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Paracompact locally compact spaces
as inverse limits of polyhedra

By B. �CERVAR (Split) and N. UGLE�SI�C (Split)

Abstract. A topological space is paracompact locally compact (σ-compact lo-
cally compact), if and only if it admits a strictly canonical simplicial resolution con-
sisting of metrizable (Polish) polyhedra with all the mappings proper. An analogous
characterization of a proper mapping is also established.

1. Introduction

In 1981. S. Mardešić [7], [8] introduced the notions of resolutions of
a space and of a mapping. He proved that every space (mapping) admits
a polyhedral resolution. In recent years the theory of resolutions, in par-
ticular, the theory of approximate resolutions have been very successfully
applied to solve various problems, where the classical inverse limit theory
failed (see [8]–[13], [15]–[17], [19]).

Having in mind the basic idea, to represent a “bad” object as the
limit or resolution of “nice” ones, authors have only rarely (exceptions are
[5], [16] and few other references) taken care of appropriate conditions on
bonding mappings of a commutative representation. For instance, if a space
X has to be described in terms of a polyhedral system X = (Xa, paa′ , A)
and of a mapping system p = (pa) : X → X, one should endeavour to have
the mappings paa′ and pa as simple as possible. The same criterion should
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be applied in describing a mapping f : X → Y in terms of p : X → X,
q = (qb) : Y → Y and f = (f, fb) : X → Y .

In a recent paper, assuming that simple spaces are polyhedra, we suc-
ceeded in constructing polyhedral resolutions of spaces and mappings, such
that all terms are geometric realizations of nerves of normal coverings, all
projections are strictly canonical, while all mappings between the terms
are piecewise linear or simplicial ([2], Theorems (4.3) and (4.5)). An ap-
plication of that construction to paracompact locally compact spaces and
proper mappings yields the main results of this paper:

(a) A topological space X is paracompact locally compact (σ-compact
locally compact) if and only if it admits a strictly canonical simplicial res-
olution p = (pa) : X → X = (Xa, paa′ , A), where all Xa are metrizable
(Polish) polyhedra and all mappings paa′ and pa are proper. (See Theo-
rem 3.3 and Corollaries 3.4 and 3.5.)

(b) A mapping f : X → Y of topological spaces is a proper map-
ping of paracompact locally compact (σ-compact locally compact) spaces
if and only if it admits a strictly canonical simplicial resolution (p, q, f)
consisting of metrizable (Polish) polyhedra and proper mappings. (See
Theorem 4.2.)

In both (a) and (b), the word “resolution” can be replaced by “limit”,
which essentially strengthens the sufficiency parts of the statements.

Recall now some notions and notations. POL denotes the class of
polyhedra (CW-topology). If (K, h) is a triangulation of a polyhedron
P , we identify P with the geometric realization |K|. M ⊆ K denotes a
subcomplex, while M ≤ K denotes a subdivision; a subpolyhedron Q ⊆ P

implies existence of a corresponding subcomplex; if F ⊆ P = |K| is a
subset, then |F |K ⊆ P denotes the carrier of F (with respect to K), which
is a subpolyhedron of P .

A mapping f : |K| → |L| is said to be PL (simplicial) provided it
maps closed simplexes of K linearly into (onto) closed simplexes of L. A
mapping of polyhedra, f : P → Q, is said to be PL (simplicial), if it is
PL (simplicial) with respect to some triangulations K and L of P and Q

respectively [2], Definition (2.1)). Clearly, every simplicial mapping is PL,
but not conversely. In the case of locally compact polyhedra these notions
coincide with standard ones ([6], III. Theorem 3.6.B).

