A counterexample on completeness in relator spaces

By J. DEÁK (Budapest)

Abstract. Disproving a plausible conjecture on completeness of generalized uniformities, we show that strong topological directedness cannot replace strong proximal directedness in a condition sufficient for comleteness (defined by the convergence or adherence of not necessarily directed Cauchy nets).

Preliminaries

Let us recall some definitions from [2, 3]. A relator \mathcal{R} on the set X is a nonvoid family of reflexive relations on X. A (not necessarily directed) net (x_{α}) converges (adheres) to $x \in X$ if (x_{α}) is eventually (frequently) in R(x) for each $R \in \mathcal{R}$. A net (x_{α}) is convergence (adherence) Cauchy if it is convergent (adherent) with respect to each relator $\{R\}$ ($R \in \mathcal{R}$). The relator \mathcal{R} is convergence (adherence) complete if each convergence (adherence) Cauchy net is convergent (adherent). \mathcal{R} is topologically transitive if for each $x \in X$ and $R \in \mathcal{R}$ there are $S, T \in \mathcal{R}$ such that $T(S(x)) \subset R(x)$; strongly proximally directed if for any $n \in \mathbb{N}$, $A_i \subset X$ and $R_i \in \mathcal{R}$ ($1 \le i \le n$) there is an $R \in \mathcal{R}$ such that $R(A_i) \subset R_i(A_i)$ ($1 \le i \le n$); topologically directed if for each $x \in X$, $\{R(x) : R \in \mathcal{R}\}$ is a filter base; topologically compact provided that if an $R_x \in \mathcal{R}$ is assigned to each $x \in X$ then there is a finite $A \subset X$ such that the sets $R_x(x)$ ($x \in A$) cover x. [3] Corollary 3.3 states that

Theorem A. Any strongly proximally directed, topologically transitive, topologically compact relator is convergence as well as adherence complete.

¹⁹⁸⁰ Mathematics Subject Classification (1985 Revision): 54E15.

Research supported by Hungarian National Foundation for Scientific Research, grant no. 2114.

308 J. Deák

Strong proximal directedness falls here out of line: one would expect the theorem to hold for topologically directed relators. This problem was raised by ÁRPÁD SZÁZ in a talk presented at Drujba (Bulgaria) in 1990. [His question was in fact somewhat different, see Remark 4).] We are going to show that even strong topological directedness cannot replace the strong proximal directedness. (The definition is obvious: \mathcal{R} is strongly topologically directed if for any $n \in \mathbb{N}$, $x_i \in X$ and $R_i \in \mathcal{R}$ $(1 \le i \le n)$ there is an $R \in \mathcal{R}$ such that $R(x_i) \subset R_i(x_i)$ $(1 \le i \le n)$.)

The example

On
$$X = \{-2, -1, 0\} \cup \mathbf{N}$$
, let $\mathcal{R} = \{R_n : n \in \mathbf{N}\}$, where $R_n(0) = \{0\} \cup \{k \in \mathbf{N} : k > n\} \quad (n \in \mathbf{N}),$ $R_n(n) = \{-2, -1, n\} \quad (n \in \mathbf{N}),$

and $R_n(x) = \{x\}$ otherwise.

 \mathcal{R} is strongly topologically directed. Given $m \in \mathbb{N}$, $x_k \in X$ and $R_{n_k} \in \mathcal{R}$ $(1 \leq k \leq m)$, choose $n \in \mathbb{N}$ such that $n \geq n_k$ and $n \neq x_k$ $(1 \leq k \leq m)$; now $R_n(x_k) \subset R_{n_k}(x_k)$ for each k.

 \mathcal{R} is topologically transitive. $R_n \circ R_n = R_n \ (n \in \mathbb{N})$, so \mathcal{R} is in fact strongly transitive in the sense of [2].

 \mathcal{R} is topologically compact, since each $R_n(0)$ is cofinite.

 \mathcal{R} is not convergence complete. The sequence $-1, -2, -1, -2, \ldots$ is convergence (and adherence) Cauchy (since $-1, -2 \in R_n(n)$), but not convergent.

 \mathcal{R} is not adherence complete. The non-directed net consisting of the points -1 and -2 is adherence (and convergence) Cauchy, but not adherent.

Remarks

- 1) It follows from Theorem A that \mathcal{R} cannot be strongly proximally directed. A direct proof: consider $R_1(A)$ and $R_2(\mathbb{N}\setminus A)$ where A consists of the even positive integers. However, \mathcal{R} is proximally directed, i.e. $\{R(A): R \in \mathcal{R}\}$ is a filter base whenever $\emptyset \neq A \subset X$.
- 2) It is natural that the non-adherent net in the example is not directed, since if \mathcal{R} is topologically compact then each directed net is adherent ([4] 4.3).
- 3) For uniformities, the two notions of completeness considered above are strictly stronger than the usual completeness. Indeed, the uniformity in [1] II.50 is complete but not adherence complete (there are even directed

adherence Cauchy nets that are not adherent). On the other hand, the complete uniformity induced on $X = \mathbb{N}^2$ by the metric

$$d((k_1, n_1), (k_2, n_2)) = \begin{cases} 1/k & \text{if } k_1 = k_2 = k, \ n_1 \neq n_2, \\ 0 & \text{if } (k_1, n_1) = (k_2, n_2), \\ 1 & \text{otherwise} \end{cases}$$

is not convergence complete: take the net $(x)_{x \in X}$ with the partial order $(k_1, n_1) \leq (k_2, n_2)$ iff $k_1 = k_2, n_1 \leq n_2$.

4) Theorem A is proved in [3] in two steps (Theorems 3.1 and 3.2):

Theorem B. If R satisfies the assumptions of Theorem A then R is a Lebesgue relator.

 $(\mathcal{R} \text{ is a } Lebesgue \ relator \text{ provided that if an } R_y \in \mathcal{R} \text{ is assigned to each } y \in X \text{ then there is an } R \in \mathcal{R} \text{ such that for each } x \in X \text{ there is a } y \in X \text{ with } R(x) \subset R_y(y).)$

Theorem C. Any Lebesgue relator is both convergence and adherence complete.

ÁRPÁD SZÁZ originally asked whether topological directedness is sufficient in Theorem B; our example shows that even strong topological directedness is not enough here. The following simplified version of the example also answers the original question: drop the point -2. To see that the relator is not Lebesgue, take $R_2(1)$ and $R_1(x)$ ($x \neq 1$).

References

- [1] J. R. ISBELL, Uniform spaces, Amer. Math. Soc., Providence (1964).
- [2] Á. Száz, Directed, topological and transitive relators, Publ. Math. Debrecen 35 (1988), 179-196.
- [3] A. Száz, Lebesgue relators, Monatshefte Math. 110 (1990), 315-319.
- [4] Á. Száz, Compact relator spaces (Preprint).

J. DEÁK
MATHEMATICAL INSTITUTE OF THE
HUNGARIAN ACADEMY OF SCIENCES
POB 127
H-1364
HUNGARY

(Received September 27, 1991)