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Qualitative Behavior of Integrodifferential Systems

By JAROSLAW MORCHALO (Poznan)

We shall associate Volterra integrodifferential equations

(1) dit lir(t)—/N(t—S):r(s)ds—g(t) =(A+ B(t))z(t)+

0

t

+ fﬁy(i —s)r(s)ds + f(t)+ F(z)(t), z(0) =z,

0

d

2 = [x(t)— / N(t — s)z(s)ds — g(t)| = (4 + B(t))a(t)+

+ /K(t —s)z(s)ds + f(t), z(0) =z
0

with

0

P t
(I @ l.r(t) - /N(f — 8)x(s)ds — g(t):l —

= Az(t) + /K(t — s)z(s)ds + f(t)
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via the resolvent equation

(3) % Z(t)—/N(t—s)Z(s)ds =AZ(t)+/K(t—s)Z(s)ds
0 0

Z0)=1I.

Here and hereafter, 0 <t < 400, B(t), K(t), N(t) are n X n matrices
continuous for 0 < s <t < 400, A is a constant n X n matrix, I the n x n
identity matrix, Z an n X n matrix, z(t), f(¢), g(t) are column vectors,

and F' is a "small” nonlinear functional.
In the analysis of of (1)—(I) and (2)—(I) we make use of the variation

of constants formula given by JIANHONG WU in [3].
Equation (2) was studied by GROSSMAN and MILLER in [1, 2] in the
case N(t) = g(t) = 0.

Preliminaries

Let R™ denote the real n-dimensional Euclidean space of column vec-
tors with Euclidean norm | e |, R* the set of all ¢ such that 0 < ¢ < +o0,
and C is the set of all continuous functions with domain R* and range
R". BC(R*) = {u : u is bounded and continuous on R*} with the sup
norm || e ||. BCo(R*) = {uin BC(R*) : u(t) —» 0 as t — oo}.

For p in the interval 1 < p < oo, L? is the usual Lebesgue space of
measurable functions f such that

d

1f1lp = ( If(t)l"dt) < 0.
[

LLP? is the set of all functions which are locally L? on R*.
The function f : (0,00) — R" is said to be interval bounded if it is

measurable and
t+1

sup / |f(s)]ds < oo.

t>o

We will denote the space of interval bounded functions by B;g with norm

t+1

||f||8=31£;/ 1f(s)|ds.
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Notice that a measurable function f(e) is interval bounded if for example
f(s) is bounded or if for some p > 1

7|f(8)|’ds < oo.

JIANHONG WU [3] has shown that (I) has a unique solution z(¢) which
can be expressed as

(@) 2(t) = Z0)(a(0) ~5(O)] +o(0)+ [ Z'(t-9)g(ds+ [ 2(t=5)s(s)as

where Z(t) is an n xn continuously differentiable matrix satisfying equation
(3) with initial value Z(0) = I.

The solution of (I) can for a given z(0), g(0), f(t) and g(t) be ex-
pressed in terms of Z(t) and a map p defined by

o(f,9)(t) = / Z'(t - s)g(s)ds + / Z(t - 5)f(s)ds, 0.

The following results concerning this map p (for ¢g(t) = N(¢,s) = 0)
may be found in GROSSMAN and MILLER [2].
We note that LL' is a Fréchet space.

Theorem. Let X and Y be Fréchet subspaces of LL' both having

a topology stronger than LL'. If o(z) C Y then p is continuous as a
mapping from X into Y.

Interesting examples of Fréchet subspaces of LL! are C, BC, BC (of
all functions in BC having a limit at infinity).

Perturbation Theorems

In this section we study the system (2) as a perturbation of (I). It
is shown that (2) inherits much of the behavior (I) for an appropriate

perturbation term B(t)z. The resolvent associated with (I) is denoted by
¥

Theorem A. Assume
(19) Zyisin L' N BC, Zj is in L'
(29) B is in BCy
(3%) f,g are in BC'.
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Then the solution z(t) of (2) is in BC.

PROOF. From equation (4) the solution z(t) of (2) satisfies

t

(5) (t) = Zi(H)[z(0) — 9(0)] +g(t) + / Zy(t — s)g(s)ds+

0
t

4 j Z4(t - 3)[f(s) + B(s)z]ds.