By a space we mean a topological space, and by a mapping, a contin-
uous function. A mapping is proper if preimages of compact sets are com-
pact. Cov(X) denotes the family of all normal (or numerable) coverings
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of a space X. If U and V are coverings of X, U ≤ V means that U refines
V, while U ∧ V denotes the covering {U ∩ V | U ∈ U , V ∈ V, U ∩ V 6= ∅}.
N(U) denotes the nerve of an open covering U of X, while |N(U)| de-
notes its geometric realization. A mapping p : X → |N(U)| is said to be
(strictly) canonical if p−1(st (u)) ⊆ U (= U), U ∈ U ([2], Definition (3.1)
and Lemma (3.3)), where st(u) ⊆ |N(U)| is the open star of the vertex u

corresponding to U .
Basic definitions and facts on inverse systems, limits and resolutions

can be found in [13], [7], [8] and [19] (for mappings). Here we recall
only those important for our considerations. Let X = (Xa, paa′ , A) be an
inverse system of normal spaces Xa. A map p = (pa) : X → X of a space
X into the system X, paa′pa′ = pa′ , a ≤ a′, is a resolution of X if and
only if the following two conditions are satisfied:

(∀U ∈ Cov(X))(∃a ∈ A)(∃V ∈ Cov(Xa)) p−1
a V ≤ U ;(B1)

(∀a ∈ A)(∀U ⊆ Xa open,(B2)

Cl(pa(X)) ⊆ U)(∃a′ ≥ a) paa′(Xa′) ⊆ U.

A system X (a resolution p : X → X) all of whose terms Xa are
polyhedra is called a POL-system (POL-resolution). Such an X(p) is
said to be PL or simplicial if all bonding mappings are PL or simplicial
respectively. A POL-resolution, as well as a limit p : X → X is said to be
(strictly) canonical if all the projections are (strictly) canonical mappings.

A polyhedral resolution (abbreviated as POL-resolution) of a mapping
f : X → Y is a triple (p, q, f), where p : X → X and q : Y → Y are
POL-resolutions of X and Y respectively, while f : X → Y is a map of
systems satisfying q = fp. Similarly, one defines the notions of a PL, a
simplicial and a (strictly) canonical resolution of a mapping.

2. Proper bonding mappings imply proper projections

Lemma 2.1. Let f : X → Y be a proper mapping. If Y is σ-compact

and X is Hausdorff, then X is σ-compact. If Y is locally compact (para-

compact locally compact), then so is X.

Proof. If Y =
⋃

n∈N
Yn, then X =

⋃
n∈N

f−1(Yn), so the first claim

follows. Clearly, if Y is locally compact, then so is X. Finally, a space
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Y is paracompact locally compact if and only if it is a disjoint union of
σ-compact locally compact spaces ([3], XI. Theorem 7.3). The conclusion
follows. ¤

One naturally asks whether proper bonding mappings imply proper
projections. In the case of a limit this is indeed the case.

Lemma 2.2. p = (pa) : X → X = (Xa, paa′ , A) be the limit of a
system X. If all bonding mappings paa′ are proper, then all projections
pa are proper mappings too.

Proof. Choose any a0 ∈ A and any compact set C ⊆ Xa0 . Let A0 =
{a ∈ A | a ≥ a0} carry the inherited preorder of A, let X ′

a = p−1
a0a(C) ⊆ Xa

and let p′aa′ = paa′ |X′
a′

: X ′
a′ → X ′

a, a′ ≥ a ≥ a0. The mappings p′aa′

are well defined and yield an inverse system X ′ = (X ′
a, p′aa′ , A0). Let

X ′ = p−1
ao

(C) ⊆ X and let p′a = pa |X′ : X ′ → X ′
a, a ∈ A0. The mappings

p′a are well defined and we obtain a mapping of X ′ to the system X ′,
p′ = (p′a) : X ′ → X ′. Since A0 is cofinal in A, p0 = (pa) : X → X0 =
(Xa, paa′ , A0) is a limit of X0. Without loss of generality, we may assume,
that p0 : X → X0 is the canonical limit. Then each point x ∈ X is a
unique thread (xa) of X0, i.e., xa = pa(x) = paa′(xa′), a′ ≥ a ≥ a0. By
the construction of p′ : X ′ → X ′, it is obvious that such a thread (xa)
belong to X ′ if and only if x ∈ X ′. Therefore, p′ : X ′ → X ′ is the limit
of X ′. Since all mappings paa′ are proper, all the terms X ′

a of X ′ are
compact. Hence, the limit space X ′ = p−1

a0
(C) is compact ([3], App. Two

(2.4) (2)), and the projection pa0 is a proper mapping. ¤
Theorem 2.3. Let p = (pa) : X → X = (Xa, paa′ , A) be a limit,

where all Xa are paracompact locally compact (σ-compact locally com-
pact) and all bonding mappings paa′ are proper. Then X is paracompact
locally compact (σ-compact locally compact) and all projections pa are
proper mappings.

