On a Theorem of Bovdi

By K. HOECHSMANN (Vancouver) and S.K. SEHGAL (Edmonton)

1. Introduction

The purpose of this note is to generalize and reinterpret a result of BOVDI [3] concerning units in a commutative group ring $\mathbb{Z}A$ which are "unitary" with respect to a quadratic character $A \to \{\pm 1\}$ of the underlying (finite) abelian group A. It will be apparent from our account that one need not restrict one's attention to cyclic A, as was done in [3].

Given an arbitrary character $\psi: A \to K^{\times}$, where K is a suitable cyclotomic field, let $\tilde{\psi}$ denote the obvious "twist-by- ψ " automorphism on the group algebra KA, which is defined by

(1)
$$\tilde{\psi}\left(\sum_{x\in A}a_x\cdot x\right) = \sum_{x\in A}a_x\psi(x)\cdot x.$$

If the character ψ has order q, then so does the automorphism $\tilde{\psi}$. We are particularly interested in the norm N_{ψ} with respect to this automorphism:

(2)
$$N_{\psi}(u) = \prod_{i=0}^{q-1} \tilde{\psi}^i(u) ,$$

applied to elements $u \in \mathbf{Z}A$. Since the coefficients of $N_{\psi}(u)$ are algebraic integers fixed under the action of $\operatorname{Gal}(K/\mathbf{Q})$, we have $N_{\psi}(u)$ again in $\mathbf{Z}A$. In particular, N_{ψ} may be regarded as an endomorphism of the unit group $U\mathbf{Z}A$.

An element $u \in \mathbf{Z}A$ will be called ψ -normal, if $u \in \ker N_{\psi}$, i.e. if $N_{\psi}(u) = 1$. For quadratic ψ , this property is closely related to that of being ψ -unitary in the sense of [3]. In Section 2 below, we shall explicitly construct a free abelian subgroup of finite index in $\ker N_{\psi}$, and thence recover Bovdi's theorem about ψ -unitary units in the quadratic case.

We conclude this introduction by recalling the construction, due to BASS and MILNOR, of nice subgroups of finite index in $U_1 \mathbf{Z} A$, the group of units with coefficient sum 1.

Starting with a cyclic group C having n elements and $\phi(n)$ generators, suppose that m is a given multiple of $\phi(n)$ For any pair of generators x, y of C there is exactly one element $e_m(x, y) \in U_1 \mathbf{Z} C$ such that

(3)
$$(x-1)^m = e_m(x,y) \cdot (y-1)^m .$$

In fact, we need only put $e_m(x,y) = (1+y+\cdots+y^{a-1})^m - b(1+y+\ldots y^{n-1})$, where $x = y^a$ and $a^m = 1 + bn$. As they were first explored by BASS [1], we shall refer to these special units as BASS units of level m in $\mathbb{Z}C$. From the defining equation (3) it is obvious that they satisfy the relations

(4) (i)
$$e_m(x,y)e_m(y,z) = e_m(x,z)$$
 and (ii) $e_m(x^{-1},y) = e_m(x,y)$,

provided, for the sake of (ii), that m is also a multiple of n and hence $(x^{-1}-1)^m=(x-1)^m$. For n>2, these relations quickly lead to the conclusion that the group $B_m(C)$ generated by the $e_m(x,y)$ has rank $\leq \phi'(n)=\frac{1}{2}\phi(n)-1$. To round out the picture, let us put $\phi'(1)=\phi'(2)=0$.

Using an essentially analytic independence theorem for cyclotomic units, BASS [1] shows that $B_m(C)$ is free of rank exactly $= \phi'(n)$. In other words, (i) and (ii) generate all the relations between the BASS units. Not only that: as S ranges over all subgroups of C, the product of the groups $B_m(S) \subset U_1 \mathbb{Z} C$ is direct, and hence (by a rank count) of finite index.

Turning back to an arbitrary finite abelian group A, we can now invoke a result of MILNOR (cf. [2], Ch.XI, Theorem 7.1.c), which says that the product of $U_1\mathbf{Z}C$, as C ranges over all cyclic subgroups of A, has finite index in $U_1\mathbf{Z}A$. Letting n be the order of a maximal cyclic subgroup of A, and fixing a multiple m of n and $\phi(n)$, we can do yet another rank count to deduce the *Theorem of Bass-Milnor: the product*

(5)
$$M_m(A) = \prod_{C \subseteq A} B_m(C) \subset U_1 \mathbf{Z} A$$

is direct and of finite index.

In this general context, the level m of the BASS units could actually be allowed to vary with C, as long as it is divisible by both |C| and $\phi(|C|)$. For our purposes, however, working with a fixed m has certain advantages —cf. equation (6) below.

