch?t
(' —chr-sht)?  y"?
sh?r . ch?t sh?r
This is the equation of an ellipse with centre (chr - sht,0) for which the

line of the major-axis is the axis OX" and the half-lengths of the major and
minor axes are shr-cht andshr. 0O

N

8. Horocycles

Theorem 7. Let h be a horocycle, and let | be the axis of h which
passes through O. The image of h is a parabola whose axis is the image
line of [.

PROOF. In consequence of Theorem 1(a) it is sufficient to deal with
the case when the axis [ is the axis OX and the direction of the parallelism
is the positive direction of the axis OX.

Let us take first such a coordinate system in H? where the origin
O lies on h (Fig. 7) and let P be any point of h different from O. The

-
X

Figure 7.

perpendicular bisector f of the line segment OP is parallel to the axis
OX in the positive direction of OX, because the perpendicular bisectors
of every two points of h are axes of h. The equation of the asymptotes of
the image of f according to Fig. 7 (cf. Theorem 2.) is

y=tg(é ta):z,
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where «a is the angle of parallelism belonging to the distance a. One of
these asymptotes is the axis OX" because f is parallel to the axis OX (cf.
48.), thus e.g. ¢ = a (the proof is similar in the case ¢ = —a). The
coordinates of the image of P are

¢ =sh2a-cosa =sh2a-tha =2sh’aq,

1
y =sh2a-sina = sh 2a - .CE = 2sha;
from where
2
-
2

We consider again the transformation of coordinates in H? from The-
orem 1(b). The coordinates of the image of P corresponding to O'XY"

are
' =z-cht++/1+ 22 +y?-sht,

=y

: 2
Replacing here z = % we get

12
o y?( ht+ cht) +sht;

this is the equation of a parabola with the axis OX. O
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