Proof. The theorem is an immediate consequence of Lemmata 2.2
and 2.1. ¤

3. Polyhedral resolution of a paracompact locally compact space

In this section we will show how to construct, for a paracompact lo-
cally compact space X, a resolution p : X → X with proper bonding
mappings and projections. Moreover, as in [2], Theorem (4.3), the resolu-
tion p will be cofinite, strictly canonical and simplicial, while the system
X admits meshes ([15], Definition (1.1)).
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Lemma 3.1. Let U be an open covering of a space X and let p : X →
|N(U)| be a canonical mapping with respect to U . If all members of U are

relatively compact, then p is a proper mapping. Conversely, if p is proper

and U is star-finite, then U consists of relatively compact sets.

Proof. For the necessity, it suffices to prove that, for every simplex
σ ⊆ |N(U)|, p−1(σ) is a compact subset of X. Let σ = [u0, . . . , un]. Since
p is canonical for U ,

p−1(σ) ⊆ p−1
( n⋃

i=0

st(ui)
)

=
n⋃

i=0

p−1(st(ui)) ⊆
n⋃

i=0

Ui ⊆
n⋃

i=0

Cl(Ui).

Note that p−1(σ) is closed, and
⋃n

i=0 Cl(Ui) is compact. Therefore, p−1(σ)
is compact. Conversely, for every U ∈ U , p(Cl(U)) ⊆ | st(u)| (see [2],
Lemma (2.2) (Proof)). Hence, Cl(U) ⊆ p−1p(Cl(U)) ⊆ p−1| st(u)|. Since
U is star-finite, each closed star | st(u)| ⊆ N(U)| is compact. Therefore, if
p is proper then Cl(U) is compact, U ∈ U . ¤

Let us recall the construction of the canonical and simplicial mappings
in the proof of [8], Theorem 11. For a normal covering U of a space X,
choose a locally finite partition of unity (ϕU , U ∈ U) subordinated to
U . Then (ϕU , U ∈ U) determines a mapping pU : X → |N(U)| which
sends the point x ∈ X to the point pU (x),whose barycentric coordinate
with respect to the vertex u ∈ N(U), U ∈ U , equals ϕU (x). pU is called
the canonical mapping of the partition (ϕU , U ∈ U). Obviously, pU is a
canonical mapping with respect to U . Let pV : X → |N(V)| be another
such canonical mapping determined by (ψV , V ∈ V). Then

(χU∩V , U ∩ V ∈ U ∧ V) = (ϕU · ψV , (U, V ) ∈ U × V, U ∩ V 6= ∅)

is a partition of unity subordinated to U ∧ V. It determines the canonical
mapping pU∧V : X → |N(U ∧ V)|. Furthermore, by sending the vertex
(u, v) ∈ N(U ∧V) to the vertices u ∈ N(U) and v ∈ N(V), one obtains two
simplicial mappings f : |N(U ∧V)| → N(U)| and g : |N(U ∧V)| → |N(V)|,
which satisfy fpU∧V = pU and gpU∧V = pV .

Let U and V be coverings of a space X. V is said to be star-finite with
respect to U if each U ∈ U meets at most finitely many members of V.
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Lemma 3.2. Let U and V be normal coverings of a space X, and

let pU : X → |N(U)| and pU∧V : X → |N(U ∧ V)| be the above de-

scribed canonical mappings. Then the corresponding simplicial mapping

f : |N(U ∧ V)| → |N(U)|, satisfying fpU∧V = pU , is proper if and only if

V is star-finite with respect to U .

Proof. Note that f is proper if and only if, for every U ∈ U ,

(f−1(u))0 = {(u, v1), . . . (u, vn)} ⊆ |N(U ∧ V)0|

is a finite set of vertices. This is equivalent to the condition that U meets
only finitely many V1, . . . , Vn ∈ V, i.e., that V is star-finite with respect
to U . ¤

We can now prove the (strong) converse of Theorem 2.3.