2. Results

If $\psi: A \to K^{\times}$ is a character of order q as above, and if $\psi(x)$ has order k for some $x \in A$, the factorization of the polynomial $X^k - 1$ shows that $N_{\psi}(x-1)^m = (x^k-1)^{\ell m}$, where $q = k\ell$. As a consequence, we get

$$(6) N_{\psi}e_{m}(x,y) = e_{m}(x^{k},y^{k})^{\ell},$$

whenever x and y generate the same subgroup C of A. It is important to note that $C^k \subseteq A_{\psi} = \ker(\psi)$, so that (6) implies

$$(7) N_{\psi}: M_{m}(A) \to M_{m}(A_{\psi}) .$$

This fact will be crucial to the proof of our main result, which we now state.

Theorem. The map $Q_{\psi}: u \mapsto u^q/N_{\psi}(u)$ defines an injection of finite index from the direct product

(8)
$$M_{m,\psi}(A) = \prod_{\psi(C) \neq 1} B_m(C)$$

into the group of ψ -normal units in UZA.

PROOF. By splitting the index set $\{C \subseteq A\}$ of equation (5) into two parts, namely $\{\psi(C) \neq 1\}$ and $\{C \subseteq A_{\psi}\}$, we obtain $M_m(A)$ as the direct product $M_{m,\psi}(A) \times M_m(A_{\psi})$. Therefore $1 \neq u \in M_{m,\psi}(A)$ implies $1 \neq u^q \cdot N_{\psi}(u^{-1}) = Q_{\psi}(u)$, on account of (7) — proving injectivity. Of course, any element of the form $Q_{\psi}(u)$ is ψ -normal.

Moreover, (6) shows that Q_{ψ} is trivial on $M_m(A_{\psi})$, and hence the Q_{ψ} -image of $M_m(A)$ equals that of $M_{m,\psi}(A)$. In particular, the latter has finite index in $Q_{\psi}(U\mathbf{Z}A)$. Now, $N_{\psi}(u) = 1 \Longrightarrow u^q = Q_{\psi}(u)$, and thus a suitable power of u will lie in $Q_{\psi}(M_{m,\psi}(A))$.

Remarks. 1. It would be easy, though notationally tedious, to write down an explicit basis for $Q_{\psi}(M_{m,\psi}(A))$ in terms of Bass units. In the notation of (6), one could take elements of the form

(9)
$$e_{m}(x,y)^{q} \cdot e_{m}(x^{k},y^{k})^{-\ell} ,$$

where y is a fixed generator of a $C \subseteq A$ with $\psi(C) \neq 1$. In view of (4), one would select only one element from each pair x, x^{-1} generating the same C but not containing y. Each C contributes $\phi'(|C|)$ basis elements, giving the group of ψ -normal units a free rank of

(10)
$$\operatorname{rk} (\ker N_{\psi}) = \sum_{\psi(C) \neq 1} \phi'(|C|).$$

2. For q=2, a unit is called ψ -unitary, if $u \cdot \tilde{\psi}(u^*) = \pm 1$, where * denotes the involution defined on $\mathbb{Z}A$ by $x \mapsto x^{-1}$ for $x \in A$. By part (ii)

of (4), we have $u = u^*$ for all $u \in M_m(A)$.

Thus $u \in M_m(A)$ is ψ -unitary if and only if u^2 is ψ -normal, and hence $Q_{\psi}(M_{m,\psi}(A))$ is also of finite index in the group of ψ -unitary units of UZA. This is the gist of Bovdi's Theorem (cf. [3], p. 472), which describes a basis $e_m(x,y)^2 e_m(x^2,y^2)^{-1}$ à la (9), and determines the rank à la (10), in the cyclic case. Indeed, if A is cyclic of order $n=2^s t$, with s>0 and t odd, the subgroups $C\subseteq A$ on which ψ is non-trivial correspond to the divisors $d\mid n$ divisible by 2^s . Hence the free rank of the ψ -unitary subgroup of UZA equals

(11)
$$\sum_{d>2} \left(\frac{\phi(d)}{2} - 1 \right) ,$$

as d runs over these divisors.

References

- [1] H. Bass, The Dirichlet unit theorem, induced characters, and Whitehead groups of finite groups, *Topology* 4 (1966), 391-410.
- [2] H. Bass, Algebraic K-Theory, Benjamin, New York, 1968.
- [3] A.A. Bovdi, Unitarnaya podgruppa multiplikativnoi gruppy celočislennogo gruppovogo kolca cykličeskoi gruppy, Matem. Zametki 41 (1987), 469-474.

KLAUS HOECHSMANN
DEPARTMENT OF MATHEMATICS
UNIVERSITY OF B.C.
VANVOUVER
CANADA

SUDARSHAN K. SEHGAL
DEPARTMENT OF MATHEMATICS
UNIVERSITY OF ALBERTA
EDMONTON
CANADA

(Received July 29, 1991)