0

We first prove the theorem for a “small” B(¢). By “small” we mean

any B(t) such that
IBIl < (1Z:11)~" -

Then from (5), for any T' > 0
lzlio, 7y = LR z(t)] < 1 Z1]l 120 — gol + Ilgll(1 + 1 Z7]11)+
t L

+ A Z1ll + 1Bl 21l =l o, -

Hence

llio,ry <@ = IBI |1 Z2ll1)~" [I1Z1 ]} |2(0) — 9(0) |+
+ gl +1220) + 1A 22l -
Thus z(t) is in BC and the theorem is true for “small” B(t).
Now let B(t) be an arbitrary matrix in BCy. Then there is T > 0
such that ||B(t)|| < (||Z/||;)~" where By(t) = B(t+T), t > 0. Since (2)

has a continuous solution z(t) on (0,T), z(t) is bounded on (0,7). For

t > T, z(t) still solves (2) and this may be expressed by translating (2)
and replacing t by ¢t + T

t+T
< {x(t 0= [ N(t +T — s)a(s)ds - .q(t+T)} =

t+T
=(A4+B(t+T))z(t+T)+ fK(t+T—s)3:(s)ds+f(t+T);
0

z(0+T)=12(T),
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where now t > 0. Writing z(¢ + T') as z7(t) we have

t+T
% [xT(t) - / N({t+ T — s)z(s)ds — gT(t)] = (A + Br(t))zr(t)+

t+T
+ [ K(t+T = 9a(s)ds + f2(t); 21(0) = X(T).

By performing the change of variables u = s — T inside the integral we get
d t
6) = [wr(f) - / N(t — w)zp(u)du — G(t)‘ = (A + Br(t))zr(t)+
0

+ [ K(t = war(uydu+ F(©); 21(0) = (),
where

G(t) = / N(t —u)zr(u)du + g7(t)

0

F(t)= [ K(t-wer(du+ fr(t).

-T

Now F\(t) and G(t) are in BC. Then zp(t) solves the equation (6), and
in this equation Br(t) is “small”: |Br(t)| < (||Z;|[1) . From the first
portion of the proof, z7 is in BC, hence z(t) is in BC.

Corollary. In equation (2) suppose Zj(t) is in L' N BCy, Z}(t) is in
L', B(t) is in BCy, g(t) is in BC; (BCy), and f(t) is in BC; (BCy), then

z(o0) = hm z(t) = g(o0) + jZ}(s)ds g(o0) + /Z,r(s)d.s f(00).
0 0
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PROOF. From equation (4) z(t) of (2) satisfies

2(t) = Z1(8)[z(0) — 9(0)] + g(t) + f Z}(t - s)g(s)do+
0

- /Z;(t —s)f(s)ds + fZ;(t — 8)B(s)z(s)ds
0 0
and from Theorem A it is a bounded continuous function. By well-known
theorems on the convolution product all the terms on the right-hand side

have limits.
Hence

Jim 2(t) = g(o0) + [ Zi(s)ds g(o0) + [ Zu(s)ds f(oo)
0 0

where
f(eo) = lim f(t), g(o0) = lim g(t).

Thus z(t) is in BC, (BC,). 0O

Corollary. In equation (2) suppose Z[(t) is in L' N BCy, Z)(t) is in
L'NBC,. If for some fixed p € (1,00), B(t) isin LPNBC,, ¢ is in LPNBC,
and f is in L? N BC), then z(t), the solution of (2) is in L? N BCj.

PROOF. From equation (4) z(t) of (2) satisfies

t

2(t) = Z1(£)[2(0) — 9(0)] + 9(t) + / Z)(t - s)g(s)ds+

+ /Z,r(t —3s)f(s)ds + /Z;(t — 8)B(s)z(s)ds.

0

Let p be a fixed element of (1, 00).

Now Z;(t)[z(0) — ¢(0)] is in both L' and BCy so Z(t)[z(0) — ¢(0)]
is in L?. Hence Z(t)[z(0) — ¢(0)] is also in L? N BCy. Analogously Z}(t)
is in L? N BCy. We known from Theorem A that z(t) is bounded. Thus
B(t)z(t) is in L? N BC.