Theorem 3.3. Every paracompact locally compact (σ-compact lo-

cally compact) space X admits a cofinite strictly canonical simplicial res-

olution p = (pa) : X → X = (Xa, paa′ , A), where all polyhedra Xa are

locally compact (separable locally compact) and all mappings paa′ and pa

are proper. p : X → X is also a limit.

Proof. Let C be the family of all open star-finite coverings of X,
which consist of relatively compact members. Then C is a cofinal sub-
family of Cov(X). Furthermore, if n ∈ N and U1, . . . ,Un ∈ C, then
U1 ∧ · · · ∧ Un ∈ C. Therefore, we may apply the construction of [8],
Theorem 11 (the first part of the proof), to the family C. This yields a
map p′ = (p′λ) : X → X ′ = (X ′

λ, p′λλ′ , Λ) of the space X to the inverse
system X ′ such that:

(1) Λ = (Λ,≤) is cofinite, i.e., each λ ∈ Λ has at most finitely many
predecessors;

(2) (∀λ ∈ Λ) X ′
λ is the realized nerve of a member of C;

(3) (∀λ ∈ Λ) p′λ is a corresponding canonical mapping;

(4) (∀λ ≤ λ′) pλλ′ is the simplicial mapping induced by p′λ and p′λ′ ;

(5) p′ satisfies condition (B1);
Recall that every polyhedron is paracompact. Furthermore, the choice

of C and Lemmata 3.1 and 3.2 imply

(6) (∀λ ∈ Λ) X ′
λ is locally compact, i.e., metrizable;
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(7) (∀λ ∈ Λ) p′λ is a proper mapping;

(8) (∀λ ≤ λ′) pλλ′ is a proper mapping.
By [2], Proposition (4.2), p′ admits an extension up to a cofinite,

strictly canonical, PL resolution p = (pa) : X → X = (Xa, paa′ , A), such
that

(9) (∀a ∈ A)(∃λ ∈ Λ) Xa ⊆ X ′
λ is a subpolyhedron;

(10) (∀a ≤ a′)(∃λ ≤ λ′) paa′ : Xa′ → Xa is either the inclusion mapping
of the subpolyhedra of X ′

λ or the restriction mapping of p′λλ′ to the
corresponding subpolyhedra;

(11) (∀a ∈ A)(∃λ ∈ Λ) pa = p′λ : X → Xa ⊆ X ′
λ.

Since every proper PL mapping is simplicial ([6], III. Theorem 3.6.C;
[2], Lemma (2.2) (ii)), all the requirements on the resolution p : X → X

are fulfilled. Note that in the case of a σ-compact locally compact space
X, the nerves which appear are locally finite and countable. Therefore,
all polyhedra X ′

λ and the subpolyhedra Xa ⊆ X ′
λ are locally compact and

separable, i.e. Polish (see [17], Propositions (2.1) and (2.2)). Finally, the
last statement follows by [15], Theorem (3.1). ¤

Corollary 3.4. Let X be a topological space. The following state-

ments are equivalent:

(i) X is paracompact locally compact;

(ii) X admits a proper mapping into a paracompact locally compact space;

(iii) X is a limit of a system of metrizable polyhedra with proper bonding

mappings;

(iv) X admits a resolution p = (pa) : X → X = (Xa, paa′ , A), where all

Xa are metrizable polyhedra and all bonding mappings paa′ (and all

projections pa) are proper.

Proof. (ii) implies (i) by Lemma 2.1, (i) implies (iv) by Theorem 3.3,
(iv) implies (iii) by [15] Theorem (3.1), while (iii) implies (ii) by Lemma 2.2

¤

Similarly to the above, the following corollary holds:

Corollary 3.5. Let X be a topological space. The following state-

ments are equivalent:

(i) X is σ-compact locally compact;

(ii) X admits a proper mapping into a σ-compact locally compact space;
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(iii) X is a limit of a system of Polish polyhedra with proper bonding

mappings;

(iv) X admits a resolution p = (pa) : X → X = (Xa, paa′ , A), where

all Xa are Polish polyhedra and all bonding mappings paa′ (and all

projections pa) are proper.