Now since the convolution of an L? function with an L' function is

an LP function, the three remaining terms on the right-hand side are in
L? N BC,. 1t follows that z(t) isin LP N BC,. O
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Theorem B. Let p be a fixed number satisfying 1 < p < co. Suppose
that Z;(t) is a function in L' N BC, Z)(t) is a function in L' N BC. If
B(t) is in BCy and f(t) is in L? N BC, ¢(t) is in L? N BC, then z(t), the
solution of (2) is in LP N BC.

PROOF. The method of proof is the same as that of Theorem A.
We now prove similar results for a C}, space.

Definition. Let h be a continuous n by n matrix such that n=!(t)

exists for all t € Rt. A Cj-space is the set of all functions z in C such
that
l=lls = sup |h=1(t)z(t)| < M for some M >0.
teR

Definition. A Cj—space is translation invariant if for each z € C and
T >0, z € C, implies z7 € Cy, (z7(t) = z(t+ T),t € RY) and z7 € C},
implies ¢ € Cj,.

Definition. Let B(t) be an nxn matrix in C and Cg, Cy be C}, spaces.
B(t) is “eventually small” with respect to the pair (Cg,Cy) if for every
e > 0 thereis a T > 0 such that |G~'BrH|| < ¢ where By(t) = B(t+T).

Theorem C. Let C}, and Cg be translation invariant. Suppose:
(1) Z;(t) is in Cg, ¢(t) is in Cg
(ii) f(t) is in C}
(1ii) B(t) is “eventually small” with respect to (Cp,Cg)
(iv) There is a Ky > 0 such that

/[G (t)Z}(t — s)G(s)|ds < K; for te R*
(v) There is a K > 0 such that
le_l(t)Z;(t —s)h(s)|ds < K, for teR*

(vi) For any T > 0 and any v € C,
- %
/N(t + s)v(s)ds € Cg ; ]K(t + s)v(s)ds € Cy.
0 0

Then z(t), the solution of (2) is in Cg.

PROOF. The theorem is proved first in the case where B(t) is small,
that is |A~'BG|| < K, .
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We known from equation (5) that z(t) of (2) satisfies

2(t) =Z1(t)[2(0) — 9(0)] + () + ] Z}(t — s)g(s)ds+

t t

+ /Z,r(t —3s)f(s)ds + /Z;(t — s)B(s)z(s)ds.

0 0

So for any M > 0

IG™ |0, a1y = o, IG= (t)z(t)| < [1Z1llG|2(0) — 9(0)] + llgllc(1 + K1)+

+ K|\ flln + K2||h™" Bz||(0, a1y
and
Ih=" Bz||(o,py = |h"' BGG ™ z|(0,my < |h" BG| |G 2(I(0,m) -
Thus
IG " 2ll0,my < (1 = [IA7 BG|[K2)™ - [|1 21l 612(0) — 9(0)]+
+llglla(1+ K1) + Kallflla]

hence z € Cg.

Now let B(t) be any matrix satisfying (iii). Then there is 7' > 0 such
that |h~'BrG|| < K;'. Now z(t) the solution of (2) is bounded on (0, T)
and from (5) z7(t) = z(t + T) solves (6).

From the hypothesis (vi) and from (iii) it follows that F is in C} and G is
in Cg. Since By is small with respect to (Cp,Cg), it follows from above
that z7 € Cg. Hence z is in Cg.

Theorem D. Assume

(1%) | Zr isin BC, g is in BC
(29) f isin L', Z} is in L?
t
(3%) sup max |Z;(t—r)B(r)|ds <1

>0 J 8<rls+l
-0

(recall that all functions vanish for negative arguments).
Then the solution z(t) of (2) is in Byp.
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PROOF. From (4) the solution z(t) of (2) satisfies (5). Then for all
t>0

l2(t)| <N1Z1]| 12(0) — g(0)| + llgll(L + 12711 + 12111 f 112+

+ |Z1(t — r)B(r)| |z(r)|dsdr =
O/r—l
=[1Z1]| 1=(0) — g(0)| + llgll(X + 11 Zzll1) + 1 Z1 |l [l 11+
t s41
+/ f |Z(t — r)B(r)| |z(r)|drds—

—/U]IZf(t—r)B(")llx(r)ldsdr—

-1 =1
t+1 ¢

- / / |Z1(t —r)B(r)| |z(r)|dsdr <
r—1

t

<N Z:ll12(0) — g(0)] + llgll (X + 127 llx + 1211l 1 £ 112+

t

Zi(t—r)B(r)|ds.
+lelasup [ max | (Zi(¢ - r)B()ds
-0

Hence

lzllB < (l—st p/ max IZ:(t—f‘)B(r)ldS) :

>0 J s<r<s+
=

{11211 12(0) = g(O)] + g1 + 1 Z511) + 12l 151l }.

Thus z(t) is in Byp and the theorem is true.

In this section we shall establish stability results for (1) by use of the
variation of constants formula given in (4) above.

MILLER and GROSSMAN in [1] consider such a system where N(t) =
g(t) = 0, and F(z) is a “higher order” functional. Here we prove a similar

theorem but allow F(z) to be the sum of a “higher order” term and a
small Lipschitz term.

Definition. A functional F is of “higher order” in the Banach subspace
X of LL' if F maps X into X, F(0) = 0, and for each ¢ > 0 there exists a
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6 > 0 such that
|F(u) — F(v)|[x < [lu—v|x

where || o ||x is the norm defined on X and u,v are in X and satisfy
lullx <6, Jlvllx <é.

Theorem E. Suppose that in equation (1) F(z) = Fi(z) + F,(z)
where Fy(z) is of “higher order” with respect to X, a Banach subspace of
LL', and F, maps X into X and satisfies F5(0) =0, ||F2(z) — Fa(y)||x <
L||z — y||x for z:,y € Xand L >0. If f,g arein X, Z(t) is in X for any

t

u€e X, pi(u)= fZI t—s)u( )ds € X, p2(u) = fZ;(t—s)u( )ds € X and

there exist M > 0, M; > 0 such that ||p1(u)|lx < M||u|lx, ||lp2(u)llx <
M, ||u||x, B(t) is in BC, then for eache > 0 there is an n > 0 such that if

2ol <7/2, 19(0)l < /2, |lgilx <n, |flx <n. L <, then equation (1)
has a unique solution X (t) in x with ||z||x <e.

PROOF. For any y in X define

T()(t) =Z1(0[2(0) - (0] + 5(6)+ [ Zi(t = s)o(s)as+

t

- /Z;(t —38)f(s)ds + /Z;(t — s)B(s)y(s)ds+

+ ] Zi(t — ) [Fi(y)(s) + Fa(y)(s)] ds for t € (0, 00)

Clearly T maps X into X. Now F is of “higher order” in X so there
exists a § > 0 such that

1 )
l1F1(y1) — Fi(y2)llx < m“yl -v2llx if |lmllx, llyllx <9.

Given € > 0 define ¢g = min(d,¢,1) and let

—min{ €0 €0 €0 €0 }
* '8Z1lx’ 81+ M)’ 8M;’ 8My(1 + [B]))’

Also, define Q(0,&9) = {u € X : ||u|]|x < €0}
For any y € Q(0,¢p)

IT()llx < |21l x(|z(0)] + [9(0)]) + M(2 + M)||gllx + Mi||fllx+
+ M || B|| |lyllx + Mi||Fi(y)llx + Mi||Fa(y)llx -
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So if |zo| < 1/2, |9(0)] < n/2, |lgllx < n, [Ifllx < n L < n, then
IT(y)||x < geo < €9. Hence T maps Q(0,¢0) into itself and for y;,y2 €

Q(Oa 60)
IT(y1) — T(y2)llx <l|lp1(Fi(v1)) — p1(F1(y2))llx+

+ ||p2(F2(y1)) — p2(F2(y2))l x
<M||Fi(y1) = Fi(y2)llx + Mi||F2(y1) — Fa(v2)||x <

<>l - wall
43}1 Y2l X -

Thus T is a contraction which maps on Q(0,¢&¢) and has a unique fixed
point z(t). We see from (4) that this is also a solution of (1) with ||z(t)||x <
Epx O

Remark. Analogously we can prove the results given in Theorems A,
B for the system

2 |=- / N(t = s)a(s)ds - g(t)| = (A + B())a(t)+

+ ][K(t —3)+ Q(t, s)]z(s)ds + f(¢).
0
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