Remark. The systems X in the above statements admit meshes, i.e.,
they satisfy condition (A3) (see [15], Definition (1.1)). Indeed, the system
X ′ in the proof of Theorem 3.3 satisfies condition (C) ([18], Theorem (2.3);
[14], Theorem (2.8)). Furthermore, the resolutions in the necessity parts
of both corollaries are cofinite strictly canonical and simplicial.

4. Characterization of a proper mapping

Analogously to the previous characterization of paracompact locally
compact spaces, one can characterize proper mappings of such spaces.
First recall a few elementary facts:

Lemma 4.1. Let f : X → Y be a mapping and V an open covering

of Y .

(i) If V is star-(locally, point-) finite, then so is f−1(V);
(ii) If V is countable, then so is f−1(V);
(iii) If V consists of relatively compact sets and f is proper, then f−1(V)

consists of relatively compact sets.

Let f : X → Y be a proper mapping of paracompact locally com-
pact spaces. Recall the construction of [8], Theorem 11 (the first part
of the proof), which now let be based on the families D ⊆ Cov(Y )
and C ⊆ Cov(X) consisting of all locally finite open coverings with rel-
atively compact members. Clearly, D and C are cofinal subfamilies,
and any two of their members are mutually star-finite. Furthermore, by
Lemma 4.1, f−1V ∈ C whenever V ∈ D. The above mentioned construc-
tion, according to Lemma 3.1, 3.2 and 4.1, yields now the POL-systems
X ′ = (X ′

λ, p′λλ′ , Λ), Y ′ = (Y ′
µ, q′µµ′ ,M) and maps p′ = (p′λ) : X → X ′,

q′ = (q′µ) : Y → Y ′, f ′ =
{
f ′, f ′µ | µ ∈ M

}
: X ′ → Y ′, such that

(1) X ′ and Y ′ are cofinite satisfying condition (C), i.e., (for X ′) (∀λ ∈ Λ)
cw(X ′

λ) ≤ card(Λ) (cw denotes covering weight; see [14]);
(2) p′ and q′ satisfy condition (B1);
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(3) q′f = f ′p′;
(4) X ′

λ and Y ′
µ are locally compact realized nerves;

(5) p′λ and q′µ are canonical mappings;
(6) p′λλ′ , q′µµ′ and f ′µ are simplicial mappings (with respect to the unique

triangulations on the terms given by the nerves), and f ′µ are embed-
dings;

(7) f ′ : M → Λ is an increasing injection.
We can now construct, in the same way as in [2], Proposition (4.2) and

Theorem (4.5), a desired resolution (p, q, f) of f . Consequently, p = (pa) :
X → X = (Xa, paa′ , A) and q = (qb) : Y → Y = (Yb, qbb′ , B) are cofinite,
strictly canonical, PL resolutions of X and Y respectively, which admit
meshes, while f = {f, fb | b ∈ B} : X → Y is a map of systems satisfying
qf = fp with all mappings fb simplicial embeddings (hence, proper and
closed). Moreover, by Lemmata 3.1, 3.2 and 4.1, all polyhedra Xa, Yb

are metrizable, all projections pa, qb are proper and strictly canonical
mappings and all bonding mappings are proper and simplicial. Of course,
in the special case of σ-compact locally compact spaces all polyhedra Xa,
Yb are Polish. Therefore, we can state the following characterization:

Theorem 4.2. Let f : X → Y be a mapping of topological spaces.

Then f is a proper mapping of paracompact locally compact (σ-compact

locally compact) spaces if and only if it admits a strictly canonical sim-

plicial resolution (p, q,f), where the systems are cofinite, admit meshes

and consist of metrizable (Polish) polyhedra, and all the within appearing

mappings are proper.

Proof. The necessity follows by the preceding construction. For the
sufficiency, X and Y are paracompact locally compact (σ-compact locally
compact) by Corallary 3.4 (Corollary 3.5), while f is proper since the
composition qbf = fbpf(b) is a proper mapping. ¤
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DEPARTMENT OF MATHEMATICS
UNIVERSITY OF SPLIT
TESLINA 12/III, 21000 SPLIT
CROATIA

(Received March 26, 1996; revised March 3, 1997)


